-
조용훈 교수, 양자입자의 상온 응축 및 운동량 제어 기술 개발
우리 대학 물리학과 조용훈 교수 연구팀이 머리카락 굵기보다 100배 얇은 육각형 반도체 막대 구조를 이용해 극저온에서만 형성이 가능했던 빛과 물질의 성질을 동시에 갖는 양자 입자(엑시톤-폴라리톤)를 응축하고 이의 운동량을 상온에서도 제어하는 데 성공했다.
이번 연구를 통해 향후 고효율의 비선형 광소자부터 양자 광소자에 이르기까지 광범위하게 활용할 수 있을 것으로 기대된다.
송현규 박사과정이 1 저자로 참여한 이번 연구 결과는 미국 광학회의 국제학술지 ‘옵티카 (Optica)’10월 20일 자에 게재됐다.
빛이 반도체 내부의 엑시톤과 오랜 시간 동안 머물 수 있는 적절한 조건이 성립되면, 서로가 강하게 상호작용하며 빛과 물질이 지닌 장점을 동시에 갖는 제3의 양자 입자인 엑시톤-폴라리톤이 생성된다.
기존 연구에 많이 사용되던 비소화물 기반 반도체의 경우, 빛을 반도체 내부에 오랜 시간 가둬두기 위한 균일한 거울 구조를 만드는 공정과정은 잘 알려졌지만, 열에너지에 의해 엑시톤이 해리되기 때문에 극저온의 실험환경이 필수적인 요소였다.
반면 질화물 기반 반도체의 경우 상온에서도 안정적으로 존재할 수 있는 엑시톤을 형성할 수는 있지만, 거울 구조를 만드는 공정과정이 복잡하고 물리적 요인들로 인해 공간적으로 균일한 거울 구조를 만드는 데 한계가 있다. 이러한 불균일한 거울 구조는 엑시톤-폴라리톤의 움직임을 방해하는 중요한 원인이다.
연구팀은 거울 구조 대신 질화물 반도체 기반의 3차원 구조인 육각형 마이크로 막대 구조를 이용해 문제를 해결했다. 이 구조를 이용하면 거울 없이도 내부 전반사의 원리를 통해 균일하면서도 자발적으로 형성되는 빛의 모드와 엑시톤의 강한 상호작용으로 상온에서도 엑시톤-폴라리톤을 생성할 수 있게 된다.
엑시톤-폴라리톤은 빛으로부터 얻은 고유의 특성으로 인해 질량이 전자보다 10만 배, 원자보다 10억 배 가볍다. 기존 원자를 이용하면 절대영도(영하 273도) 근처에서 에너지가 낮은 하나의 바닥 상태를 모든 입자가 공유해서 마치 하나의 입자처럼 행동하는‘보즈-아인슈타인 응축 현상’이 관측된다. 연구팀은 질화물 반도체에서 엑시톤-폴라리톤 입자를 형성하여 이러한 응축 현상이 상온에서도 생성될 수 있다는 사실을 검증했다.
또한, 엑시톤으로부터 얻은 고유 특성으로 기존의 빛과는 다르게 엑시톤-폴라리톤 입자 서로 간의 밀어내는 힘인 척력이 발생한다. 연구팀은 고해상도 레이저 광학 시스템을 이용해 엑시톤-폴라리톤의 포텐셜 에너지와 이의 경사도를 조절해서 엑시톤-폴라리톤 응축 현상의 운동량을 제어하는 데에도 성공했다.
이와 같은 응축 현상의 운동량 제어는 공간적으로 넓은 결맞음을 동반하기에 양자 소용돌이와 같은 양자 상전이 현상부터 양자 시뮬레이터로 활용하기 위한 양자현상 제어의 중요한 요소 중 하나이다. 이 기술은 구동 전류가 10배 이상 낮은 엑시톤-폴라리톤 기반의 신개념 레이저, 비선형 광소자와 같은 고전적인 광소자뿐만 아니라 초유체 기반의 집적회로, 양자 시뮬레이터와 같은 양자광소자에 응용될 수 있다.
조 교수는 “상온 엑시톤-폴라리톤 플랫폼으로서 복잡한 저온 장치 없이 이와 관련된 기초연구의 문턱을 낮출 수 있는 기반이 될 수 있을 것이다”라며, “지속적인 연구를 통해 상온에서 작동이 가능한 다양한 양자 광소자로 활용되길 기대한다”라고 말했다.
