-
온도 제어로 반도체 패키징 내구성 40% 향상
최근 반도체의 전공정에서 회로를 미세화하는 작업이 한계에 다다르면서 후공정인 반도체 패키징이 차세대 기술로 주목받고 있다. 반도체 패키지는 여러 개의 반도체 칩을 하나로 이어주며 외부 환경으로부터 보호해주는 공정을 말한다. 아울러, 반도체 패키지의 온도도 중요한데 반도체부품의 온도가 높아지면 반도체 수명이 급격이 줄어들고 작동하지 않기 때문이다.
우리 대학 기계공학과 김성수 교수 연구팀이 메사추세츠공과대학(MIT) 브라이언 워들(Brian L. Wardle) 교수 연구팀과 함께 ‘반도체 패키지의 신뢰성 강화를 위한 접합 온도 제어 기반의 경화 공정’을 개발하는 데 성공했다.
반도체 패키지의 주된 재료인 *EMC는 열을 가하면 화학반응이 일어나 단단해지는데 이 현상을 경화 반응(Curing reaction)이라고 한다. 경화 공정은 시간에 따른 온도 및 압력 변화를 반도체 패키지의 두께가 얇아짐에 따라 공정 후 재료간의 열수축 차이로 인한 뒤틀리는 휨(Warpage) 현상이 나타나게 된다. 이 문제를 해결하고자 공동연구팀은 EMC와 기판사이 접합 온도를 정확히 예측하고 휨현상을 제어할 수 있는 경화 공정을 개발했다.
☞ EMC (Epoxy Molding Compund) : 수분, 열, 충격 등 다양한 외부 환경으로부터 반도체 회로를 효과적으로 보호하는 회로 보호재를 말한다.
공동연구팀은 반도체 패키지의 접합 온도를 낮추기 이번 연구에서 두 재료의 접합이 일어나는 온도 직전에 급격히 온도를 낮춰주는 접합 온도 제어 기반의 EMC 경화 공정 기술을 개발하였다. 열경화성 고분자인 EMC는 경화 공정 중 기판과 접합이 발생하는 온도 직전에 상온으로 급랭을 하게 되면 경화 반응을 억제해 접합 온도를 상온에 가깝게 유도할 수 있으며, 이후 재가열을 통해 EMC를 완전히 경화시킬 수 있다. 이 과정을 통해 패키지의 접합 온도와 사용 온도 차이를 줄여줌으로써 요소 간 열수축 차이에 의한 길이 변화 차이를 최소화해 휨을 줄일 수 있다. 이를 위해서는 두 재료 사이의 정확한 접합 온도를 분석하는 것이 중요하며, 연구팀은 경화 공정 중에 발생하는 EMC의 화학적 수축을 고려한 접합 온도를 구하는 식을 유도했으며, 변형율 측정 시스템을 활용해 이를 검증했다.
이러한 과정을 통해 정확히 측정된 접합 온도 직전에서 급랭 과정을 도입한 새로운 경화 공정을 통해 기존 EMC 경화 공정 대비 반도체 패키지의 휨은 27% 감소했으며, EMC와 기판 경계면의 기계적 강도는 약 40% 상승했다. 또한, 급랭 과정을 포함하는 경화 공정을 거친 EMC의 기계적 물성은 기존 공정과 차이가 없음을 확인했다. 연구 책임자인 김성수 교수는 “접합 온도 제어 기반의 새로운 EMC 경화 공정은 경박단소화 되어가고 있는 반도체 패키지에서 지속적으로 대두되고 있는 휨 문제를 해결하여 반도체 패키지의 수율을 향상시킬 뿐만 아니라 내구성도 강화할 수 있을 기반 기술이 될 것”이라고 연구 의미를 설명했다.
기계공학과 박성연 박사가 제1 저자로 참여하고 한국연구재단, BK 사업 그리고 국제협력사업 시그니쳐 프로젝트(Signature project)의 지원으로 수행된 이번 연구는 국제 저명 학술지인 ‘ACS applied materials&interfaces’에 지난 3월 1일 자로 게재됐다. (논문명 : Electronic packaging engineered by reducing the bonding temperature via modified cure cycles. doi/10.1021/acsami.2c21229). 또한, 해당 논문의 우수성을 인정받아 표지 논문 (Supplementary cover)으로 선정됐다.
