본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%83%9D%EC%B2%B4%EC%8B%9C%EA%B3%84
최신순
조회순
수학과 실험을 결합하여 생체시계의 역설 규명
수학과 실험을 결합한 융합연구를 통해 생체시계가 안정적 리듬을 유지하면서도 환경변화에 쉽게 적응할 수 있는 원리가 밝혀졌다. 우리 대학 수리과학과 김재경 교수가 이끄는 기초과학연구원(IBS) 수리 및 계산과학 연구단 의생명 수학 그룹과 우리 대학 수리과학과 연구팀, 그리고 아주대 의과대학 뇌과학과 김은영 교수 연구팀은 공동연구를 통해 초파리 뇌의 생체시계 뉴런들의 생체시계 작동원리를 분석했다. 생체시계(Circadian clock)는 생명체가 24시간 주기에 맞춰 살아갈 수 있도록 행동과 생리 작용을 조절하는 역할을 한다. 예를 들어, 생체시계는 밤 9시경이 되면 뇌에서 멜라토닌 호르몬 분비를 유발해 일정 시간이 되면 수면을 취할 수 있도록 하는 등 우리 운동 능력이나 학습 능력에 이르는 거의 모든 생리 작용에 관여한다. 따라서, 평소에는 일정한 시간을 안정적으로 몸에 제시하면서, 동시에 계절 변화에 따른 낮밤의 길이 변화나 해외여행으로 인한 시차 등 환경변화가 생겼을 때는 새로운 환경에 유연하게 적응해서 변화한 시간을 몸에 제시해주어야 한다. 이러한 안정성과 유연성을 동시에 유지하는 생체시계의 역설적인 성질의 원리는 지금까지 알려져 있지 않았다. 초파리 생체시계 뉴런들의 경우, 마스터 뉴런(master neuron)이 외부로부터 들어오는 빛 정보를 취합하여 시간 정보를 슬레이브 뉴런(slave neuron)에 전달하면, 이에 맞춰 슬레이브 뉴런이 일주기 행동을 조절하는 계층구조를 형성하고 있다. 이러한 역할 차이에도 불구하고, 두 뉴런의 생체시계는 동일한 원리로 작동한다고 알려져 있었다. 2017년 노벨 생리의학상을 수상한 마이클 영, 제프리 홀 그리고 마이클 로스바쉬 교수는 PER 단백질이 매일 일정한 시간에 세포핵 안으로 들어가 PER 유전자의 전사를 일정 시간에 스스로 억제하는 음성피드백 루프를 통해 24시간 주기의 리듬을 만드는 것이 생체시계의 핵심 원리임을 밝혔다. 연구진은 초파리에서 CLK에 변이가 생겼을 때 마스터 뉴런과 슬레이브 뉴런에서 서로 다른 PER변화 양상이 나타나는 것에 착안하여 마스터 뉴런과 슬레이브 뉴런이 만들어내는 PER 단백질의 변화 양상을 1000여 개 수리 모델을 개발하여 분석한 결과, 마스터 뉴런의 PER이 슬레이브 뉴런의 PER에 비해 빠르게 합성되었다 분해되고 있음을 예측하였다. 이러한 마스터 뉴런의 독특한 성질 덕분에, 평소에 강한 PER 리듬을 생성해서 안정적인 시계 역할을 하다가 외부 환경에 변화가 일어났을 때 빠르게 적응할 수 있음 역시 가상 시뮬레이션을 통해 예측하였다. 이러한 마스터 뉴런에 관한 수리모델링 예측은 초파리 생체 실험을 통해서도 검증되었다. 김재경 교수는 “모든 세포의 생체시계는 당연히 비슷한 방식으로 작동될 것이란 오래된 믿음이 수학을 이용한 분석 덕분에 틀렸음을 알게 되었다”며 “수학과 실험을 융합한 방식으로 문제에 접근하였기 때문에 문제를 해결할 수 있었다”고 말했다. 또한, 김은영 교수는 “마스터 뉴런 생체시계의 독특한 성질 덕분에 생체시계가 안정성과 유연성이라는 역설적인 성질을 모두 가질 수 있었다”며 “모든 세포의 생체시계가 천편일률적으로 작동하는 대신 자신의 역할에 맞게 다른 작동 방식을 취한다는 점이 놀라웠다”고 말했다. 생체시계가 안정성과 유연성을 동시에 유지하지 못하면 다양한 환경에서 일정한 수면패턴을 유지할 수 없고, 일주기 리듬 수면장애가 발생한다. 이번 연구결과는 일주기 리듬 수면장애의 원인을 규명하고 치료법을 찾는 새로운 패러다임을 제시할 수 있을 것으로 예상된다. 정의민, 권미리, 조은주 박사가 공동 제 1저자로 참여한 이번 연구결과는 2월 15일 오후 5시(한국시간) 자연과학 분야의 저명 국제학술지인 미국국립과학원회보(Proceedings Of The National Academy Of Sciences, PNAS, IF 11.205)에 게재됐다. * 논문명: Systematic modeling-driven experiments identify distinct molecular clockworks underlying hierarchically organized pacemaker neurons
