본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%95%BD%EB%AC%BC%EC%A0%84%EB%8B%AC
최신순
조회순
항암제 표적 단백질을 약물 전달체로 쓴다?
우리 대학 바이오및뇌공학과와 생명과학과 공동연구팀이 항암제의 표적 단백질을 전달체로 이용하는 역발상 연구결과를 내놨다. 항암제를 이용한 암 치료에 새로운 가능성이 열릴 전망이다. 우리 대학 생명과학과 김진주 박사·바이오및뇌공학과 이준철 박사과정 학생이 공동 제1 저자로 그리고 생명과학과 전상용·바이오및뇌공학과 최명철 교수가 공동 교신저자로 참여한 이번 연구결과는 국제학술지 ‘어드밴스드 머티리얼스(Advanced Materials, IF=27.4)’ 8월 20일 字 표지논문으로 게재됐다. (논문명: Tubulin-based Nanotubes as Delivery Platform for Microtubule-Targeting Agents) 우리 몸속 세포가 분열할 때 염색체*들은 세포 한가운데에 정렬해 두 개의 딸세포로 나눠지는데 이 염색체들을 끌어당기는 끈이 바로 `미세소관(microtubule)'이다. 미세소관은 `튜불린(tubulin)' 단백질로 이루어진 긴 튜브 형태의 나노 구조물이다. ☞ 염색체(Chromosome): DNA와 단백질이 응축하여 만드는 막대 형태의 구조체로 생명체의 모든 유전 정보를 지니고 있다. 미세소관을 표적으로 하는 항암 약물인 ‘미세소관 표적 치료제(microtubule-targeting agents)’는 임상에서 다양한 암의 치료에 활용되고 있다. 이들은 암세포 미세소관에 결합해 앞서 언급한 끈 역할을 방해함으로써, 암세포의 분열을 억제, 결국 사멸을 유도한다. 튜불린 단백질에는 이 약물이 강하게 결합하는 고유의 결합 자리(binding site)가 여럿 존재한다. 연구진은 이 점에 착안해 표적 물질인 튜불린 단백질을 약물 전달체로 사용한다는 획기적인 아이디어를 세계 최초로 구현했다. 공동연구팀은 튜불린 나노 튜브(Tubulin-based NanoTube), 약자로 TNT로 명명한 전달체를 개발하고 항암 효능을 실험으로 확인한 것이다. TNT라는 이름에는 암 치료를 위한 폭발물이라는 의미도 담고 있다. 미세소관 표적 치료제는 TNT에 자발적으로 탑재된다. 약물 입장에서는 세포 내 미세소관에 결합하는 것과 다를 바가 없기 때문이다. 이는 항암제마다 적합한 전달체를 찾아야 했던 기존의 어려움을 해소해준다. 즉 TNT는 미세소관을 표적으로 하는 모든 약물을 탑재할 수 있는 잠재력을 가진‘만능 전달체’인 셈이다. 연구진은 먼저 튜불린 단백질에 블록 혼성 중합체*인 PEG-PLL(pegylated poly-L-lysine)을 섞어 기본적인 TNT 구조를 만들었다. 여기서 튜불린은 빌딩 블록, PEG-PLL은 이들을 붙여주는 접착제이다. 그 다음, 도세탁셀(docetaxel), 라우리말라이드(laulimalide), 그리고 모노메틸아우리스타틴 E(monomethyl auristatin E) 3종의 약물이 TNT에 탑재됨을 보였다. 이 약물들은 실제 유방암, 두경부암, 위암, 방광암 등의 화학요법에 활용되고 있는 항암제들이다. ☞ 블록 혼성 중합체(Block copolymer): 두 종류 이상의 단위체로 이루어진 고분자 화합물로, 각 단위체들이 길게 반복되는 특징이 있다. 연구팀은 또 탑재되는 약물의 종류와 개수에 따라 TNT의 구조가 변할 뿐 아니라 약물 전달체로서의 물리·화학적 특성도 달라진다는 사실을 밝혀냈다. 이는 TNT가 탑재하려는 약물에 맞춰 자발적으로 형태를 변형하는‘적응형 전달체’임을 보여주고 있다. 연구팀은 특히 항암제가 탑재된 TNT가 엔도좀-리소좀 경로(endo-lysosomal pathway)로 암세포에 들어가 뛰어난 항암 및 혈관 형성 억제 효과를 보인다는 점을 세포 및 동물을 대상으로 한 실험을 통해 확인했다. 적응형 만능 약물 전달체가 성공적으로 구현이 가능했던 배경에는 연구진이 보유한 튜불린 분자 제어 기술력 때문이다. 연구진은 튜불린 단백질을 일종의 레고 블록으로 보았다. 블록의 형태를 변형하고 쌓아 올리는 방식을 제어하여, 튜브 형태의 구조체를 조립하는 노하우를 축적해왔다. 연구팀은 이번 연구에서 포항 방사광 가속기의 소각 X-선 산란 장치를 이용해 TNT 구조를 나노미터(nm, 10억 분의 1미터) 이하의 정확도로 분석했다. 공동연구팀은 "이번 연구결과는 지금까지 학계에 보고되지 않은 완전히 새로운 방식의 약물 전달체를 구현했다는 점에서 의미가 크다ˮ고 밝혔다. 연구팀은 이어 "TNT는 현재까지 개발된, 또 향후 개발예정인 미세소관 표적 치료제까지 운송할 수 있는 범용적인 전달체이며, 다양한 항암제들의 시너지 효과(synergy effect)를 기대할 수 있는 `플랫폼 전달체'가 될 것ˮ이라고 강조했다. 이번 연구는 한국연구재단 (중견연구, 리더연구, 방사선기술, 바이오의료기술개발사업) 한국원자력연구원, KUSTAR-KAIST의 지원으로 수행됐다.
