본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%84%B8%ED%8F%AC%EC%83%9D%EB%AC%BC%ED%95%99
최신순
조회순
암 환자들이 겪는 섭식장애 원인 찾아
국내 연구진이 암 환자들이 겪는 섭식장애 원인을 규명했다. 암 환자의 섭식장애 개선을 통한 항암치료 부작용을 개선할 수 있을 것으로 기대된다. 우리 대학 의과학대학원 서재명 교수 연구팀이 한국생명공학연구원 유권 질환표적구조연구센터장과 이규선 바이오나노연구센터장 연구팀, 김송철 서울아산병원 교수 연구팀과 공동연구를 통해 암세포에서 특이적으로 분비되는 특정 단백질이 뇌신경세포의 특정 수용체를 통해 식욕조절 호르몬을 조절하는 원리를 발견했다고 18일 밝혔다. 연구결과는 국제학술지 ‘네이처 세포생물학’ 2월 9일자 온라인판에 게재됐다. 암 환자의 대표적인 합병증인 ‘암 악액질 증후군’은 심각한 섭식장애와 지속적인 체중 감소 현상을 동반한다. 암환자 생존율과 항암치료에도 좋지 않은 영향을 주는 것으로 알려져 있지만 암 환자 섭식장애 원인은 아직 규명되지 않았다. 연구팀은 초파리 암 모델과 RNA 전사체 분석으로 암 세포에서 유래된 특정 단백질(Dilp8 펩타이드)의 발현과 분비가 현저하게 증가된다는 사실을 확인했다. 특정 단백질은 뇌신경세포 수용체를 통해 식욕 조절에 관여하는 신경펩타이드 호르몬 발현을 변화시켜 초파리 모델에서 섭식장애를 유도한다는 사실을 알아냈다. 이같은 연구결과를 바탕으로 우리 대학 의과학대학원 서재명 교수 연구팀은 암을 유발한 쥐 모델에서도 특정 단백질과 상동인자인 ‘INSL3’가 현저하게 증가돼 섭식장애를 유발한다는 사실을 확인했다. 특히 암 세포에서 분비되는 단백질 INSL3을 쥐 뇌에 직접 주입할 경우 먹이 섭취량과 체중이 감소했다. 김송철 서울아산병원 연구팀은 암 악액질 증후군 발생 빈도가 가장 높은 췌장암 환자를 대상으로 임상 연관성 연구를 진행했다. 그 결과 섭식장애가 나타는 췌장암 환자에서 INSL3의 농도가 높게 나타났다. 암 세포에서 분비되는 단백질(INSL3)이 뇌신경계의 식욕 조절에 관여하는 신경세포에 작용해 암 환자의 식욕을 감소시킨 것이다. INSL3 단백질이 암 환자 섭식장애를 유발하는 중요한 신호인자라는 사실을 규명했다. 유권 생명연 책임연구원은 “초파리 실험모델에서 발견한 기초·원천 연구결과를 쥐에서 확인했고 암 환자 임상 연구에서 재확인한 연구 사례”라며 “규명된 단백질 진단과 조절로 암 환자의 섭식장애를 해결하는 치료 전략이 개발되면 암 환자의 항암치료 보조제 뿐만 아니라 일반인 대상 대사질환 치료제 개발에도 활용될 수 있을 것”이라고 밝혔다.
2021.03.02
조회수 89944
손상된 DNA의 돌연변이 유발 메커니즘 규명
- DNA 손상을 용인하는 특수 복제효소 Rev1의 조절 메커니즘 밝혀 -- “암 치료 및 예방에 크게 기여할 것” - 우리 학교 화학과 최병석 교수는 생체정보를 저장하는 DNA가 손상돼 회복하고 복제하는 과정에서 돌연변이가 발생하는 메커니즘을 규명했다. 연구결과는 분자세포생물학분야 세계적 학술지 ‘분자세포생물학(Journal of Molecular Cell Biology)’ 6월호 표지논문으로 실렸다. 산업의 급격한 발전으로 현대인들의 유전자는 예전에 비해 훨씬 다양하게 위협받고 있다. 오존층의 파괴로 인해 자외선에 그대로 노출되는 것은 물론 담배연기를 비롯한 수많은 발암물질의 공격은 우리 몸속의 DNA를 손상시킨다. 하루에도 수 만 번 끊임없이 일어나는 DNA의 손상을 효과적으로 회복시켜주지 못하면 암 등 치명적인 질병이 발생한다. 손상된 DNA가 회복반응에 의해 복구되지 않은 상태에서 자기복제가 일어나면 정상적인 복제를 담당하는 폴리머라제는 손상부위에 도달하면 DNA 합성을 정지하게 되고 세포의 죽음을 초래 한다. 인체는 이 같은 비상사태를 맞이해 복제담당 폴리머라제를 잠깐 쉬게 하고 손상된 DNA 부위를 그냥 지나치는 능력이 있는 특수한 복구담당 폴리머라제들을 동원해 손상부위를 통과하고 DNA 합성을 다시 시작한다. 