2022.02.16
조회수 10702
수학 모델로 불안정한 수면 사이클 원인 밝혀
우리 대학 연구진이 수학적 모델을 이용해 세포질 혼잡을 유발하는 비만과 치매, 노화가 어떻게 불안정한 수면을 유발하는지를 밝히고 해결책을 제시했다. 수리과학과 김재경 교수 연구팀은 수학적 모델을 이용해 세포 내 분자 이동을 방해하는 세포질 혼잡(Cytoplasmic congestion)이 불안정한 일주기 리듬(Circadian rhythms)과 수면 사이클을 유발함을 예측하고, 미국 플로리다 주립대학 이주곤 교수 연구팀과 실험을 통해 검증하는 데 성공했다고 9일 밝혔다. 수리과학과 김대욱 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `미국국립과학원회보(PNAS)' 10월 26일 字 온라인판에 실렸다. (논문명 : Wake-sleep cycles are severely disrupted by diseases affecting cytoplasmic homeostasis) 우리 뇌 속에 있는 생체시계(Circadian clock)는 인간이 24시간 주기에 맞춰 살아갈 수 있도록 행동과 생리 작용을 조절하는 역할을 한다. 생체시계는 밤 9시경이 되면 우리 뇌 속에서 멜라토닌 호르몬의 분비를 유발해 일정 시간에 수면을 취할 수 있도록 하는 등 운동 능력이나 학습 능력에 이르기까지 거의 모든 생리 작용에 관여한다. 2017년 노벨생리의학상을 수상한 마이클 영, 제프리 홀 그리고 마이클 로스바쉬 교수는 *PER 단백질이 매일 일정한 시간에 세포핵 안으로 들어가 PER 유전자의 전사를 일정 시간에 스스로 억제하는 음성피드백 루프를 통해 24시간 주기의 리듬을 만드는 것이 생체시계의 핵심 원리임을 밝혔다. ☞ PER 단백질: 포유류의 일주기 리듬을 통제하는 핵심 생체시계 단백질이다. 세포질에서 번역(translation)된 PER 단백질은 핵 안으로 들어가 자기 자신의 DNA 전사(transcription)를 조절한다. 이로 인해 세포 내 PER 단백질의 농도는 24시간 주기로 변화한다. 하지만 다양한 물질이 존재하는 복잡한 세포 내 환경에서 어떻게 수천 개의 PER 단백질이 핵 안으로 일정한 시간에 들어갈 수 있는지는 오랫동안 생체시계 분야의 난제로 남아있었다. 이는 서울 각지에서 출발한 수천 명의 직원이 혼잡한 도로를 통과해서 매일 같은 시간에 회사에 들어갈 수 있는 방법을 찾는 것과도 같은 문제다. 김 교수 연구팀은 난제 해결을 위해 세포 내 분자의 움직임을 묘사하는 시공간적 확률론적 모형(Spatiotemporal Stochastic model)을 자체 개발했다. 또 이를 이용해 분석한 결과, PER 단백질이 세포핵 주변에서 충분히 응축돼야만 동시에 인산화돼 핵 안으로 함께 들어간다는 사실을 알아냈다. 김 교수는 "인산화 동기화 스위치 덕분에 수천 개의 PER 단백질이 일정한 시간에 함께 핵 안으로 들어가 안정적인 일주기 리듬을 만들어낼 수 있음을 확인했다ˮ고 설명했다. 김 교수팀은 또 PER 단백질의 핵 주변 응축을 방해하는 지방 액포와 같은 물질들이 세포 내에 과도하게 많아져 세포질이 혼잡해지면 인산화 스위치가 작동하지 않아 불안정한 일주기 리듬과 수면 사이클이 유발된다는 사실도 확인했다. 김재경 교수팀의 수리 모델 예측은 미국 플로리다 주립대학 이주곤 교수 팀과 협업을 통해 실험으로 검증하는 한편 한 발짝 더 나가 비만·치매·노화가 세포질 혼잡을 일으킴으로써 수면 사이클의 불안정을 가져오는 핵심 요인임을 규명하는 데도 성공했다. 세포질 혼잡 해소가 수면 질환 치료의 핵심이기 때문에 김 교수팀의 이번 연구는 수면 질환 치료의 새로운 패러다임을 제시했다는 점에서 큰 의미가 있다. 김재경 교수는 "비만과 치매, 그리고 노화가 불안정한 수면을 유발하는 원인을 수학과 생명과학의 융합 연구를 통해 밝힌 연구ˮ라고 소개하면서 "이번 성과를 통해 수면 질환의 새로운 치료법이 개발되기를 기대한다ˮ라고 말했다.