2020.08.25
조회수 29670
동맥경화증을 효과적으로 치료할 수 있는 혈관 내 플라크 제거 나노기술 개발
국내 연구진이 만성 혈관염증 질환인 죽상 동맥경화증을 나노 기술을 이용해 기존 치료법보다 효과적으로 치료할 수 있는 기술개발에 성공해 전 세계 사망원인 1위로 꼽히는 심혈관질환을 정복하는데 한 걸음 더 성큼 다가섰다. 우리 대학 바이오및뇌공학과 박지호 교수 연구팀이 나노 기술을 이용해 죽상 동맥경화증(atherosclerosis) 치료를 위한 체내 약물전달 기술을 개발했다. 죽상 동맥경화증이란 오래된 수도관이 녹슬고 각종 이물질이 가라앉아 들러붙으면 좁아지듯이, 혈관 안쪽에 콜레스테롤과 같은 지방질로 이뤄진 퇴적물인 `플라크(plaque)'가 쌓여 혈류 장애를 일으키는 만성 혈관염증 질환이다. 플라크가 혈관을 막게 되면 심근경색, 뇌졸중 등 심각한 병을 유발한다. KAIST 바이오및뇌공학과 졸업생 김희곤 박사가 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `제어 방출 저널 (Journal of Controlled Release)' 3월 10일 字 및 `ACS 나노 (ACS Nano)' 4월 28일 字 온라인판에 각각 게재됐다. (논문명: Cyclodextrin polymer improves atherosclerosis therapy and reduces ototoxicity / Affinity-Driven Design of Cargo-Switching Nanoparticles to Leverage a Cholesterol-Rich Microenvironment for Atherosclerosis Therapy) 일반적으로 약물치료의 경우 대표적 고지혈증 약물인 스타틴(statin)을 경구투여한다. 이 방법은 혈액 내 콜레스테롤 농도를 낮춰 콜레스테롤이 플라크에 쌓이는 것을 억제하기엔 효과적이나 이미 형성된 플라크를 제거하는 데에는 한계가 있다. 따라서 환자들은 평생 스타틴을 복용해야 하며 플라크라는 잠재적인 위험요소를 안고 살아가야 한다. 연구팀은 문제 해결을 위해 콜레스테롤과 결합하면 이를 녹일 수 있어 제거하기가 쉽다고 알려진 일종의 당 화합물인 `사이클로덱스트린(cyclodextrin)'을 연구에 사용했다. 박지호 교수 연구팀은 사이클로덱스트린을 약 10 nm(나노미터) 크기의 폴리머(polymer, 중합체) 나노입자 형태로 제조, 정맥 주입을 하면 기존 사이클로덱스트린보다 약 14배 효과적으로 플라크에 축적되어 보다 효과적으로 플라크를 제거할 수 있다는 결과를 얻었다고 학술지 `제어 방출 저널'에 게재했다. 연구팀은 또 사이클로덱스트린은 귀 내이의 유모세포(hair cell)를 손상시켜 청력손실을 일으킨다고 알려졌으나 이를 폴리머 나노입자 형태로 제조하면 체내분포양상을 변화시켜 귀 내이에 잘 축적되지 않기 때문에 청력손실을 방지할 수 있다는 사실을 알아냈다. 이와 함께 사이클로덱스트린과 스타틴을 자기조립(self-assembly)을 통해 약 100nm(나노미터) 크기의 나노입자 형태로 제조, 정맥 주입하자 사이클로덱스트린은 플라크 내에서 콜레스테롤을 제거하며 스타틴은 혈관을 좁게 만들었던 주요 원인인 염증성 대식거품세포(macrophage foam cell)를 줄이는 현상을 찾아냈다. 연구팀은 이같이 사이클로덱스트린과 스타틴의 동시 전달은 각각의 약물을 따로 전달했을 때보다 월등하게 효과적이기 때문에 시너지 효과를 가질 수 있는 약물들을 이용한 복합치료(combination therapy)의 필요성을 `ACS 나노 저널'을 통해 제시했다. 