-
와이파이보다 100배 빠른‘라이파이’속도·보안 다 잡았다
라이파이(Li-Fi)는 LED 불빛처럼 눈에 보이는 빛인 가시광선 대역(400~800 THz)을 활용한 무선통신 기술로, 기존 와이파이(Wi-Fi)보다 최대 100배 빠른 속도(최대 224Gbps)를 제공한다. 사용할 수 있는 주파수 할당의 제약이 없고 전파 혼신 문제도 적지만, 누구나 접근이 가능해서 보안에는 상대적으로 취약하다. 한국 연구진이 기존 광통신 소자의 한계를 뛰어넘어 송신 속도와 보안을 동시에 향상시킬 수 있는 라이파이의 새로운 플랫폼을 제시했다.
우리 대학 신소재공학과 조힘찬 교수 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국표준과학연구원(KRISS, 원장 이호성) 임경근 박사와 협력해, 차세대 초고속 데이터 통신으로 주목받는 ‘라이파이(Li-Fi)’ 활용을 위한 ‘온-디바이스 암호화 광통신 소자’ 기술을 개발했다고 24일 밝혔다.
조힘찬 교수팀은 친환경 양자점(독성이 적고 지속 가능한 소재)을 이용해 고효율 발광 트라이오드 소자를 만들었다. 연구팀이 개발한 소자는 전기장을 이용해 빛을 발생시키는 장치이다. 특히, ‘투과 전극에 존재하는 아주 작은 구멍(핀홀)’ 영역에 전기장이 집중되고 전극 너머로 투과되는데, 이 소자는 이를 이용하여 두 가지 입력 데이터를 동시에 처리할 수 있다.
이 원리를 이용해 연구팀은 ‘온-디바이스 암호화 광송신 소자’라는 기술을 개발했다. 이 기술의 핵심은 기기 자체에서 정보를 빛으로 바꾸면서 동시에 암호화까지 한다는 점이다. 즉, 복잡한 별도의 장비 없이도 보안이 강화된 데이터 전송이 가능하다.
외부양자효율(EQE)은 전기를 얼마나 효율적으로 빛으로 변환하는지를 나타내는 지표로, 상용화를 위한 기준은 일반적으로 약 20% 수준이다. 이번에 개발된 소자는 17.4%의 EQE를 기록했으며, 휘도(luminance) 또한 스마트폰 OLED 화면의 최대 밝기인 2,000nit를 크게 웃도는 29,000nit로, 10배 이상의 높은 밝기를 구현했다.
또한, 연구팀은 이 소자가 어떻게 정보를 빛으로 바꾸는지를 더 정확히 이해하기 위해, ‘과도 전계 발광 분석’이라는 방법을 사용하여, 아주 짧은 시간(수백 나노초 = 10억 분의 1초 단위) 동안 전압을 순간적으로 인가했을 때, 소자에서 발생하는 발광 특성을 분석했다. 이 분석을 통해 수백 나노초 단위에서 소자 내 전하들의 이동을 분석해 단일 소자 내에서 구현되는 이중채널 광변조의 작동 메커니즘을 규명했다.
KAIST 조힘찬 교수는 “이번 연구는 기존의 광통신 소자의 한계를 뛰어넘어 송신 속도를 높이면서도 보안능력을 향상할 수 있는 새로운 통신 플랫폼을 제시했다”라고 언급했다.
이어 “추가 장비 없이도 보안을 강화하면서, 암호화와 송신을 동시에 구현하는 이번 기술은 향후 보안이 중요한 다양한 분야에서 폭넓게 응용될 수 있을 것”이라고 덧붙였다.
KAIST 신소재공학과 신승민 박사과정이 제1 저자로 참여하고, 조힘찬 교수, KRISS 임경근 박사가 공동 교신 저자로 참여한 이번 연구는 국제학술지 `어드밴스드 머터리얼즈(Advanced Materials)'에 5월 30일 자 출판됐으며, inside front cover 논문으로 선정됐다.
※ 논문명: High-Efficiency Quantum Dot Permeable electrode Light-Emitting Triodes for Visible-Light Communications and On-Device Data Encryption
※ DOI: https://doi.org/10.1002/adma.202503189
한편, 이번 연구는 한국연구재단, 국가과학기술연구회(NST) 및 한국산업기술진흥원의 지원을 받아 수행됐다.
2025.06.24
조회수 964
-
마그논 3차원 제어 세계 첫 규명- 뉴로모픽·양자기술 게임체인저로
전류없이 자석으로 정보 전달이 가능한 마그논(스핀파)으로 처리하는 마그논 홀 효과는 지금까지 2차원 평면에서만 가능하다고 알려져 있는데 그 한계를 뛰어넘는다면 어떨까? 마그논이 3차원 공간에서 활용가능하다면 입체적 회로 등 자유로운 설계부터 인간의 뇌 정보와 같이 차세대 뉴로모픽(뇌 모사형) 연산 구조 등 다양한 분야에서 활용될 수 있다. KAIST와 국제공동연구진은 기존에 마그논 개념을 뛰어넘어, 3차원 공간에서도 자유롭고 복잡하게 움직일 수 있다는 3차원 마그논 홀 효과를 세계 최초로 예측했다.
우리 대학 물리학과 김세권 교수가 독일 마인츠 대학의 리카르도 자르주엘라 박사와 공동연구를 통해, 복잡한 자석 구조(쩔쩔맴 자성체, topologically textured frustrated magnets) 내에서 마그논(스핀파)과 솔리톤(스핀들의 소용돌이)의 상호작용이 단순하지 않고 복잡하게 설명된다는 사실을 세계 최초로 밝혀냈다.
전자의 움직임처럼 정보를 전달할 수 있는 마그논(스핀 파동)은 전류를 쓰지 않고 정보를 전달해 열이 나지 않는 차세대 정보 처리 기술로 주목받고 있다. 지금까지의 마그논 연구는 스핀들이 한 방향으로 가지런히 정렬된 단순한 자석에서만 이루어졌고 이를 설명하는 수학도 비교적 단순한 ‘가환(Abelian) 게이지 이론’이었다.
연구팀은 쩔쩔맴 자성체와 같은 복잡한 스핀 구조에서는 마그논이 여러 방향에서 복잡하게 상호작용하고 얽히며 이 움직임은 기존보다 한 차원 높은 수학인 ‘비가환(non-Abelian) 게이지 이론’을 적용했고, 이를 세계 최초로 입증했다.