2020.11.09
조회수 36371
김재경 교수, 수학 통해 암과 생체시계의 핵심 연결고리 발견
〈 이번 연구에 참여한 김재경 교수와 버지니아 공대 연구팀 〉 우리 대학 수리과학과 김재경 교수가 미분방정식을 이용한 수학적 모델링을 통해 생체시계가 암 억제 핵심 물질인 p53을 24시간 주기로 변화시키는 원리를 예측했다. 그리고 김재경 교수의 수학적 모델링은 미국 버지니아 공대 칼라 핀키엘스타인(Carla Finkielstein, 아르헨티나) 교수 연구팀의 실험을 통해 검증돼 생체시계와 암 사이에 중요한 연결고리가 있음이 증명됐다. 이번 연구 결과는 미국의 저명 학술지 미국국립과학원회보(PNAS) 11월 9일자 온라인 판에 게재됐다. 뇌 속의 생체 시계는 우리가 24시간 주기에 맞춰 살 수 있도록 행동과 생리작용을 조절한다. 밤 9시가 되면 뇌 속의 멜라토닌 호르몬이 분비를 유발해 일정 시간에 수면을 취하게 하는 등 세포분열부터 운동 및 학습 능력 등 다양한 생리 작용에 관여한다. 만성적 야근, 교대 근무 등으로 인해 생체 시계와 실제 시간이 충돌해 생체 시계의 교란이 생기면 당뇨, 암, 심장병 등 다양한 질병을 유발할 수 있다. 지난 2014년 김 교수가 버지니아 공대의 칼라 핀키엘스타인 교수 연구팀과 만났을 때 핀키엘스타인 교수 연구팀은 암 억제물질인 p53이 24시간을 주기로 변화함을 관찰했지만 어떤 원리로 생체시계가 p53의 24시간 주기 리듬을 만들어내는지는 알지 못하는 상태였다. p53이 세포의 조절 시스템 중에서도 매우 복잡한 시스템으로 구성돼 실험만을 통해 원리를 밝혀내기엔 많은 시간과 인력이 소모되기 때문이다. 김 교수는 문제 해결을 위해 수리모델링을 이용한 컴퓨터 시뮬레이션을 통해 수백만 경우의 가상 실험을 실시했다. 시행착오에 기반한 전통적 실험 대신 수리모델을 이용함으로써 비용, 시간, 인력 등을 줄일 수 있었다. 김 교수는 이 과정에서 생체 시계의 핵심 역할을 하는 물질인 Period2 단백질이 p53의 생체리듬과 깊은 관련이 있음을 밝혔다. 세포는 크게 핵과 세포질 두 가지 성분으로 나뉜다. p53은 핵과 세포질에 모두 존재할 수 있는데 이 중 핵 안으로 p53이 들어가면 안정화돼 분해가 느리게 일어난다. 김 교수는 p53 단백질을 핵 안으로 끌고 들어가는 물질이 생체 시계의 핵심 역할을 하는 Period2 단백질임을 예측했다. 이러한 김 교수의 수리모델을 통한 예측들은 핀키엘스타인교수 연구팀에 의해서 실험으로 검증돼 생체시계와 암 사이의 핵심 연결 고리를 발견할 수 있었다. 이번 연구는 p53 단백질을 정상화하는 수많은 항암제들이 투약 시간에 따라 효과가 달라졌던 원인을 규명하고 최적의 항암제 투약 시간을 밝히는 데 중요한 역할을 할 것으로 기대된다. 연구팀은 생체시계가 불안정한 교대 근무 직종 종사자들이 암 발병 확률이 높아지는 원인 규명 및 치료법 개발에 역할을 할 것으로 예상된다고 밝혔다. 김 교수는 “간호사, 경찰 등 교대 근무로 인해 고생하시는 분들이 좀 더 건강한 생활을 할 수 있도록 수학을 통해 조그만 기여를 하게 돼 기쁘다”며 “이번 성과를 통해 우리나라에서 아직은 부족한 생물학과 수학의 교류가 활발해지길 기대한다”고 말했다. 미국 버지니아 공대와 공동으로 진행한 이번 연구는 포스코 청암 재단, 미국과학연구재단, 한국연구재단의 신진연구자 지원 사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 수학과 실험을 통해서 밝혀진 생체시계의 핵심 단백질 Period2(Per2)와 암 억제 핵심 물질인 p53의 복잡한 상호작용 그림2. 이번 연구에서 사용된 수리모델의 일부