이때 DNA는 많은 오류가 발생돼 심각한 돌연변이를 유발시킨다. 즉, 열악한 상황에 놓인 세포가 복제를 진행하지 못해 죽음을 맞기 보다는 생존을 위해 매우 부정확한 DNA 복제일지라도 선수를 교체하면서까지 복제를 진행하게 된다. 지금까지 학계에서는 Rev1 단백질이 이러한 과정을 조절할 것이라고 추정해 왔지만 그 구조와 기능은 명확하게 밝혀내지 못했다. 연구팀은 핵자기공명 분광법(NMR)과 X-ray를 이용해 DNA 복제과정에서 중추적인 역할을 하는 단백질(Polκ과 Rev1, Rev1과 Rev3/Rev7) 각각의 복합구조를 밝혀냈다. 이를 통해 ▲DNA가 손상 시 돌연변이가 유발되는 메커니즘 ▲DNA 복제효소간의 상호작용 ▲손상부위를 통과한 합성된 DNA가 더 연장되는 메커니즘을 분자수준에서 규명했다. 암의 직접적인 발병 원인이 DNA의 손상인 만큼 이에 대한 메커니즘을 밝혀내고 응용하면 개인별로 암의 원인을 제거할 수 있어 부작용 없는 맞춤형 항암제를 개발할 수 있을 것으로 전망된다. 최병석 교수는 이번 연구에 대해 “판코니 빈혈 환자들에게 암이 많이 발생되는 문제를 조사해보니 DNA복제 시 회복 기능이 고장 나 있더라”며 “손상된 DNA의 회복과 복제 과정에 대한 메커니즘 규명을 통해 암을 예방하고 치료하는데 크게 기여할 것”이라고 말했다. 이번 연구는 KAIST 화학과 최병석 교수와 류디난 박사의 주도로 수행됐고, KAIST 화학과 이지오 교수, 고준상 박사, 임경은 박사과정, 기초과학지원연구원 류경석 박사와 황정미 박사가 참여했다. 그림1. Polκ/Rev1/Rev7/Rev3 단백질 복합체 구조 그림2. Rev1, Polκ와 Rev7와 Rev3를 상호형질 주입된 세포의 공초점 현미경 영상 그림3. 논문표지
2013.06.03
조회수 16667
시스템생물학 연구로 표적항암제 내성 원리 규명
- 분자세포생물학지 발표, “표적항암제 내성 극복 및 암 생존률 향상 위한 단초 마련”- 최근 항암치료법으로 주목 받고 있는 표적항암제(멕 억제제, MEK inhibitor)의 근본적인 내성 원리가 국내 연구진에 의해 밝혀져, 향후 항암제 내성을 극복하고 암 생존률을 높일 수 있는 토대를 마련하였다. 특히 이번 연구는 IT와 BT의 융합연구인 시스템생물학 연구로 이루어졌다는 점에서 큰 의미가 있다. 우리 학교 조광현 교수가 주도하고 원재경 박사과정생, 신성영 박사, 이종훈 박사과정생, 허원도 교수 및 양희원 박사가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약/도전연구)과 기초연구실사업 및 WCU(세계수준의 연구중심대학) 육성사업의 지원으로 수행되었다. 연구결과는 분자세포생물학 분야의 권위 있는 학술지인 ‘분자세포생물학지(Journal of Molecular Cell Biology, IF=13.4)’의 표지논문으로 선정되어 6월 1일자에 게재되었다. (논문명: The cross regulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor) 표적항암제는 종양세포 속에 있는 특정 신호전달경로의 분자를 목표(target)로 하는데, 최근 폐암, 유방암 등 일부 종양에서 기존 항암제와 달리 부작용이 적고 임상효능이 높아 전 세계 과학자들로부터 큰 주목을 받고 있다. 특히 표적항암제는 개인 맞춤형 항암치료제로 개발될 수 있어 기대를 모으고 있다. 그러나 실제 임상 또는 전(前)임상 단계에서 많은 표적항암제의 내성이 관찰되어, 결국 신약개발로 이어지지 못하는 경우가 많다. 또한 효능은 있더라도 생존율이 낮거나 재발하는 경우가 빈번한 것으로 알려졌다. 대표적인 종양세포 신호전달경로인 어크(ERK) 신호전달경로는 대부분의 종양에서 활성화되는 경로인데, 특히 피부암이나 갑상선암은 이 경로에 있는 물질(비라프, BRAF)의 변이로 활성화되어서 암으로 발전하는 사례가 많다. 이 경우 어크 신호전달경로를 표적으로 하는 멕 억제제가 효과적인 치료법으로 알려져 있지만, 결국 내성이 발생하여 암이 다시 진행된다. 