이번 연구는 향후 마그논을 이용한 저전력 논리소자, 토폴로지 기반 양자 정보 처리 기술 등에 응용될 수 있는 가능성을 제시함으로써 미래 정보기술의 판도를 바꿀 가능성을 보여주고 있다.
기존 선형 자성체에서는 자기 상태를 나타내는 값(질서 변수)이 벡터로 주어지며, 이에 기반한 마그노닉스 연구에서는 마그논이 스커미온과 같은 솔리톤 구조에서 이동할 때, U(1) 가환 게이지장이 유도된다고 해석되어 왔다. 이는 솔리톤과 마그논의 상호작용은 양자전기역학(QED)과 유사한 구조를 가지며, 이를 통해 2차원 자성체에서의 마그논 홀 효과와 같은 여러 실험적 결과를 잘 설명해 왔다.
하지만 연구팀은 이번 연구를 통해, 쩔쩔맴 자성체에서는 질서 변수가 단순한 벡터가 아닌 쿼터니언(quaternion)으로 표현되어야 하고, 그 결과 마그논이 느끼는 게이지장도 단순한 U(1) 가환 게이지장이 아닌 SU(3) 비가환 게이지장이 된다는 점을 이론적으로 최초 규명했다.
이는 곧 쩔쩔맴 자성체 안에는, 기존의 자성체에서 보이던 한두 가지 종류의 마그논이 아닌, 세 가지 종류의 마그논이 존재하며, 이들 각각이 솔리톤과 복잡하게 얿혀 상호작용하게 된다는 뜻이다. 이러한 구조는 전자기 힘을 설명하는 양자전기역학(QED)보다는, 양자색역학(QCD)과 유사한 구조를 갖는다는 점에서 큰 의미를 지닌다.
김세권 교수는 “이번 연구는 쩔쩔맴 자성체의 복잡한 질서 속에서 발생하는 마그논의 동역학을 설명할 수 있는 강력한 이론적 틀을 제시했다”며, “비가환 마그노닉스를 최초로 제시함으로 양자 자성 연구 전반에 영향을 줄 수 있는 개념적 전환점이 될 것”이라고 말했다.
이번 연구 결과는 독일 마인츠대학 리카르도 자르주엘라(Ricardo Zarzuela) 박사가 제 1저자로 물리 분야 세계적인 학술지 `피지컬 리뷰 레터스(Physical Review Letters)‘에 5월 6일 자로 게재됐다.
※ 논문명 : Non-Abelian Gauge Theory for Magnons in Topologically Textured Frustrated Magnets, Phys. Rev. Lett. 134, 186701 (2025)
DOI: https://doi.org/10.1103/PhysRevLett.134.186701
이번 연구는 한국연구재단 해외우수과학자 유치사업 플러스(브레인 풀 플러스)의 지원을 받아 수행됐다.
2025.05.22
조회수 1518
-
세상에 없던 아이디어, KAIST가 현실로, 자석으로 양자컴퓨팅 기술 구현
세상에 없는 기술을 제안하라는 KAIST 글로벌 특이점 연구사업으로 시작된 ‘자석으로 양자컴퓨팅 기술을 개발한다’는 아이디어가 현실로 실현되었다. KAIST와 국제공동 연구진은 ‘자기 성질을 가진 물질(자성체)’을 활용해 양자컴퓨팅의 핵심 기술을 세계 최초로 실증하는데 성공했다.
우리 대학 물리학과 김갑진 교수 연구팀이 미국 아르곤 국립 연구소(Argonne National Lab.), 일리노이대 어바나-샴페인(Univ. of Illinois Urbana-Champaign, UIUC)와 공동연구를 통해, ‘광자-마그논 하이브리드 칩’을 개발해 자성체에서 다중 펄스 간섭 현상을 실시간으로 구현하는 데 세계 최초로 성공했다.
쉽게 설명하면, 연구팀은 ‘빛’과 ‘자석 내부의 진동(마그논)’이 함께 작동하는 특수한 칩을 개발하여 멀리 떨어진 자석 사이에서 신호(위상 정보)를 전송하고, 여러 개의 신호가 서로 간섭하는 현상을 실시간으로 관측하고 조절하는 데 성공한 것이다.
이는 자석이 양자 연산의 핵심 부품으로 활용될 수 있다는 것을 보여준 세계 최초의 실험으로, 자성체 기반 양자컴퓨팅 플랫폼 개발의 중요한 전환점이 될 것으로 기대된다.
자석의 N극과 S극은 원자 내부에 존재하는 전자의 스핀(spin)에서 나오게 되는데, 여러 원자가 모였을 때 나타나는 스핀들의 집단적인 진동 상태를 마그논(magnon)이라고 한다.
마그논은 특히, 정보를 한쪽으로만 전달하는 비상호성(nonreciprocity) 특성을 가질 수 있어, 양자 노이즈 차단을 통한 소형 양자 칩 개발에 응용될 수 있고, 광 및 마이크로파와 동시에 결합할 수 있어 양자 정보를 수십 km 거리로 전송하는 양자 통신 소자로도 응용이 가능하다.
또한, 특수한 자석 물질인 반강자성체(antiferromagnet)를 이용하면 양자컴퓨터의 작동 주파수를 훨씬 빠른 속도, THz(테라헤르츠) 대역으로 높여서 현재 양자컴퓨터 하드웨어 한계를 뛰어넘는, 복잡한 냉각 장비 없이도 상온에서 작동하는 양자컴퓨터의 개발이 가능할 수 있다.
그러나, 마그논을 기반으로 한 양자컴퓨팅과 통신 시스템 전반의 구현에 필요한 이 모든 기술을 실현하기 위해서는 마그논 위상 정보, 즉 마그논의 파동이 언제부터 시작되고 움직이는지에 대한 정보를 실시간으로 전송 및 측정하고, 그것을 제어하는 기술이 필수적이었다.
김갑진 교수 연구팀은 작은 자석 구슬인 이트륨 철 가넷(Yttrium Iron Garnet, YIG) 2개를 12 mm 간격으로 배치하고, 그 사이에 구글, IBM 등의 양자컴퓨터에서 사용되는 회로인 초전도 공진기를 설치하여 한쪽 자석에 신호(펄스)를 넣어서 다른 자석까지 정보가 잘 전달되는지를 측정하였다.