박지호 교수는 "이번 연구 결과를 계기로 평생 약물을 복용해야 하는 환자들의 삶의 질을 크게 개선할 수 있을 것으로 기대가 된다ˮ며 "종양 치료를 위해서 주로 개발되었던 약물전달 나노 기술이 전 세계 사망원인 1위인 심혈관질환을 효과적으로 치료하는 데도 기여할 수 있음을 보여준 연구”라고 의미를 부여했다. 한편, 이번 연구는 한국연구재단과 KAIST의 지원을 받아 수행됐다.
2020.05.29
조회수 12647
김범준 교수, 빛에 반응해 모양과 색 변하는 스마트 마이크로 입자 개발
〈 김범준 교수, 이준혁 박사, 구강희 박사 〉 우리 대학 생명화학공학과 김범준 교수 연구팀이 빛에 의해 모양과 색을 바꿀 수 있는 스마트 마이크로 입자 제작기술을 개발했다. 아주 작은 입자의 모양이나 색을 원하는 대로 가공(fabrication)할 수 있게 되면 군용장비의 위장막(artificial camouflage), 병든 세포만 표적하는 약물전달캡슐, 투명도 및 색이 변하는 스마트 윈도우나 외부 인테리어 등에 활용할 수 있다. 마이크로 입자의 모양과 색 변화 연구는 주로 약물전달이나 암세포 진단과 같은 생물학적 응용을 위해 산도(pH), 온도, 특정 생체분자 같은 물리화학적 자극과 관련해 주로 이뤄졌다. 하지만 이런 자극들은 의도하는 국소부위에만 전달하기 어렵고 자극 스위치를 명확하게 켜고 끄기 어려운 것이 단점이었다. 반면 빛은 원하는 시간 동안 특정부위에만 쬐어줄 수 있고 파장과 세기를 정밀하게 조절, 선택적·순차적으로 입자 모양을 변형시킬 수 있어 해상도 높은 자극으로 주목받는다. 하지만 기존 빛에 감응하는 스마트 입자는 제작방법이 복잡하고, 편광방향으로의 길이 연장만 가능한 등 정밀한 모양변화가 어려워 활용에 한계가 있었다. 연구팀은 빛에 의해 분자구조가 변해 친수성 정도나 광학적 특성을 조절할 수 있는 계면활성제*를 개발하고 이들의 자가조립방식을 기반으로 빛에 반응해 모양과 색깔이 변하는 수 마이크로미터 크기의 스마트 입자를 대량으로 제작하는 데 성공했다. 빛을 쬐어준 시간과 파장에 따라 구형에서 타원체, 튤립, 렌즈형태 등으로 변화시킬 수 있는 한편 입자의 색도 조절할 수 있다. 또한 100μm 이하의 국소 부위에만 빛을 조사함으로써 원하는 위치에서 원하는 모양을 정교하게 유도할 수 있다. 특히 반응하는 빛의 파장이 서로 다른 계면활성제를 활용하면 입자 모양의 변화를 여러 단계로 조절하거나 원래의 모양으로 되돌리는 변화가 가능하다. 이러한 스마트 입자로 만들어진 박막이나 용액은 그 성질을 정밀하게 조절할 수 있어 정보를 담거나 신호를 넣을 수 있는 스마트 소재로도 활용할 수 있다. 과학기술정보통신부와 한국연구재단이 추진하는 미래소재디스커버리사업, 글로벌프론티어사업 및 중견연구자지원사업의 지원으로 수행된 이번 연구의 결과는 화학 분야 국제학술지 잭스(JACS, Journal of the American Chemical Society)에 9월 4일 게재되는 한편 표지 논문으로 선정됐다. 김범준 교수는 “빛을 이용해 모양과 색이 조절되는 스마트 입자 제작 플랫폼을 개발한 것으로 빛을 신호로 국소부위 입자의 성질을 정밀하게 조절할 수 있어 스마트 디스플레이, 센서, 도료, 약물전달 등에 응용될 수 있을 것으로 기대된다.”고 설명했다. □ 그림 설명 그림1. 김범준 교수 연구성과 개념도
2019.09.09
조회수 13921
