본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9C%84%EC%B9%98%EC%9D%B8%EC%8B%9D
최신순
조회순
차세대 XR 초정밀 위치 인식기술 최초 개발
초정밀 위치 인식기술로 사물인터넷 기기와 로봇의 미세한 움직임을 조종하고, 나아가서는 초실감형 XR 및 초정밀 스마트 팩토리 등 가상 세계에서 현실과 연결을 시키게 하는 인식기술을 세계 최초로 개발해서 화제다. 우리 대학 전기및전자공학부 김성민 교수 연구팀이 무전원 태그를 통해 세계 최초로 160m 장거리에서 7mm(5m 단거리 0.35mm)의 정확도와 1,000개 이상의 위치를 동시 인식하는 초정밀·대규모 사물인터넷(IoT) 위치인식 시스템을 개발했다고 8일 밝혔다. 연구진이 최초 개발한 무선 태그는, 그 신호가 방해 신호와 주파수 영역에서 완전히 분리되어 신호의 질을 100만 배 이상 향상시킨다. 이를 이용하여 초정밀 위치 인식이 가능해지는 원리다. 해당 기술을 접목하면 XR에서 다량의 사물인터넷을 손가락의 미세한 움직임만으로 쉽게 제어할 수 있는 등, 몰입감을 크게 높일 수 있다. 또한 1,000개 이상의 태그를 0.5초 이하에 동시 인식할 수 있어, 수많은 기기를 실시간 조작할 수 있다. 이 기술은 현존하는 실내외 위치인식 기술 중 작동 범위, 정확도 및 규모에서 성능이 월등하여 그 의미가 깊다. 특히, 최신 실내 측위 기술인 차세대무선기술(UWB, Ultra Wide Band)에 비해 300배의 정확도, 10배의 탐지 거리, 100배의 확장성을 갖는다. 즉, 현재에 비해 훨씬 많은 기기를 정밀하게 다룰 수 있음을 의미한다. 또한, 실외 측위에 한정되는 GPS 위치 인식 기술과 달리 다양한 실내외 환경에서 활용될 수 있다. 본 기술의 태그는 스스로 무선 신호를 생성하는 대신, 주변의 신호를 반사하여 통신한다. 마치 거울과 같은 원리로, 신호 생성에 필요한 전력을 아낄 수 있어 초저전력으로 동작한다. 이에 태양전지 등 무전원으로 동작하거나 코인 전지 하나로 40년 이상 구동할 수 있어, 대량 운용에 적합하다. 전기및전자공학부 배강민 박사과정과 문한결 박사과정이 공동 주 저자로 참여한 이번 연구는 모바일 시스템 분야의 최고 권위 국제 학술대회인 `ACM 모비시스(ACM MobiSys)' 2023에 지난 6월 발표됐다. (논문명: Hawkeye: Hectometer-range Subcentimeter Localization for Large-scale mmWave Backscatter) 김성민 교수는 “이번 성과를 통해 스마트팩토리 등 산업체를 넘어, XR(확장현실) 등 민간에서도 포괄적으로 사용가능한 IoT(사물인터넷) 상호적용 기술로, 전방위적인 위치인식 기술의 보급을 가능하게 할 것으로 기대된다”고 말했다. 한편 이번 연구는 삼성미래기술육성사업과 정보통신기획평가원의 지원을 받아 수행됐다.