2016.11.10
조회수 40233
생명과학과 김재섭 교수팀, '생체시계 뇌신경망 교신 유전자'세계최초로 밝혀
2만5천여 종의 형질전환 초파리 이용, 새로운 생체시계 유전자 발견 수면장애, 생체리듬 장애로 인한 각종 생리질환 치료법 개발 활로 열어 우리 몸은 하루 24시간의 시각 주기를 기억해서 현재 시각이 아침인지 저녁인지 혹은 낮인지 밤인지를 스스로 아는 능력이 있다. 한국에 살던 사람이 미국에 가면 한국에서 기억된 시각주기 때문에 처음 며칠 동안은 밤에는 깨어 있다가 낮이 되면 졸리고 하는 것이 그 일예이다. 우리 몸이 이렇게 하루 24시간 주기의 시간 흐름을 아는 것은 대뇌 아래 시상하부에 존재하는 일부 신경세포가 시계의 기능을 하기 때문인데, 이 시계를 “생체시계”라고 부른다. 정상적으로 생활하던 사람을 하루 종일 어두운 곳에 두어도 아침 시간이 되면 잠에서 깨고, 끼니마다 배가 고파지며, 또 밤 시간이 되면 잠을 자는 이유도 이 생체시계 때문이다. 생체시계의 역할은 시상하부에 위치한 수십 개의 신경세포가 담당한다. 이 생체시계 신경세포 각각의 내부에서 작동하는 유전자들은 그 동안 잘 알려져 있었다. 그러나 정작 각각의 생체시계 신경세포가 어떻게 서로 교신하여 하나의 완벽하고 정교한 생체시계 신경망을 이루어 우리 몸의 시간을 지배하는 지는 베일에 쌓여 있었다. KAIST 생명과학과 김재섭(金在燮, 42) 교수팀이 바이오벤처 제넥셀과의 공동연구로 이번에 그 베일을 세계 최초로 벗겼다. 金 교수팀은 제넥셀이 구축한 2만5천여 종의 형질전환 초파리를 이용, 새로운 생체시계 유전자를 발견하였으며, 그 이름을 “한(Han)"이라고 명명하였다. 金 교수팀에 따르면 “한” 유전자로부터 만들어지는 단백질은 "피디에프(PDF)"라는 리간드 단백질의 수용체로 작용하며, 생체시계 신경 세포들의 표면에 존재한다. 생체시계 신경세포 중에서 마스터(master) 생체시계 신경세포가 하루 24시간의 주기에 따라 각기 다른 양의 “피디에프”를 분비한다. 그러면 뇌의 다른 부위에 존재하는 생체시계 신경세포들은 표면에 있는 “한” 수용체 단백질을 통해 이 신호를 받아서 자기의 생체시계 작동을 마스터 신경세포의 생체시계 시각과 동조화 시킨다. 이렇게 해서 생체시계 신경망을 담당하는 모든 신경세포들 안에 있는 생체시계는 동일한 시각으로 맞춰지게 된다. 즉, “피디에프”와 “한” 단백질을 이용한 생체시계 신경세포들 사이의 교신이 정확하게 이뤄져 생체시계의 시각 결정을 담당하는 모든 신경세포가 특정 시간을 모두 동일한 시간으로 인식하여 일사 분란하게 몸을 조절하는 것이다. 金 교수팀의 이번 연구결과는 뉴론(Neuron)誌 10월호(10.20 발행)에 게재된다. 뉴론誌는 셀지의 자매지로서 네이처 뉴로사이언스와 쌍벽을 이루는 신경과학 분야의 최고 권위지다. 김재섭 교수는 "학문적으로는 생체시계를 담당하는 뇌신경들이 어떻게 서로 교신 하는 지를 알 수 있게 되었으며, 의학적으로는 수면 장애와 생체리듬 장애로 인한 각종 생리 질환 치료법 개발에 새로운 길을 열게 되었다"고 이번 연구 성과의 의의를 밝혔다.
2005.10.20
조회수 18934
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1