이번 연구는 한국연구재단의 중견연구자 지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 반도체 육각형 막대 구조에서 생성되는 상온 엑시톤 폴라리톤 응축 및 이의 운동량 제어
2019.10.31
조회수 10915
-
조용훈, 최형순 교수, 반도체 내 양자 소용돌이 제어 기술 개발
우리 대학 물리학과 조용훈, 최형순 교수 공동 연구팀이 반도체 공진기 구조에서 ‘엑시톤-폴라리톤 응축’이라는 양자물질 상태를 형성 후 새 광학적인 방식으로 양자 소용돌이를 생성하고 제어하는 데 성공했다.
권민식 연구원과 오병용 박사가 공동 1저자로 참여한 이번 연구 결과는 미국 물리학회가 발행하는 물리학 권위지인‘피지컬 리뷰 레터스 (Physical Review Letters)’ 2월호에 게재됐다.
태풍이 일거나 싱크대에서 물이 빠질 때 유체가 소용돌이를 일으키며 회전하는 것은 우리에게 익숙한 현상이다.
이와 마찬가지로 초유체, 초전도체 같은 양자 유체도 소용돌이를 일으키며 회전할 수 있는데, 이는 파동 함수의 위상(phase)이 소용돌이를 중심으로 원주율의 특정 배수가 되는 조건에서만 가능하다. 이렇게 소용돌이가 불연속적으로 양자화되는 현상을 양자 소용돌이라고 한다.
양자 소용돌이는 양자 유체역학을 연구하는 데 가장 핵심적인 요소 중 하나이다. 초유체의 에너지 손실 없이 회전할 수 있는 특성과 소용돌이의 회전 방향을 쉽게 뒤집을 수 없는 위상학(topology)적 안정성이 결합돼 있어 양자 소용돌이를 쉽게 생성하고 제어할 수 있다면 미래형 정보 소자로도 활용할 수 있다.
이런 면에서 반도체 내부에 존재하는 양자 유체인 엑시톤-플라리톤(이하 폴라리톤)은 특히 유리하다. 반도체에 밴드갭(전도체의 가장 아랫부분의 에너지 준위와 가전자대의 가장 윗부분의 에너지 준위 간의 에너지 차이)보다 높은 에너지를 갖는 빛을 쬐면 전자-전공 쌍이 형성되고 서로 강하게 이끌리며 엑시톤을 형성한다.
이러한 반도체에 높은 반사율을 갖는 거울 구조의 공진기를 결합하면 빛(광자)과 물질(엑시톤)이 강하게 상호작용하며 빛, 물질의 성질을 동시에 갖는 제3의 양자 물질을 만들 수 있는데 이를 폴라리톤이라 한다.
폴라리톤이 일정 밀도 이상 모이면 마치 하나의 입자처럼 행동하는 폴라리톤 응축 상태를 띌 수 있는데 이 때 폴라리톤은 초유체의 특성도 갖게 된다. 다른 초유체와 달리 잘 정립된 반도체 공정 기술과 광학적 제어 기술이 결합돼 있고, 초유체 생성 온도가 상대적으로 높아 그 응용 가능성이 기대되는 물질이다.
연구팀은 광-펌핑(원자나 이온이 빛을 흡수해 낮은 에너지의 상태에서 높은 에너지의 상태로 변화하는 현상)을 위해 사용한 레이저의 궤도 각운동량을 제어해 반도체 물질 내에 양자 소용돌이의 방향과 개수를 손쉽게 조절할 방법을 개발했다.
연구팀은 공진 파장이 아닌 빛으로 기존 양자 소용돌이 생성을 위한 까다로운 실험조건을 극복했다. 이 결과는 고체 상태에서 광학적 방법을 이용한 미래형 정보 소자와 복잡한 양자 현상을 이해할 수 있는 양자 시뮬레이터로의 활용 가능성을 높였다는 측면에서 큰 의의가 있다.
비공진 레이저의 궤도 각운동량이 폴라리톤의 기저 상태에까지 영향을 끼친다는 것을 밝힌 이번 연구 결과는 반도체 공진기 시스템에서 전자-정공 쌍의 에너지 완화 과정을 이해하는 데에 있어서도 중요한 결과이다.
KIST 송진동 박사 연구팀과의 협력으로 진행된 이번 연구는 한국연구재단의 중견연구자 및 신진연구자 지원사업을 받아 수행됐다.
□ 그림 설명
그림1. 엑시톤-폴라리톤 초유체와 양자소용돌이 상태의 생성
그림2. 양자소용돌이 제어
2019.03.11
조회수 14234