2023.05.02
조회수 4478
-
고효율 유기박막태양전지 개발
- 플라즈모닉 현상 이용해 유기박막태양전지 광효율 20% 향상 -- 효율 증가원인 규명해 응용분야 발전 기대 -
금속나노입자의 플라즈모닉 효과를 이용해 유기박막태양전지의 효율을 크게 높일 수 있는 기술이 개발됐다.
우리 학교 EEWS 대학원 이정용 교수 연구팀이 유기박막태양전지의 효율을 20% 증가시킬 수 있는 기술을 개발하고, 플라즈모닉 현상으로 인한 효율 증가의 원인을 처음으로 규명했다.
이 기술은 유기박막태양전지 제작 방법에 상관없이 추가로 효율을 20% 높일 수 있어 유기박막태양전지의 상용화를 크게 앞당길 수 있을 것으로 기대된다.
현재 양산중인 실리콘 반도체 기반 태양전지는 아직까지는 경제성이 낮다. 이에 따라 이를 대체하기위해 보다 저렴하게 제작할 수 있다고 알려진 유기박막태양전지의 효율을 높이기 위한 연구가 전 세계적으로 많이 수행되고 있다.
유기박막태양전지는 고분자 유기물 기반으로 제작된 태양전지로 가볍고, 유연하며, 저렴한 비용으로 제작이 가능해 차세대 태양전지로써 각광받고 있다. 그러나 빛을 흡수할 수 있는 층이 수십 나노미터(nm) 수준으로 매우 얇기 때문에 낮은 광변환 효율을 나타내 상용화에 어려움을 겪고 있었다.
이 교수 연구팀은 기존 유기박막태양전지에 10~100nm로 다양한 크기의 금속나노입자를 적용해 유기박막태양전지의 광흡수율을 증가시킴으로써 광변환 효율이 6.4%에서 7.6%로 약 20% 향상되는 결과를 얻었다. 또 7.9% 태양전지는 8.6%로 향상된 결과를 나타냈다.
금속나노입자를 유기박막태양전지에 적용해 효율이 증가하는 것을 규명한 연구가 이전에 수행된 적은 있지만 효율증가의 원인은 정확하게 밝혀지지 않았다.
연구팀은 유기박막태양전지에 도입된 금속나노입자의 플라즈모닉 빛 전방 산란 특성으로 인해 크기가 커질수록 효율이 증가하다가 약 70nm 크기에서 가장 큰 효율 향상을 보이는 것을 이론 및 실험적으로 증명했다.
이정용 교수는 이번 연구에 대해 “금속나노입자의 플라즈모닉 산란 특성을 조절한 광공학 설계의 가능성을 확인했다”며 “저렴한 용액 공정으로 나노입자를 합성 및 적용했기 때문에 대면적 태양전지 모듈 제작에도 쉽게 적용이 가능하다”고 말했다.
이 교수는 또한 “이번 연구로 밝혀낸 기술을 이용하면 유기박막태양전지의 상용화를 앞당기는데 큰 기여를 할 수 있을 것”이라고 밝혔다.
이정용 교수가 주도하고 백세웅 박사과정 학생이 참여한 이번 연구 성과는 세계적 학술지 네이처의 자매지인 ‘사이언티픽 리포트(Scientific Reports)’의 4월 25일자 온라인판에 게재됐다.
그림1. 기존 유기박막태양전지(검은 사각형)과 금속나노입자를 도입한 유기박막태양전지(빨강 원)의 전류밀도–전압 특성 곡선. 광변환 효율이 6.4% -> 7.6%, 7.8% -> 8.6%로 증가한 것을 알 수 있다.
그림2. 유기박막태양전지의 구조 및 도입된 약 70나노미터 수준의 은 나노입자의 전자현미경 사진.
2013.04.29
조회수 15275