2023.08.08
조회수 3809
위치인식 기술의 혁신, 인공지능 활용한 실내외 통합 GPS 시스템 개발
우리 대학 전산학부 한동수 교수 연구팀(지능형 서비스 통합 연구실)이 실내외 환경 구분 없이 정밀한 위치인식이 가능한 `실내외 통합 GPS 시스템'을 개발했다고 8일 밝혔다. 이번에 개발된 실내외 통합 GPS 시스템은 실외에서는 GPS 신호를 사용해 위치를 추정하고 실내에서는 관성센서, 기압센서, 지자기센서, 조도센서에서 얻어지는 신호를 복합적으로 사용해 위치를 인식한다. 이를 위해 연구팀은 인공지능 기법을 활용한 실내외 탐지, 건물 출입구 탐지, 건물 진입 층 탐지, 계단/엘리베이터 탐지, 층 탐지 기법 등을 개발했다. 아울러 개발된 각종 랜드마크 탐지 기법들을 보행자 항법 기법(PDR)과 연계시킨 소위 센서 퓨전 위치인식 알고리즘도 새롭게 개발했다. 지금까지는 GPS 신호가 도달하지 않는 공간에서는 무선랜 신호나 기지국 신호를 기반으로 위치를 인식하는 것이 보통이었다. 하지만 이번에 개발된 실내외 통합 GPS 시스템은 신호가 존재하지 않고 실내지도가 제공되지 않는 건물에서도 위치인식을 가능하게 하는 최초의 기술이다. 연구팀이 개발한 알고리즘은 구글, 애플의 위치인식 서비스에서는 제공하지 않는 건물 내에서의 정확한 층 정보를 제공할 수 있다. 비전이나 지구 자기장, 무선랜 측위 방식과 달리 사전 준비 작업이 필요치 않은 장점도 있다. 전 세계 어디에서나 사용할 수 있는 범용적인 실내외 통합 GPS 시스템을 구축할 수 있는 기반이 마련됐다. 연구팀은 GPS, 와이파이, 블루투스 신호 수신 칩과 관성센서, 기압센서, 지자기센서, 조도센서 등을 탑재시킨 실내외 통합 GPS 전용 보드도 제작했다. 또한 제작된 하드웨어(HW) 보드에 개발된 센서퓨전 위치인식 알고리즘을 탑재했다. 제작된 실내외 통합 GPS 전용 하드웨어(HW) 보드의 위치인식 정확도를 대전 KAIST 본원 N1 건물에서 측정한 결과, 층 추정에 있어서는 약 95%의 정확도를, 수평 방향으로는 약 3~6미터의 정확도를 달성했다. 실내외 전환에 있어서는 약 0.3초의 전환 속도를 달성했다. 보행자 항법(PDR) 기법을 통합시켰을 때는 1미터 내외의 정확도를 달성하였다. 연구팀은 위치인식 보드가 내장된 태그를 제작하고 박물관, 과학관, 미술관 방문객들을 위한 위치기반 전시 안내 서비스에 적용할 예정이다. 개발된 실내외 통합 GPS 태그는 어린이나 노약자를 보호하는 목적으로도 활용할 수 있으며 소방관 혹은 작업장 작업자의 위치 파악에도 활용할 수 있다. 한편 지하 주차장과 같은 실내로 진입하는 차량의 위치를 추정하는 차량용 센서 퓨전 위치인식 알고리즘과 위치인식 보드도 개발하고 있다. 연구팀은 차량용 실내외 통합 GPS 위치인식 보드가 제작되면 자동차 제조사, 차량 대여 업체들과의 협력을 모색할 예정이며, 스마트폰에 탑재될 센서 퓨전 위치인식 알고리즘도 개발할 예정이다. 개발된 알고리즘이 내장된 실내외 통합 GPS 앱이 개발되면 위치인식 분야에서 다양한 사업화를 모색하는 통신사와의 협력도 가능할 것으로 기대된다. 연구팀을 이끄는 전산학부 한동수 교수는 "무선 신호가 존재하지 않고 실내지도도 주어지지 않는 건물에서 위치인식이 가능한 실내외 통합 GPS 시스템 개발은 이번이 처음이며, 그 응용 분야도 무궁무진하다. 2022년부터 개발이 시작된 한국형 GPS(KPS) 시스템, 한국형 항공위성서비스(Korea Augmentation Satellite System, KASS)와 통합되면 한국이 실내외 통합 GPS 분야에서 선도 국가로 나설 수 있으며 향후 기술 격차를 더 벌릴 수 있도록 실내외 통합 GPS 반도체 칩도 제작할 계획이다ˮ라고 말했다. 또 "개발된 실내외 통합 GPS 태그를 사용한 과학관, 박물관, 미술관 위치기반 안내 서비스는 관람객의 동선 분석에도 유용하게 활용될 수 있다. 전시물 교체를 결정할 때 요구되는 꼭 필요한 유용한 정보다. 국립중앙과학관에 우선 적용될 수 있도록 노력하겠다”라고 말했다. 한편 실내외 통합 GPS 시스템, 그리고 위치기반 관람객 동선 분석 시스템 개발은 과기정통부의 과학문화전시서비스 역량강화지원사업의 지원으로 개발됐다.