그 결과, 수 나노초(ns) 길이의 아주 짧은 하나의 펄스부터 최대 네 개의 마이크로파 펄스를 입력하였을 때 그로 인해 생기는 자석 내부의 진동(마그논)이 초전도 회로를 통해 멀리 있는 다른 자석까지 손실 없이 전달되는 것을 확인하였고, 여러 펄스 사이에 간섭을 일으켰을 때 각각의 위상 정보를 유지하며 신호가 예측대로 보강 또는 상쇄되는 것(결맞음 간섭 현상)을 실시간 도메인에서 관측하는 데 성공했다.
나아가 연구팀은 여러 펄스(신호)의 주파수와 이들 간의 시간 간격을 조절하여 자석 안에 생기는 마그논의 간섭 패턴을 임의로 제어할 수 있음을 입증함으로써, 전기 신호 입력을 통해 마그논의 양자 상태(위상 정보)를 자유롭게 제어할 가능성을 처음으로 입증하였다.
이번 연구는 양자 정보 처리 분야에서 필수적인 여러 개의 신호(다중 펄스)를 활용한 양자 게이트 연산이 자성체-초전도 회로 하이브리드 시스템*에서도 구현될 수 있음을 보여주었다. 이 결과는 자성체 기반 양자 소자가 실질적으로 양자컴퓨팅에 활용될 수 있는 가능성을 열어준다는 점에서 중요한 의미를 가진다.
* 자성체-초전도 회로 하이브리드 시스템: 자성체의 마그논과 초전도 회로를 결합해, 서로의 장점을 살린 새로운 양자 연산 시스템
김갑진 교수는“이번 연구는‘세상에 없는 기술을 제안하라’는 KAIST 글로벌 특이점 연구사업에‘자석으로 양자컴퓨터를 개발할 수 있을까?’라는 다소 엉뚱하지만 모험적인 아이디어를 제안하며 시작되었다”며
“그 여정 자체가 매우 흥미로웠으며, 특히 이번 연구 결과는 양자 스핀트로닉스(quantum spintronics)라는 새로운 연구 분야의 가능성을 열었을 뿐만 아니라, 고효율 양자정보 처리 장치 개발을 위한 중요한 전환점이 될 것으로 기대된다”라고 말했다.
물리학과 송무준 박사후연구원이 제1 저자로 참여하고 미국 아르곤 국립 연구소(Argonne National Laboratory)의 이 리(Yi Li) 박사, 발렌틴 노보사드(Valentine Novosad) 박사, 일리노이 주립대학교(University of Illinois Urbana-Champaign, UIUC)의 악셀 호프만(Axel Hoffmann) 교수 연구팀이 참여한 이번 연구는 네이처 출판 그룹이 출간하는 국제 학술지 ‘엔피제이 스핀트로닉스(npj spintronics)’와 `네이처 커뮤니케이션즈(Nature Communications)'에 4월 1일, 4월 17일에 연이어 출판되었다.
※ 논문명 1: Single-shot magnon interference in a magnon-superconducting-resonator hybrid circuit, Nat. Commun. 16, 3649 (2025), DOI: https://doi.org/10.1038/s41467-025-58482-2
※ 논문명 2: Single-shot electrical detection of short-wavelength magnon pulse transmission in a magnonic ultra-thin-film waveguide, npj Spintronics 3, 12 (2025),
DOI: https://doi.org/10.1038/s44306-025-00072-5
이번 연구는 KAIST 글로벌특이점연구사업과 과학기술정보통신부 한국연구재단 중견연구, 선도연구센터, 양자정보과학인적기반 조성사업 및 미국 에너지부의 지원을 받아 수행됐다.
2025.05.07
조회수 2789
-
세계 최초 카이럴자성 양자점 개발- 빛 구동 AI용 소자 구현
기존 양자점(quantum dots)에는 카이랄 방향성, 광학적 또는 자기적 특성을 복합적으로 구현하는 것이 매우 어려운 기술이었다. KAIST 연구진이 이런 한계를 극복하고, 세계 최초로 광학적 카이랄성과 자성의 융합 특성을 동시에 갖춘 ‘카이럴 자성 양자점’을 개발하고, 이를 활용하여 사람의 뇌처럼 정보를 보고, 판단하고, 저장하며 초기화할 수 있는 기능을 단일 소자에 집약해, 고성능 AI 하드웨어의 새로운 패러다임을 제시했다.
우리 대학 신소재공학과 염지현 교수 연구팀이 빛에 의해 비대칭 반응하는 카이랄성과 자성을 동시에 갖는 특수 나노입자인 양자점(CFQD)을 세계 최초로 개발하고, 저전력 인간 뇌 구조와 작동 방식을 모방한 인공지능 뉴로모픽 소자(ChiropS)까지 성공적으로 구현했다.
신소재공학과 염지현 교수 연구팀이 개발한 카이랄 양자점을 활용한 광 시냅스 트랜지스터는 편광 구분, 멀티 파장 인식, 전기 소거 등 다양한 기능을 단일 소자에 집약한 고속·고지능·저전력 AI 시스템 구현의 핵심 기술로 향후 광 암호화, 보안 통신, 양자 정보처리에도 활용될 수 있다.
이번에 개발된 카이랄 자성 양자점은 은황화물(Ag2S) 기반의 무기 나노입자에 카이랄 유기물인 L-또는 D-시스테인을 도입해 합성한 것으로 빛의 편광 방향(원형 편광)에 따라 서로 다르게 반응하는 특성을 지닌다. 특히, 405, 488, 532 nm 등 가시광 전 영역에서 각각의 편광(LCP, RCP)에 따라 상이한 반응을 보여, 다채널 인식이 가능한 신경 시냅스 소자 플랫폼으로 활용할 수 있다. 또한, 물을 기반으로하여 친환경적으로 합성하고 그 안정성이 높다는 것에 상업적으로 큰 차별점이 있다.
연구팀은 실리콘 위에 카이랄 자성 양자점을 활용한 은황화물층과 유기 반도체 펜타신을 적층한 시냅스 트랜지스터 구조를 제작했다. 해당 소자는 빛을 가하면 장기기억 특성(LTP)을 보이고 전기 펄스를 인가하면 초기화 되는 전기 소거 기능도 구현하여 뇌처럼 학습하고 적응할 수 있는 기능을 빛을 이용해서 인공적으로 만드는데 성공했다.
또한, 반복하여 아주 짧은 시간동안 광 펄스(레이저 빛)을 비추게 되면 점진적으로 전류가 누적되며 단계적으로 증가하는 멀티 레벨 상태를 형성하였고, 이는 뇌처럼 인공지능이 학습하게 하는 시냅스 가중치 조절이 되고 다중 학습도 가능함을 의미한다.