전상용 교수, 황달 유발 물질 이용해 암 표적치료 기술개발
우리 대학 생명과학과 전상용 교수, 이용현 박사 연구팀이 몸속에서 황달을 유발하는 물질인 빌리루빈을 항암약물 전달체로 이용하는 기술을 개발했다. 이 연구는 동물실험에서의 높은 생체적합성과 우수한 항암 효능을 보여 기존 암 치료법의 새로운 대안이 될 것으로 기대된다. 이번 연구 성과는 응용화학분야 학술지 ‘앙케반테 케미(Angewandte chemie)’의 에디터 선정 가장 주목받는 화제의 논문(Hot Paper)으로 선정돼 8월 3일자 온라인 판에 게재됐다. 약물전달시스템은 환부와 정상조직에서의 pH, 활성산소 등의 병태생리학적 차이를 분석해 빛, 자기장, 초음파 등 외부자극을 국소적으로 조사하는 방법이다. 이를 통해 효과적으로 선택적으로 표적에만 약물을 방출할 수 있다. 약물전달시스템은 기존 합성의약품 기반의 항암 치료제에 비해 독성을 크게 낮출 수 있기 때문에 자극감응성 약물전달체에 대한 개발이 활발하게 이뤄지고 있다. 하지만 고분자, 무기 나노입자같은 인공소재 기반의 자극감응성 약물전달체는 공정이 복잡해 상용화가 어렵고, 잠재적 독성을 유발할 가능성이 높다. 연구팀은 문제 해결을 위해 몸속 물질인 빌리루빈을 이용했다. 연구팀은 지난 5월 빌리루빈은 황달을 일으킬 수 있지만 적절하게 조절된다면 심혈관 질환이나 암 발병 가능성이 현저히 낮아져 난치성 염증을 치료할 수 있다는 연구결과를 발표했었다. 빌리루빈은 노란 색소로 혈중 농도가 높아지면 황달의 원인이 된다. 특히 신생아의 경우 간 기능이 미성숙하고 뇌혈관장벽이 미성숙하기 때문에 황달 치료를 위해 추가적 외부요법이 필요하다. 이것이 임상에서 널리 이용되는 광선치료인데 빌리루빈에 빛을 조사하면 친수성(親水性)이 강해져 빌리루빈 조직이 해체되고 배설이 촉진된다. 또한 빌리루빈은 강한 항산화작용 특성을 갖고 있어 빌리루빈이 산화될 때 친수성이 큰 빌리버딘이라는 물질로 전환되거나 작은 빌리루빈 산화물질로 깨져 역시 배설이 촉진된다. 연구팀은 위와 같은 빌리루빈의 특성을 이용했다. 우선 지난 5월의 연구를 토대로 빌리루빈의 배설이 잘 이뤄지도록 친수성을 갖는 물질과 결합시켜 나노입자로 만든 후 항암제인 독소루비신을(Doxorubicin) 선적시켰다. 그 후 암 부위에 빛을 노출시키면 빛에 의해 빌리루빈이 와해돼 선적된 항암제가 암 조직을 공격하는 원리이다. 연구팀은 이 시스템이 인간 폐암 동물모델에서 기존 항암치료 그룹에 비해 우수한 치료 효능을 보이는 것을 규명했다. 빛으로 암 부위를 국소적으로 조사했을 때 더 향상된 치료 효능이 나타났고, 운반체인 빌리루빈 나노입자 자체도 일정량의 항암효과를 나타냄을 확인했다. 이 기술은 최초로 빌리루빈을 활용한 항암치료용 다중자극감응형 약물전달시스템을 개발함으로써 원천기술 확보했다는 의의를 갖는다. 전 교수는 “물체 유래 천연 물질 빌리루빈을 사용해 독성이 없고 간단한 시스템으로 구성된 약물전달시스템을 개발해 상업화에 큰 장점을 가질 것이다”고 말했다. 이용현 박사는 “향후 임상 연구와 적용 가능성을 평가해 궁극적으로 암을 치료하는 새 방안으로 개발되길 기대한다”고 말했다. 이번 연구는 한국연구재단 글로벌연구실사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 빌리루빈 나노입자가 빛과 활성산소에 의하여 와해됨을 보여주는 결과 그림2. 인간 폐암 동물모델에서 약물이 로딩된 빌리루빈 나노입자가 실제 작용하는 모식도
2016.08.18
조회수 14960