2022.07.08
조회수 9803
한동수 교수, 크라우드소싱 기반 실내 위치인식 시스템 개발
〈 한 동 수 교수 〉 우리 대학 전산학부 한동수 교수 연구팀(지능형 서비스통합 연구실)이 실내 공간에서 획득한 와이파이 신호의 수집 위치정보를 자동으로 파악할 수 있는 기술을 개발했다. 이 기술은 글로벌 실내 위치인식 시스템 구축에 필요한 핵심 기술로 다수의 스마트폰에서 수집된 무선랜 핑거프린트의 수집 위치를 자동으로 라벨링하는 인공지능 기법이다. 비용을 절감하면서 높은 정확도를 가질 수 있고 무선랜 핑거프린트 수집이 가능한 건물이라면 어느 곳에도 적용 가능하다. 여러 글로벌 기업들이 실내 GPS를 실현하기 위해 전 세계 주요도시에서 수만 건의 실내 지도를 수집했다. 실내 지도와 함께 신호 지도 수집도 시도했지만 높은 정확도를 갖지 못했고 그 결과 실내에서의 위치 인식 서비스 질이 떨어진다. 연구팀은 문제 해결을 위해 실내를 이동 공간과 체류 공간으로 구분하고 각각의 공간에 최적화된 수집 위치 라벨링을 자동화하는 기술을 개발했다. 연구팀이 개발한 기술은 복도, 로비, 계단과 같은 이동 공간에서도 수집된 신호의 위치정보를 별도의 외부 정도 없이도 자동으로 라벨링하는 새로운 자율학습(Unsupervised Learning) 인공지능 기술이다. 이 기술을 토대로 기초실험연구동(N5)과 김병호-김삼열IT융합빌딩(N1)에서 실험을 실시했고, 충분한 양의 학습 데이터가 주어진다는 가정 하에 오차범위 3~4미터 수준의 정확도를 보였다. 이는 수작업을 통해 수집 위치를 라벨링한 결과와 비슷한 정확도로 연구팀이 함께 개발한 지자기 신호, 3축 가속기, 자이로스코프 기반의 딥러닝을 활용한 새로운 센서 퓨전 기법을 통하면 정확도가 더욱 상승하는 결과를 보였다. 그 동안 스마트폰을 통해 수집된 핑거프린트는 활용되지 못하고 버려졌지만 개발된 기술을 통해 무선랜 핑거프린트 빅데이터 영역이 새롭게 열릴 것으로 기대된다. 개발된 GPS 구축 기술은 글로벌 기업이나 국내 위치정보 서비스 기업 등이 전국 범위에서 위치정보 서비스를 제공할 때 도입해 효과적으로 사용할 수 있을 것으로 예상된다. GPS 신호가 도달하지 않는 실내 환경에서 위치인식 정확도가 높아짐에 따라 포켓몬고 등의 O2O(online to offline) 위치기반 게임도 실내에서 실행 가능할 것으로 기대된다. 또한 다양한 위치기반 SNS, 사물인터넷 등 서비스가 활성화되고 위급한 상황에서 112나 119에 구조요청을 할 시 정확한 위치 파악이 가능할 것으로 보인다. 한 교수는 “개발된 글로벌 실내 위치인식 시스템 구축 기술을 KAIST 실내 위치인식 시스템인 카이로스(KAILOS)에 탑재해 서비스 할 예정이다”며 “전 세계 어느 건물에서든 정확도 높은 실내 위치인식 시스템을 손쉽게 구축할 수 있고 장래에 대부분 실내 공간에서도 위치인식 서비스가 제공 가능할 것이다”고 말했다. 카이로스는 2014년 KAIST에서 출시한 개방형 실내 위치인식 서비스 플랫폼이다. 자신이 원하는 건물의 실내지도를 카이로스에 등록하고 해당 건물의 핑거프린트를 수집해 실내 위치인식 시스템을 구축하도록 지원 중이다. □ 그림 설명 그림1. 핑거프린트를 수집하여 신호지도를 구축한 뒤, 구축된 신호지도를 기반으로 위치를 추정하는 과정 그림2. KAILOS가 여러 가지 신호와 센서를 복합적으로 사용하였을 때 예상되는 정확도
2017.04.12
조회수 14877
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1