연구팀은 2×3 소자 어레이를 제작해 서로 다른 편광과 파장의 빛을 각각 비추었을때, 각 소자의 응답 전류가 뚜렷이 구분되는 것을 확인했다. 6개의 채널을 통해 총 9개의 정보를 병렬로 감지하고 처리할 수 있어, 기존 대비 최소 9배 이상의 정보량 처리가 가능함을 밝혔다.
더 나아가, 이 소자는 빛(광)을 일정하게 받아도 복잡한 판단을 해주는 스마트 센서처럼 반응을 했다. 예를 들어, 이는 잡음(노이즈)을 걸러내고 신호를 증폭할 수 있는 기능을 소자 자체에 내장하고 있는 것처럼 자동 필터하는 역할을 한다. 실제로 손글씨(MNIST) 데이터에 잡음과 같은 가우시안 노이즈를 추가하고 소자에 통과시킬 경우, 고주파 잡음이 줄고 핵심 정보만 살아남는 효과가 확인되었다. 이를 통해 기존 컴퓨팅 기술 대비 최대 30% 적은 전력으로 구동이 가능했다고 밝혔다.
이번 연구는 광학적 카이랄성과 자기적 스핀 특성을 하나의 나노소재에 융합함으로써, 기존에 구현되지 않았던 편광 구분 기능과 장기 기억 성능을 동시에 확보할 수 있다. 단일 소자에 감지(보기), 처리(판단), 기억(저장), 초기화(지우기) 기능 기능이 통합되어 있어 향후 고성능 인공지능 하드웨어를 더 작고 효율적으로 만들 가능성도 높다고 평가된다.
염지현 교수는“기존 양자점의 한계를 극복하기 위해 광학적 카이랄성과 자기적 스핀 특성을 융합한 새로운 개념의 양자점을 설계했다”며 “단일 소자가 다중 편광과 다중 파장을 처리할 수 있고, 전기 신호로 초기화할 수 있는 기능까지 통합한 만큼 저전력·고정밀 AI 시스템 구현을 위한 혁신적 플랫폼이 될 수 있다”고 강조했다.
이번 연구는 국립부경대학교 나노융합공학전공 권준영 교수(전. KAIST 박사후연구원)와 KAIST 신소재공학과 김경민 교수 연구팀의 전재범 박사가 제1 저자로 참여했으며, 해당 논문은 국제 학술지 어드밴스드 머티리어스(Advanced Materials)에 4월 7일자 온라인 게재되었다.
※ 논문명 : Chiroferromagnetic Quantum Dots for Chiroptical Synapse
※ DOI : https://doi.org/10.1002/adma.202415366
이번 연구는 과학기술정보통신부, 한국연구재단 우수신진연구지원사업과 삼성전자 등의 지원을 받아 수행되었다.
2025.04.25
조회수 3359
-
‘구멍 개수가 자연수가 아닌 도넛’과 같은 ‘비양자화된 Zak 위상을 갖는 메타물질’ 개발
수학에서는 도형을 분류할 때 구멍(genus)의 개수를 기준으로 삼기도 한다. 예를 들어, 구멍이 하나 있는 도넛(torus)은 구멍이 없는 구(sphere)와는 구분되지만, 머그컵과는 같은 부류에 속한다. 구멍의 개수처럼 도형을 구부리거나 늘이는 연속적인 변형에도 변하지 않는 성질을 위상적 성질이라 하며, 위상수학에서는 이러한 성질을 기준으로 도형을 구분한다.
이와 유사하게, 음향 양자 결정(phononic crystal)도 파동 특성이 갖는 위상적 성질에 따라 분류가 가능하다. 예를 들어, 1차원 음향 양자 결정은 Zak 위상이 0인 구조와 π인 구조로 구분할 수 있다.
우리 대학 기계공학과 전원주 교수 연구팀이 메타물질의 파동적 특성 관점에서 “도넛 구멍의 개수가 꼭 자연수여야만 할까?"라는 질문을 바탕으로, 위상적 성질이 0이나 π로 양자화된 기존 분류 체계를 넘어, 0과 π 사이의 비양자화된 성질을 갖는 메타물질을 개발하였다.
이러한 비양자화된 위상적 성질의 도입은, 그동안 학계의 난제로 꼽히던 파장 대비 매우 작은 크기의 음향 양자 결정으로 파동 에너지를 제어하는 문제를 해결하는 데 중요한 실마리가 되었다.
더 나아가, 비양자화된 Zak 위상을 원하는 값으로 자유자재로 조정함으로써, 메타물질 내 집속되는 파동의 주파수를 조절할 수 있다. 이를 통해 목표 주파수의 파동을 제어하거나, rainbow trapping과 같이 파동 에너지를 주파수별로 원하는 위치에 집속할 수 있게 되었다 (그림 1(b) 참고). 전원주 교수 연구팀은 연구실 핵심 기술 중 하나인 ‘음향 블랙홀 기반의 포노닉 빔 설계 기술’을 위상 절연체(topologial insulator) 분야에 활용하여 연구 성과를 이끌어냈다.
전원주 교수는 “양자화된 Zak 위상 개념 위주로 연구되던 기존 메타물질 설계 방식을 넘어, 비양자화된 Zak 위상을 갖는 구조를 개발함으로써 주파수와 집속 위치 관점에서 파동에너지를 정밀하게 제어할 수 있게 되었다”며, “이번 연구에서 제시한 비양자화된 Zak 위상을 활용한 새로운 개념의 파동 집속 기술은 향후 초미세 진동 감지 센서, 고효율 에너지 하베스팅 장치 등 파동 집속이 필요한 다양한 공학적 응용으로 이어질 수 있을 것”이라고 말했다.
이번 연구는 박성민 박사과정(현, KAIST 기계기술연구소 연수연구원)이 제1저자로 참여했으며, 기계공학 분야 국제 학술지인 Mechanical Systems and Signal Processing (JCI 기준 상위 2.5%(5/183))에 4월 1일 게재되었다.
※ 논문명: Phononic crystals with non-quantized Zak phases for controlling interface state frequencies
한편, 본 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행되었다.