조광현 교수가 이끈 융합 연구팀은 어크 신호전달경로를 표적으로 하는 멕 억제제에 대한 내성과 그 근본원리를 수학모형과 대규모 컴퓨터 시뮬레이션을 이용해 분석하고, 그 결과를 분자생물학실험과 바이오이미징*기술을 통해 검증하였다. *) 바이오이미징 : 세포 또는 분자 수준에서 일어나는 현상을 영상으로 확인하는 기술 조 교수팀은 종양의 다양한 변이조건을 컴퓨터 시뮬레이션과 실험을 수행한 결과, 멕 억제제를 사용하면 어크 신호전달은 줄어들지만, 또 다른 신호전달경로(PI3K로의 우회 신호전달경로)가 활성화되어 멕 억제제의 효과가 반감됨을 입증하였다. 또한 이러한 반응이 신호전달 물질간의 복잡한 상호작용과 피드백으로 이루어진 네트워크 구조에서 비롯되었음을 밝히고, 그 원인이 되는 핵심 회로를 규명하여 이를 억제하는 다른 표적약물을 멕 억제제와 조합함으로써 표적항암제의 효과를 증진시킬 수 있음을 제시하였다. 조광현 교수는 “이번 연구는 멕 억제제에 대한 약물저항성의 원인을 시스템 차원에서 규명한 첫 사례로, 약물이 세포의 신호전달경로에 미치는 영향을 컴퓨터 시뮬레이션으로 예측함으로써 표적항암제의 내성을 극복할 수 있음을 보여주었다. 또한 신호전달 네트워크에 대한 기초연구가 실제 임상의 약물 사용에 어떻게 적용될 수 있는지와 표적항암물질의 저항성에 대한 근본원리를 이해하고, 그 극복방안을 찾아내는 새로운 융합연구 플랫폼을 제시한 것으로 평가받고 있다”고 연구의의를 밝혔다.
2012.06.12
조회수 21321
조광현 교수, 컴퓨터시뮬레이션 통해 세포 조절회로의 숨겨진 메커니즘 규명
바이오및뇌공학과 조광현(曺光鉉, 38) 교수 연구팀이 컴퓨터시뮬레이션을 통해 세포의 증식과 분화 조절회로에 숨겨진 동역학 메커니즘을 규명하였다. 연구결과는 세포생물학계의 권위지인 저널오브셀사이언스(Journal of Cell Science)지 21일자 온라인판에 표지논문(Cover Paper)으로 선정, 출판되었다. 이번 연구는 특히 수학 모델과 컴퓨터 시뮬레이션을 이용해 세포내 복잡한 메커니즘을 해석해 내고 이를 생화학실험을 통해 재차 검증함으로서 완성되었다. 이는 IT를 BT에 접목시킨 시스템생물학(Systems Biology) 연구를 통해 기존 생명과학의 한계를 극복한 중요한 BIT 융합 연구사례로 평가된다. 세포내 어크(ERK) 신호전달경로는 세포의 증식과 분화를 조절하는 주요 회로로 알려져 왔으며, 최종단의 인산화된 어크 단백질의 시간에 따른 농도변화 프로화일은 세포의 운명을 결정하는 핵심인자로 여겨져 왔다. 그러나 이 회로의 복잡한 동역학적 특성으로 인해 조절메커니즘은 아직껏 잘 밝혀지지 않았다. 曺 교수 연구팀은 어크 신호전달경로 가운데 라프(Raf) 단백질의 신호를 선택적으로 차단하는 알킵(RKIP) 단백질이 매개하여 형성하는 양성피드백과 어크에서 에스오에스(SOS)로 이어지는 신호에 의해 형성되는 음성피드백이 최종 어크 단백질의 동역학 패턴을 결정짓는 주요 조절회로임을 규명해 냈다. 특히 양성피드백은 이 신호전달과정이 외부노이즈에 둔감하도록 스위칭동작을 유발하고 음성피드백은 어크 프로파일의 진동현상을 유발함으로써 다이나믹한 동역학 특성이 결정됨을 밝혀냈다. 이러한 컴퓨터 시뮬레이션 분석결과는 공동연구팀인 영국 글라스고우 암연구소에서 생화학실험을 통해 증명되었다. 이번 연구는 인간의 주요 질환과 관련된 세포내의 근원적인 조절메커니즘을 규명함으로써 차후 생명과학 응용연구의 중요한 발판을 마련하였으며, 또한 BIT 융합연구로서 시스템생물학의 새로운 가능성을 제시하게 됐다. 이번 연구는 교육과학기술부지원 연구사업의 일환으로 수행되었다. <2009년 1월 21일자 온라인판, 인터넷주소> http://jcs.biologists.org/content/vol122/issue3/cover.shtml
2009.01.29
조회수 20824
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1