본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%96%B4%ED%94%8C%EB%9D%BC%EC%9D%B4%EB%93%9C+%ED%94%BC%EC%A7%81%EC%8A%A4+%EB%A0%88%ED%84%B0%EC%8A%A4
최신순
조회순
곤충 눈을 모사한 무반사 미세렌즈 개발
정기훈 교수 - KAIST 정기훈 교수 연구팀, 세계적 물리학회지에 표지논문으로 게재돼, 국내외 특허출원 중 - - 반도체 양산공정 그대로 활용할 수 있어 상용화 기대 커 -- 빛 반사율 1%이하로 낮춰 값비싼 무반사 코팅 대체 가능 - 국내 연구진이 곤충의 눈을 모사해 빛의 반사를 최소화한 무반사 미세렌즈를 개발하는데 성공했다. 이 렌즈는 특히 휴대폰, 디지털카메라 등에 적용된 이미지센서에 활용할 수 있는 데다, 기존 반도체 양산 공정을 그대로 활용할 수 있다는 점에서 상용화에 대한 기대가 크다. 우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 곤충의 눈 표면에 형성된 나노구조를 모사해 저렴하면서도 빛 반사율을 1%이하로 낮춘 무반사 미세렌즈 양산기술을 개발하는 데 성공했다. KAIST는 정 교수 연구팀이 개발한 이번 기술을 카메라 이미지센서용 미세렌즈에 적용할 경우 집광효율이 높기 때문에 대조 효과와 밝기에 대한 특성이 우수한 고감도 카메라를 만들 수 있다는 점에서 국내외로부터 많은 관심을 받을 것으로 예상된다고 설명했다. 특히 정 교수팀이 개발한 공정은 이미 상용화 중에 있는 기존의 반도체공정을 그대로 활용할 수 있다. 따라서 렌즈 표면에 굴절률이 낮은 막을 여러 번 입히는 기존의 무반사 코팅보다 제품 제작비용이 훨씬 줄어들 것으로 기대된다고 강조했다. 나비, 잠자리 등 곤충의 눈은 대부분 겹눈 2개로 구성돼 있다. 이들 곤충은 겹눈을 형성하는 벌집모양의 낱눈을 약 1만~3만 개를 가지고 있는데, 낱눈에는 수많은 나노 돌기가 빛의 투과를 돕는 역할을 한다. 연구팀은 이 같은 특성을 갖는 곤충의 눈이 오랜 진화를 통해 최적의 조건을 만들어 온 것으로 판단해, 컴퓨터 시뮬레이션을 거쳐 빛이 가장 잘 투과되는 나노 구조라는 것을 알아냈다. 이후 이 구조를 모사해 수십 마이크로미터(㎛) 크기의 카메라 미세렌즈에 적용한 결과 반사율이 기존 10%에서 1%이하로 현격히 감소하는 특성을 확인했다. 정 교수 연구팀은 곤충에서 착안한 무반사 구조를 만들기 위해 기존 반도체 생산에 쓰이는 식각공정을 활용했다. 미세렌즈에 은 박막 코팅을 한 후 저온열처리를 통해 은나노 입자를 미세렌즈 표면에 형성시켰다. 이를 마스크로 삼아 렌즈표면을 건식 식각해 무반사 특성을 갖는 나노구조를 렌즈 곡면에 구현하는 데 성공했다. 정기훈 교수는 “곡면 구조의 카메라 미세렌즈 표면에서 빛의 반사가 심해 집광효율이 감소하는 문제가 있었는데, 몰포나비의 눈에 형성된 나노 구조에 착안해 기술개발에 성공했다”며 “기존 반도체공정을 그대로 이용할 수 있기 때문에 고가의 무 반사 코팅보다 훨씬 저렴한 단가로 카메라 이미지센서용 무반사 미세렌즈에 즉시 적용할 수 있다”고 말했다. 한편, 정기훈 교수가 주도하고 정혁진 박사과정 학생이 참여한 이번 연구는 세계적인 물리학회지 ‘어플라이드 피직스 레터스(Applied Physics Letters)’ 최신호(11월 12일자)에 표지논문으로 게재됐으며 현재 국내외 특허 출원중이다. 