2025.04.14
조회수 2612
-
양자 컴퓨터 오류정정에 필요한 양자얽힘 구현
양자 컴퓨팅은 고전 컴퓨터로는 계산하기 어려운 문제를 효율적으로 해결할 수 있는 양자 기술이다. 양자 컴퓨터가 복잡한 연산을 정확히 수행하려면 연산 과정에서 발생하는 양자 오류를 정정하는 것이 필수적이다. 하지만 이에 필요한 양자얽힘 상태를 구현하는 것은 매우 큰 난관으로 여겨져 왔다.
우리 대학 물리학과 라영식 교수 연구팀이 양자오류 정정 기술의 핵심이 되는 3차원 클러스터 양자얽힘 상태를 실험으로 구현하는데 성공했다고 25일 밝혔다.
측정기반 양자 컴퓨팅은 특수한 양자얽힘 구조를 가진 클러스터 상태를 측정하여 양자 연산을 구현하는 새로운 패러다임의 양자 컴퓨팅 방식이다. 이러한 방식의 핵심은 클러스터 양자얽힘 상태의 제작에 있으며, 범용 양자컴퓨팅을 위해 2차원 구조의 클러스터 상태가 사용된다.
하지만 양자연산에서 발생하는 양자오류를 정정할 수 있는 결함 허용 양자컴퓨팅(Fault-Tolerant Quantum Computing)으로 발전하려면 더욱 복잡한 3차원 구조의 클러스터 상태가 필요하다.
기존 연구에서는 2차원 클러스터 상태 제작이 보고됐지만, 결함 허용 양자컴퓨팅에 필요한 3차원 클러스터 상태는 양자얽힘의 구조가 매우 복잡해 그동안 실험 구현이 이뤄지지 못했다.
연구팀은 펨토초 시간-주파수 모드를 제어하여 양자얽힘을 구현하는 기술을 개발함으로써 3차원 구조의 클러스터 양자얽힘 상태를 생성하는 데 최초로 성공했다.
펨토초 레이저는 극도로 짧은 시간 동안 강한 빛 펄스를 방출하는 장치로, 연구팀은 비선형 결정에 펨토초 레이저를 입사시켜 여러 주파수 모드에서 양자 광원을 동시에 생성하고, 이를 활용하여 3차원 구조의 클러스터 양자얽힘을 생성했다.
라영식 교수는 "이번 연구는 기존 기술로는 구현하기 어려웠던 3차원 클러스터 양자얽힘 상태 제작에 성공한 최초의 사례”라며, “향후 측정 기반 양자컴퓨팅 및 결함 허용 양자컴퓨팅 연구에 있어 중요한 발판이 될 것”이라고 말했다.
물리학과 노찬 석박사통합과정 학생이 제1 저자로 참여하고 곽근희, 윤영도 석박사통합과정 학생이 공동 저자로 참여한 이번 연구는 저명 국제 학술지 `네이처 포토닉스(Nature Photonics)'에 2025년 2월 24일 온라인판으로 정식 출판됐다. (논문명: Generation of three-dimensional cluster entangled state, DOI: 10.1038/s41566-025-01631-2)
한편 이번 연구는 한국연구재단 (양자컴퓨팅 기술개발사업, 중견연구자 지원사업, 소재혁신 양자시뮬레이터 개발사업)과 정보통신기획평가원 (양자인터넷 핵심원천기술 사업, 대학ICT연구센터지원사업) 및 미국 공군연구소의 지원을 받아 수행됐다.
2025.02.25
조회수 3546
-
기존 양자점 뛰어넘는 적외선 센서 기술 개발
최근 양자 큐비트 기술 분야에서는 양자 상태를 확보하기 위해 결정질 반도체를 활용한 아발란체 광다이오드 소자*들이 활용되고 있으나, 높은 열잡음으로 인해 극저온 구동이 필수적이며, 적외선 대역에서 높은 탐지 효율을 갖는 소재의 부재로 기술적 한계에 직면했다. 우리 연구진이 양자점 소재가 차세대 양자 기술로 활용될 돌파구를 제시했다.
*아발란체 광다이오드 소자: 매우 미세한 빛을 증폭하여 감지하는 고성능 센서 소자로서 야간 투시경이나 자율주행차, 우주 관측, 양자통신 등에 사용
우리 대학 전기및전자공학부 이정용 교수 연구팀이 콜로이드 양자점을 활용해 하나의 적외선 광자 흡수를 통하여 85배의 전자를 생성할 수 있는 아발란체 전자 증폭 기술*을 개발하여 기존 기술의 한계를 뛰어 넘는 감도를 달성했다고 8일 밝혔다.
*아발란체 전자 증폭: 기술 강한 전기장이 인가된 반도체에서 전자가 가속되어 인접 원자와 충돌을 통해 다수의 전자를 생성하는 신호 증폭 기술
화학적으로 합성된 반도체 나노입자인 콜로이드 양자점은 용액 기반 반도체로서 적외선 센서의 실용적인 후보로 주목 받고 있으며, 결정질 반도체와 다른 에너지 구조를 가져 열잡음 생성을 억제하는 장점이 있지만, 전하 이동도가 낮고, 양자점 표면에서 자주 발생하는 불완전 결합 때문에 전하의 재결합이 촉진되어 전하 추출이 저하되는 문제가 있었다.
연구진은 강한 전기장을 인가해 전자를 가속하여 운동에너지를 얻고, 인접 양자점에서 다수의 추가 전자들을 생성함으로써 상온에서 적외선을 조사 시 신호가 85배 증폭되고 1.4×1014 Jones 이상의 탐지 감도를 가지는 소자를 구현하였는데 이는 일반 야간 투시경보다 수만 배 정도 높은 감도를 보여준다.
적외선 광검출기는 자율주행차부터 양자컴퓨팅에 이르기까지 다양한 응용 분야에서 핵심적인 역할을 하지만, 기존 양자점 기반 기술은 민감도와 잡음 문제로 한계가 있었다.
이번 연구는 새로운 패러다임 전환을 불러올 기술이 될 것으로 기대되며, 양자 기술이 관련된 핵심 원천 기술을 선점함으로써 글로벌 양자 기술 시장을 대한민국이 주도할 수 있는 중요한 기술적 토대를 확보했다고 평가받고 있다.
제1 저자인 김병수 박사는 “양자점 아발란체 소자는 기존에 보고된 바 없는 신개념 연구 분야로서, 본 원천 기술을 통해 글로벌 자율주행차와 양자 컴퓨팅, 의료 영상 시장 등을 선도할 벤처 기업 육성을 주도할 수 있을 것”이라고 말했다.