최철희, 최경선 교수, 빛을 이용한 치료용 단백질 전달시스템 개발
우리 대학 바이오및뇌공학과 최철희 교수, 최경선 교수 공동 연구팀이 빛을 이용해 치료용 단백질을 체내로 정확하고 안전하게 전달할 수 있는 기술을 개발했다. 이는 체내 세포에서 자연적으로 생산되는 나노입자인 엑소솜과 단백질 약물이 빛을 받으면 자석처럼 서로 결합하는 기술로 우수한 기능과 안전성이 확보됐다는 의의를 갖는다. 이번 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communicaitons)’ 7월 22일자 온라인 판에 게재됐다. 최근 바이오 신약의 중요성이 커지면서 바이오 신약의 대부분을 차지하는 단백질 의약을 효과적으로 신체 내 표적 세포에 전달할 수 있는 약물전달시스템 개발이 활발히 이뤄지고 있다. 특히 나노입자는 그 특성 상 종양으로 더 많은 양이 침투할 수 있다는 장점이 있다. 따라서 새로운 물리, 화학 및 광학적 특성을 갖는 나노소재의 입자를 이용해 단백질 등의 바이오 신약을 전달하려는 시도가 진행 중이다. 하지만 현재 기술은 표적 세포에 이르기까지 생체 단백질 활성을 유지시키기 어렵고 면역 반응의 발생을 억제시켜야 하는 문제 등의 한계를 갖는다. 또한 치료용 단백질은 그 크기가 매우 커 기존 방법으로는 실용화가 매우 어렵다. 무엇보다도 가장 큰 문제는 독성 발생 가능성 등 인체 안전성이 해결되지 않았다는 않다는 점이다. 연구팀은 문제 해결을 위해 인간의 세포에서 자연적으로 발생하는 나노입자인 엑소솜(세포외 소낭)을 단백질 약물의 운송 수단으로 사용했고, 빛을 받으면 서로 결합하는 특징을 갖는 CRY2와 CIBN 단백질(CRY2, CIBN : 애기식물장대에서 유래한 서로 결합하는 특성을 갖는 단백질)을 이용했다. 엑소솜에는 CIBN을, 단백질 약물에는 CRY2를 융합시킨 뒤 450~490nm 파장의 푸른빛을 쏘면 CIBN과 CRY의 결합하는 특성으로 인해 자연스럽게 엑소솜에 단백질 약물의 탑재가 유도된다. 이 기술은 기존의 수동적인 탑재에 비해 두 가지 장점을 갖는다. 우선 세포 바깥에서 정제된 단백질을 엑소솜에 넣는 기술에 비해 치료용 단백질의 적재율이 천배 가까이 높아졌다. 그리고 단백질을 정제할 필요가 없어져 효율성, 성공률은 높아지고 비용은 적어진다. 연구팀은 기존보다 낮은 비용으로 보다 쉽게 치료용 단백질이 탑재된 엑소솜을 생산하면서 효율 및 안정성이 향상된 치료용 단백질 전달시스템을 개발했다. 이 기술은 기존 단백질 약물이 세포 외부에서만 작용한다는 한계를 극복함으로써 향후 바이오의약 분야의 새로운 패러다임을 제시하는 원천 기술이 될 것으로 기대된다. 연구팀은 현재 다양한 난치성 질환 치료를 위한 표적 단백질이 탑재된 치료용 엑소솜을 개발 중이며 효능 및 임상 적용 가능성을 검증하고 있다. 최철희 교수는 “이번 기술은 생체에서 만들어지는 나노입자인 엑소솜에 치료용 단백질을 효율적으로 탑재시켰다”며 “안전하고 기능이 우수한 단백질 약물을 대량 생산할 수 있는 획기적인 원천기술이다”고 말했다. 이 기술은 KAIST 교원창업기업인 ㈜셀렉스라이프사이언스 사에 기술이전 돼 엑소솜 약물 제조 기술의 최적화 및 전, 임상 시험을 위한 개발 단계 중이다. □ 그림 설명 그림1. 엑소솜 내부에 치료용 단백질이 함유된 것을 묘사한 개념도 그림2. 개발한 기술의 개념도
2016.08.09
조회수 13006
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1