그림1. 곤충 겹눈(좌), 곤충의 낱눈(우)을 확대한 현미경 사진 그림2. 곤충 겹눈의 나노돌기 구조를 모사한 고효율 미세렌즈 배열. 무반사 렌즈는 일반 렌즈에 비해 표면 반사를 현격히 감소시켜 무반사 렌즈를 통해 맺힌 이미지의 선명도를 증가시킨다. 그림3. 카메라 이미지센서용 미세렌즈 개발 공정 1) 고분자 미세렌즈 배열 전면에 은 박막을 코팅 2) 가열을 통해 은 박막을 은 나노입자로 변형 3) 은 나노입자를 마스크로 삼아 렌즈 식각 4) 은 나노입자 제거하여 무반사 미세렌즈 배열 완성 그림4. 논문표지
2012.11.21
조회수 14812
유기발광다이오드 고효율 제조기술 개발
- 용액으로 제조해 값싸며, 대기 중에서 제조할 수 있는 OLED 길 열려 차세대 디스플레이로 각광받는 유기발광다이오드(OLED)의 제조공정이 크게 개선된다. 우리학교 기계공학과 양민양 교수팀은 대기 중에서도 쉽게 제조할 수 있는 고분자 유기발광다이오드를 개발하는 데 성공했다. 연구팀은 음극이나 양극과 같은 금속 전극을 제외한 기능성 층(정공주입층, 발광층, 전자수송층, 전자주입층)을 모두 액상으로 제조할 수 있도록 했다. 이 액상물질은 인쇄기술과 같은 용액공정을 적용할 수 있어 매우 저렴한 비용으로 제조가 가능할 것으로 기대된다. 기존 유기발광다이오드에는 LiF, CsF, Cs2CO3 등과 같은 알칼리․알칼리토금속을 포함하는 물질들이 전자주입층으로 구성돼 있다. 이 전자주입물질들이 음극과 발광층 사이에서 전자가 극복해야 할 전자주입장벽을 낮추어 발광효율을 높이는 역할을 하기 때문이다. 그러나 이 물질들은 대기 중에서 불안정할 뿐만 아니라 1nm(나노미터)정도의 초박막을 진공에서 증착을 통해 막을 입혀야 하기 때문에 대면적으로 얇은 층을 구현하기 어렵다. 또한, 아래층의 표면품질에 소자의 효율이 큰 영향을 받는다는 문제가 있어 모든 층을 용액공정으로 소자를 제조하는 데 어려움이 있었다. 양 교수팀은 5nm의 크기를 갖는 산화아연 나노입자 용액과 암모늄 이온용액을 통해 용액공정의 적용이 가능한 전자수송․주입 복합구조를 제시했다. 이들 용액은 알칼리․알칼리토금속을 전혀 포함하고 있지 않아 대기 중에서 안정해 모든 층을 용액공정으로 제조가 가능해졌다. 특히, 산화아연 나노입자층과 암모늄이온 복합층에 존재하는 암모늄 이온은 일정 이상의 전계를 가하면 발광층과 음극 사이에서 이온들이 전계에 따라 정렬해 계면쌍극자(interface dipole)를 형성한다. 이를 효과적으로 발광층과 음극사이의 전자주입 장벽을 낮추어 알칼리․알칼리 토금속을 사용하지 않음에 의해 발생하는 효율이 저감되는 문제를 극복해 발광효율 10cd/A와 휘도 50000cd/m2의 고성능을 구현했다. 한편, KAIST 양민양 교수와 윤홍석 박사과정 학생이 주도한 이번 연구결과는 권위 있는 학술지인 "어플라이드 피직스 레터스(Applied Physics Letters)"지 12월 14일자 온라인 판에 게재됐고 현재 국내 및 국제 특허 출원 완료됐다. [그림1] 연구팀이 개발한 고휘도 고발광효율 유기발광다이오드
2011.01.25
조회수 13058
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1