KAIST 정보전자연구소 김병수 박사와 IMEC의 이상연 박사 및 한국세라믹기술원의 고현석 박사가 공동 제1 저자로 참여한 이번 연구는 국제 최상위 학술지 `네이처 나노테크놀로지(Nature Nanotechnology)' 12월 18일 자 온라인판에 게재됐다. (논문명 : Ultrahigh-gain colloidal quantum dot infrared avalanche photodetectors DOI: https://doi.org/10.1038/s41565-024-01831-x)
한편 이번 연구는 한국연구재단의 지원을 받아 수행됐으며, 주요 지원 사업으로는 나노및소재기술개발사업(경쟁형), 미래디스플레이 전략연구실사업, 개인기초연구사업 중견연구가 있다.
2025.01.08
조회수 4919
-
메타버스 시대 이끌 초고해상도 화면 구현 패터닝 기술 개발
생동감 있는 색상, 높은 효율과 긴 수명을 자랑하는 양자점(Quantum Dot) 기반 디스플레이가 주목받고 있다. 특히, 친환경 인듐 포스파이드(InP) 양자점은 현재 TV와 스마트폰을 비롯한 다양한 디스플레이에 폭넓게 활용되고 있다. 그러나 다가오는 메타버스 시대를 현실감 있게 구현하기 위한 디스플레이 구현을 위해서는 초고해상도 양자점 패턴 제작 기술의 개발이 필수적이다.
우리 대학 신소재공학과 조힘찬 교수 연구팀이 신규 양자점 리간드*를 개발하여 InP 양자점의 초고해상도 패턴을 형성하는 동시에 소자 효율을 향상시키는 신기술을 개발했다고 13일 밝혔다.
*리간드: 양자점 표면에 결합하여 양자점을 보호하고 계면활성제 역할을 하는 물질.
InP 양자점은 외부 환경에 민감하여 패턴 형성 공정 중 광학적 특성이 크게 저하되는 한계가 있었다. 또한, 디스플레이 효율에 직결되는 리간드를 조절하는 과정에서도 광학적 특성이 손상되는 문제가 있었다. 따라서, 소재 고유의 특성을 유지하면서 초고해상도 패턴을 구현하고, 소자의 효율까지 높일 수 있는 기술 개발은 큰 도전 과제로 남아 있다.
이에, 조힘찬 교수 연구팀은 양자점의 광학적 특성을 보존하는 동시에 초고해상도 패턴 구현을 가능하게 하는 리간드를 개발하였다. 개발된 리간드는 빛에 의해 절단되어 길이가 짧아지는 특성을 보이는 물질로, 양자점 표면이 변화하면서 용해도 차이가 생겨 패턴 형성이 가능해지는 원리이다. 더불어 짧아진 리간드는 소자에서의 전기 전도도를 증가시켜 향상된 효율의 디스플레이를 구현할 수 있었다.
조힘찬 교수는 “이번에 개발한 광민감성 양자점 소재와 패터닝 기술은 기존 기술과 달리 초고해상도 패턴 제작과 양자점 박막의 전기 전도도 향상을 동시에 달성하여 차세대 양자점 LED 기반 디스플레이, 양자점 이미지 센서 등 다양한 미래 산업 분야에 실질적으로 적용될 수 있을 것으로 기대된다”라고 언급했다.
연구팀의 이재환 박사과정, 연성범 석박사통합과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘에이씨에스 에너지 레터스 (ACS Energy Letters)’에 12월 13일 온라인 게재됐으며, 1월 호 부록 표지(Supplementary Cover)로 출판될 예정이다.(논문명: Photocleavable Ligand-Induced Direct Photolithography of InP-Based Quantum Dots).
한편 이번 연구는 한국연구재단 및 중소벤처기업부의 지원을 받아 수행됐다.
2024.12.18
조회수 4350
-
인공지능으로 고성능 양자물성 계산시간 획기적 단축
인공지능과 고성능 과학계산 간의 밀접한 관련성은 최근 2024년도 노벨 물리학상과 화학상이 동시에 수상된 것을 보면 알 수 있다. 우리 연구진이 인공지능을 활용하여 3차원 공간에 분포하는 원자 수준의 화학결합 정보를 예측하여 양자역학적 고성능 컴퓨터 시뮬레이션의 계산 시간을 획기적으로 단축하는데 성공했다.
우리 대학 전기및전자공학부 김용훈 교수팀이 물질의 특성을 도출하기 위해 슈퍼컴퓨터를 활용해 수행되는 원자 수준 양자역학적 계산에 필요한 복잡한 알고리즘을 우회하는 3차원 컴퓨터 비전 인공신경망 기반 계산 방법론을 세계 최초로 개발했다고 30일 밝혔다.
슈퍼컴퓨터를 활용한 양자역학적 밀도범함수론(density functional theory, DFT)* 계산은 빠르면서도 정확하게 양자 물성을 예측할 수 있게 해 첨단 소재 및 약물 설계를 포함한 광범위한 연구·개발 분야에서 표준적인 도구로 자리 잡아 필수 불가결한 역할을 하고 있다.
*밀도범함수론(DFT): 원자 단위에서부터 양자역학적으로 물성을 계산하는 제1원리 계산의 대표적인 이론
그러나 실제 밀도범함수론 계산에서는 3차원적인 전자밀도를 생성한 후 양자역학 방정식을 푸는 복잡한 자기일관장 과정(self-consistent field, SCF)*을 수십에서 수백 번씩 반복해야 해서 그 적용 범위가 수백~수천 개의 원자로 제한되는 한계가 있었다.
*자기일관장(SCF): 상호 연결된 여러 개의 연립 미분 방정식으로 기술해야 하는 복잡한 다체 문제(many-body problem)를 해결하기 위해 널리 사용되는 과학계산법
김용훈 교수 연구팀은 자기일관장 과정을 최근 급속한 발전을 이룬 인공지능 기법으로 회피하는 것이 가능한지 질문했다. 그 결과 3차원 공간에 분포된 화학 결합 정보를 컴퓨터 비전 분야의 신경망 알고리즘을 통해 학습해 계산을 가속화하는 딥SCF(DeepSCF) 모델을 개발했다.
연구진은 밀도범함수론에 따라 전자밀도가 전자들의 양자역학적 정보를 모두 포함하고 있으며 이에 더해 전체 전자밀도와 구성 원자들의 전자밀도의 합 간의 차이인 잔여 전자밀도가 화학결합 정보를 담고 있는 점에 주목하고 기계학습의 목표물로 선정했다.
이후 다양한 화학결합 특성을 포함한 유기 분자들의 데이터 세트를 채택했고 그 안에 포함된 분자들의 원자구조들에 임의의 회전과 변형을 가해 모델의 정확도 및 일반화 성능을 더욱 높였다. 최종적으로 연구팀은 복잡하고 큰 시스템에 대해 딥SCF 방법론의 유효성 및 효율성을 입증했다.
이번 연구를 지도한 김용훈 교수는“3차원 공간에 분포된 양자역학적 화학결합 정보를 인공 신경망에 대응시키는 방법을 찾았다”며 “양자역학적 전자구조 계산이 모든 스케일의 물성 시뮬레이션의 근간이 되므로 인공지능을 통한 물질 계산 가속화의 전반적인 기반 원리를 확립한 것”이라고 연구의 의의를 부여했다.
전기및전자공학부 이룡규 박사과정이 제 1저자로 수행한 이번 연구는 소재 계산 분야의 권위 있는 학술지 '네이쳐 파트너 저널 컴퓨테이셔널 머터리얼즈(Npj Computational Materials)'에 10월 24일 字 온라인판에 게재됐다. (논문명 : Convolutional network learning of self-consistent electron density via grid-projected atomic fingerprints)
한편, 이번 연구는 KAIST 석박사 모험사업, 한국연구재단 중견연구자지원사업 등의 지원을 받아 수행되었다.
2024.10.30
조회수 5817
-
양자 비평형 현상의 물리적 법칙은
비평형 현상이란, 평형에서 벗어난 상태를 지칭하는 것으로 우리가 일상적으로 자주 마주하는 현상이다. 커피에 우유를 넣고 섞게 되면 우유 분자들은 에스프레소와 섞이면서 카페라테가 되는데, 이렇게 평형을 찾아가는 과정을 비평형 동역학이라고 볼 수 있다. 물리학에서 답하고자 하는 주요한 질문은 ‘양자 역학계에서 일어나는 비평형 현상은 어떤 물리 법칙에 의해 지배되며, 과연 보편적으로 적용할 수 있는 법칙이 존재할지’ 여부다.
우리 대학 물리학과 최재윤 교수 연구팀이 극저온 중성원자 양자 시뮬레이터를 이용해 이론적으로 추측된 비평형 상태의 양자 물성 변화의 보편적 물리 법칙을 확인하는데 성공했다고 27일 밝혔다.
보편적 물리 법칙에 대한 예는 평형상태에서 액체에서 기체가 되는 것처럼 물질의 상이 변화하는 ‘상전이 현상’에서 찾아볼 수 있다. 상전이 일어나는 지점을 임계지점이라고 하는데, 이 지점에 물성의 변화는 입자들의 크기, 밀도, 및 상호작용의 세기 등 물리량에 의존하지 않는다.
예를 들어, 물에서 관측할 수 있는 액체-기체 상전이 임계점 및 자석에서 관측되는 상자성-강자성 상전이 임계점은, 비록 서로 매우 다른 계이지만, 동일한 형태의 물성 변화를 확인할 수 있다. 즉. 물질의 상이 변화되는 임계지점에서 물성의 변화는 입자들의 크기, 밀도, 등 계를 구성하는 미시적인 물리량에 의존하지 않으며, 이를 가리켜 ‘상전이점 근처에서 보편성(universal) 이 존재한다’라고 할 수 있다. 또한 물성의 변화가 수학적으로 동일한 함수를 따를 때 우리는 ‘같은 보편성 부류에(universality class) 속한다’라고 할 수 있다.
비평형 양자 동역학에서도 ‘상전이’ 현상과 같이 보편성 및 보편성 부류가 존재함이 약 10년 전에 제기됐으나, 매우 긴 시간 동안 관측해야 하는 실험적인 어려움이 있어 이에 대한 검증을 엄밀하게 할 수 없었다.
최재윤 교수 연구팀은 강한 상호작용을 갖는 스피너 응집체*를 이용하여, 자기 도메인들의 비평형 조대화 동역학**을 매우 긴시간 동안 연구하였으며, 이를 통해 해당 가설을 검증하였다. 연구팀은 조대화 동역학의 동역학적 형태가 다양한 초기 상태와는 상관없이 동일한 수학적 형태를 따르는 것을 보여 보편성을 확인하였다. 더 나아가 시스템의 대칭성을 바꾸어 주었을 때만 동역학의 수학적 형태가 바뀌는 것을 확인하여, 보편적인 양자 동역학의 분류도 가능함을 보여주었다.
*스피너 응집체: 서로 다른 스핀들 간의 상호작용이 있는 보즈-아인슈타인 응집체를 말하며, 보즈-아인슈타인 응집체란 모든 원자들이 하나의 파동함수로 기술이 되는 양자 상태임
**조대화 동역학: 초기에 무수히 많은 자기 영역(magnetic domain)들이 서로 합해지면서 영역들의 크기가 커지는 동역학을 지칭함
물리학과 최재윤 교수는 “이번 연구는 중성원자 양자 시뮬레이터가 비평형 양자 동역학에 가설을 검증하는 데 활용된 중요한 사례이며, 향후 고전 컴퓨터가 흉내 내기 어려운 영역에서 비평형 동역학을 연구해 새로운 물리 법칙을 발견하고 싶다”고 포부를 밝혔다.
물리학과 허승정, 권기량, 허준혁 대학원생 연구원이 참여한 이번 연구는 국제 학술지 `네이처 피직스(Nature Physics)' 3월에 표지로 선정됐다 (논문명: Universality class of a spinor Bose-Einstein condensate far from equilibrium).
한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.03.27
조회수 6727
-
양자 컴퓨터로 새로운 물성 연구 성공
양자 물질을 연구하거나 설계할 때 기존의 폰노이만식 전자컴퓨터를 이용한 계산은 근본적인 한계를 가진다. 양자계의 경우 양자 얽힘 등의 효과로 인해 계산량이 기하급수적으로 증가하기 때문이다. 따라서 양자물질 설계를 위해 물질의 특성을 알아내고자 할 때, 양자컴퓨터를 이용하는 양자 시뮬레이션이 필요하다.
우리 대학 물리학과 안재욱 교수 연구팀이 코펜하겐 대학 클라우스 뭴머(Klaus MØlmer) 교수 연구팀과 함께 양자 시뮬레이션을 수행하는 양자 컴퓨터 플랫폼으로 최근 가장 주목을 받는 리드버그 원자 양자 컴퓨터를 이용해 양자 자성체의 극단적 특성을 구현하는데 성공했다고 11일 밝혔다.
자성체 물질은 하드 디스크와 같은 전자제품을 비롯해 전력 발전 등에도 사용되는 등 현대 기술의 핵심 요소다. 최근에는 상온 자성체를 넘어서 양자적 특성이 두드러지는 초저온에서 양자 자성체 특성에 관한 연구가 활발히 이뤄지고 있다. 초저온에서 수행되는 물성 분석 및 계측 연구는 MRI 등의 의학 기기 등에 응용될 뿐만 아니라, 차세대 초정밀 제어계측공학을 촉발할 것으로 기대된다.
유명 물리학자 리처드 파인만은 1983년 양자계의 특성을 인공적인 양자계로 모방해 연구하는 양자 시뮬레이션을 제안하였다. 인공적으로 모방한 양자계의 특성을 연구하면 기존 양자계의 특성을 알아낼 수 있다.
양자 시뮬레이션을 이용한 양자 자성체의 연구는 지난 10년간 세계 유수의 대학과 연구소에서 이뤄지고 있으며 이전까지 알려지지 않은 양자 물질의 특성들을 실험적으로 확인하는 성과를 보였다. 현재 양자 물질을 시뮬레이션하는 데 있어 중요한 이슈 중 하나는 극단적인 상황 속 양자 물질의 현상을 관찰하는 것이다.
한편 이와 같은 양자 시뮬레이션을 수행하는 양자 컴퓨터 플랫폼으로 최근 가장 주목을 받는 것은 리드버그 원자다. 리드버그 원자는 최외각 전자가 이온화되어 떨어지기 직전의 매우 높은 에너지를 머금고 있는 원자로, 일반 원자의 만 배 정도의 지름을 가지며 (10의 24제곱)배 정도 더 큰 상호작용을 한다. 우리 대학 물리학과 안재욱 교수 연구팀은 최근 리드버그 원자를 이용해 최대 156큐비트급의 양자 컴퓨터 계산을 선보인 바 있다.
이번 연구에서 글로벌 공동연구팀은 리드버그 원자를 이용한 양자 컴퓨터를 이용해 양자 자성체를 설명하는 모형 중 하나인 하이젠베르크 모형*을 양자 컴퓨터로 모방해 구현했다. 특히 이전의 하이젠베르크 모형의 구현과 다르게, 이번 연구에서는 리드버그 원자의 강한 상호작용을 이용한 극단적 이방성 (3차원 중 특정 방향이 다른 방향 대비 1000배 이상 강하게 상호작용하는 특성으로 새로운 연구영역이 확보됨)을 구현하는 데 성공했다.
*하이젠베르크 모형: 하이젠베르크 자성체 모형은 자성체 스핀 간의 모든 방향 (x, y, z 방향) 상호작용을 가정한 모형으로 양자 자성체의 대표적 모델 중 하나임.
연구를 주도한 안 교수는 “이번 연구는 리드버그 양자컴퓨터를 이용해 새로운 양자 물성을 연구할 수 있음을 보였다”라고 밝히고 “양자컴퓨터를 이용하는 물성 연구가 활발해질 것”이라고 기대했다.
우리 대학 물리학과 김강흔 대학원생 연구원과 덴마크 오르후스 대학의 팬 양(Fan Yang) 박사후 연구원이 참여한 이번 연구는 국제 학술지 `피지컬 리뷰 X (Physical Review X)' 2월 14권에 출판됐다. (논문명 : Realization of an Extremely Anisotropic Heisenberg Magnet in Rydberg Atom Arrays).
한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.03.11
조회수 6945
-
100큐비트급 양자컴퓨터 계산데이터 전격 공개
양자컴퓨터는 양자역학의 원리를 활용해 기존의 컴퓨터로는 풀기 어려운 계산을 할 수 있는 컴퓨터다. 양자컴퓨터는 암호 해독, 배터리 소재 개발, 신약 개발 등 다양한 분야에서 그동안 풀지 못한 난제들을 해결할 미래 기술로 주목받고 있다.
우리 대학 물리학과 안재욱 교수 연구팀이 100큐비트급 양자컴퓨터로 조합 최적화 문제를 계산해 계산 결과 데이터베이스와 계산 프로그램을 공개했다고 13일 밝혔다.
조합 최적화 문제 중 하나인 최대 독립집합 문제(Maximum independent set problem)는 SNS상에서 가장 영향력 있는 인물을 찾는 문제, 전력망을 가장 효율적으로 분배하는 법을 찾는 문제 등 다양한 응용이 가능한 문제다. 지난 2023년 KAIST 연구진은 20큐비트급 리드버그 양자컴퓨터를 이용해 최대 독립집합 문제의 풀이를 시연한 바 있다.
일반적으로 100큐비트급 양자컴퓨터의 데이터를 얻기 위해서는 직접 양자컴퓨터를 제작하거나 클라우드 서비스 업체를 이용할 수밖에 없다. 이번에 KAIST 연구진이 공개한 데이터는 관련 분야 연구자뿐 아니라 양자 컴퓨터에 관심 있는 모든 사람이 무료로 데이터에 접근할 수 있게 되었다는 점에서 중요하다고 할 수 있다. 최대 141큐비트를 활용해 70만 종류 이상의 그래프 최적화를 계산했고, 양자컴퓨터의 계산 결과와 데이터분석 프로그램 일체를 공개했다.
연구를 주도한 안재욱 교수는 “이번 연구를 통해 100큐비트급 양자컴퓨터를 활용한 난제 계산 결과 및 계산 프로그램을 모두 공개하여 그동안 양자컴퓨터에 접근이 어려웠던 연구자를 비롯한 많은 사람이 양자 컴퓨팅 연구에 참여할 수 있을 것으로 기대된다. 아울러, 고성능 양자컴퓨터 개발에 필요한 잡음 분석에도 연구팀이 계산한 데이터베이스가 활용될 수 있을 것이라 생각한다”고 말했다.
우리 대학 물리학과 김강흔, 박주영, 변우정 석박사통합과정, 김민혁 박사(現 고려대 물리학과 교수)가 참여한 해당 연구 결과는 국제 학술지 네이처(Nature) 자매지인 ‘사이언티픽 데이터(Scientific data)’1월 11권에 게재됐다. (논문명: Quantum computing dataset of maximum independent set problem on king lattice of over hundred Rydberg atoms).
한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.02.13
조회수 7043