본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9D%B8%EA%B3%B5%EC%8B%A0%EA%B2%BD%EB%A7%9D
최신순
조회순
뇌 기반 인공지능의 난제 해결
인간의 두뇌는 외부 세상으로부터 감각 정보를 받아들이기 이전부터 자발적인 무작위 활동을 통해 학습을 시작한다. 우리 연구진이 개발한 기술은 뇌 모방 인공신경망에서 무작위 정보를 사전 학습시켜 실제 데이터를 접했을 때 훨씬 빠르고 정확한 학습을 가능하게 하며, 향후 뇌 기반 인공지능 및 뉴로모픽 컴퓨팅 기술 개발의 돌파구를 열어줄 것으로 기대된다. 우리 대학 뇌인지과학과 백세범 교수 연구팀이 뇌 모방 인공신경망 학습의 오래된 난제였던 가중치 수송 문제(weight transport problem)*를 해결하고, 이를 통해 생물학적 뇌 신경망에서 자원 효율적 학습이 가능한 원리를 설명했다고 23일 밝혔다. *가중치 수송 문제: 생물학적 뇌를 모방한 인공지능 개발에 가장 큰 장애물이 되는 난제로, 현재 일반적인 인공신경망의 학습에서 생물학적 뇌와 달리 대규모의 메모리와 계산 작업이 필요한 근본적인 이유임. 지난 수십 년간 인공지능의 발전은 올해 노벨 물리학상을 받은 제프리 힌튼(Geoffery Hinton)이 제시한 오류 역전파(error backpropagation) 학습에 기반한다. 그러나 오류 역전파 학습은 생물학적 뇌에서는 가능하지 않다고 생각되어 왔는데, 이는 학습을 위한 오류 신호를 계산하기 위해 개별 뉴런들이 다음 계층의 모든 연결 정보를 알고 있어야 하는 비현실적인 가정이 필요하기 때문이다. 가중치 수송 문제라고 불리는 이 난제는 1986년 힌튼에 의해 오류 역전파 학습이 제안된 이후, DNA 구조의 발견으로 노벨 생리의학상을 받은 프랜시스 크릭(Francis Crick)에 의해 제기됐으며, 이후 자연신경망과 인공신경망 작동 원리가 근본적으로 다를 수밖에 없는 이유로 여겨진다. 인공지능과 신경과학의 경계선에서, 힌튼을 비롯한 연구자들은 가중치 수송 문제를 해결함으로써 뇌의 학습 원리를 구현할 수 있는, 생물학적으로 타당한 모델을 만들고자 하는 시도를 계속해 왔다. 지난 2016년, 영국 옥스퍼드(Oxford) 대학과 딥마인드(DeepMind) 공동 연구진은 가중치 수송을 사용하지 않고도 오류 역전파 학습이 가능하다는 개념을 최초로 제시해 학계의 주목을 받았다. 그러나, 가중치 수송을 사용하지 않는 생물학적으로 타당한 오류 역전파 학습은 학습 속도가 느리고 정확도가 낮은 등 효율성이 떨어져, 현실적인 적용에는 문제가 있었다. 연구팀은 생물학적 뇌가 외부적인 감각 경험을 하기 이전부터 내부의 자발적인 무작위 신경 활동을 통해 이미 학습을 시작한다는 점에 주목했다. 이를 모방해 연구팀은 가중치 수송이 없는 생물학적으로 타당한 신경망에 의미 없는 무작위 정보(random noise)를 사전 학습시켰다. 그 결과, 오류 역전파 학습을 위해 필수적 조건인 신경망의 순방향과 역방향 신경세포 연결 구조의 대칭성이 만들어질 수 있음을 보였다. 즉, 무작위적 사전 학습을 통해 가중치 수송 없이 학습이 가능해진 것이다. 연구팀은 실제 데이터 학습에 앞서 무작위 정보를 학습하는 것이 ‘배우는 방법을 배우는’메타 학습(meta learning)의 성질을 가진다는 것을 밝혔다. 무작위 정보를 사전 학습한 신경망은 실제 데이터를 접했을 때 훨씬 빠르고 정확한 학습을 수행하며, 가중치 수송 없이 높은 학습 효율성을 얻을 수 있음을 보였다. 백세범 교수는 “데이터 학습만이 중요하다는 기존 기계학습의 통념을 깨고, 학습 전부터 적절한 조건을 만드는 뇌신경과학적 원리에 주목하는 새로운 관점을 제공하는 것”이라며 “발달 신경과학으로부터의 단서를 통해 인공신경망 학습의 중요한 문제를 해결함과 동시에, 인공신경망 모델을 통해 뇌의 학습 원리에 대한 통찰을 제공한다는 점에서 중요한 의미를 가진다”고 언급했다. 뇌인지과학과 천정환 석사과정이 제1 저자로, 같은 학과 이상완 교수가 공동 저자로 참여한 이번 연구는 12월 10일부터 15일까지 캐나다 벤쿠버에서 열리는 세계 최고 수준의 인공지능 학회인 제38회 신경정보처리학회(NeurIPS)에서 발표될 예정이다. (논문명: Pretraining with random noise for fast and robust learning without weight transport (가중치 수송 없는 빠르고 안정적인 신경망 학습을 위한 무작위 사전 훈련)) 한편 이번 연구는 한국연구재단의 이공분야기초연구사업, 정보통신기획평가원 인재양성사업 및 KAIST 특이점교수 사업의 지원을 받아 수행됐다.
2024.10.23
조회수 1334
뉴로모픽 신경망으로 컴퓨팅 난제 해결하다
우리 연구진이 현재 반도체 산업체에서 사용되는 실리콘 소재 및 공정만을 사용해 초소형 진동 신경망을 구축하여 경계선 인식 기능을 구현했으며 난제 중 하나인 그래프 색칠 문제*를 해결했다. *그래프 색칠 문제: 그래프 이론에서 사용되는 용어로, 그래프의 각 정점에 서로 다른 색을 할당해야 하며, 이러한 색깔 구분 문제는 방송국 주파수가 겹쳐 난시청 지역이 발생하지 않도록 주파수를 할당하는 문제 등과도 유사해 다양하게 응용되고 있음 우리 대학 전기및전자공학부 최양규 교수 연구팀이 실리콘 바이리스터 소자로 생물학적 뉴런의 상호작용을 모방한 뉴로모픽 진동 신경망을 개발했다고 3일 밝혔다. 빅데이터 시대가 도래하면서 인공지능 기술이 예전과 비교할 수 없을 만큼 비약적으로 발전하고 있다. 인간의 뇌 기능을 모사하는 뉴로모픽 컴퓨팅 중 하나인 상호 간 결합된 진동 신경망(oscillatory neural network)은 뉴런의 상호작용을 모방한 인공 신경망이다. 진동 신경망은 기본단위에 해당하는 진동자의 연결 동작을 이용하며 신호의 크기가 아닌 진동을 이용해 연산을 수행하므로 소모 전력 측면에서 이점을 가지고 있다. 연구팀은 실리콘 기반 진동자를 이용해 진동 신경망을 개발했다. 축전기를 이용해 두 개 이상의 실리콘 진동자를 연결하면, 각각의 진동 신호가 상호작용해 시간이 경과하면서 동기화(synchronization) 된다. 연구팀은 진동 신경망으로 영상 처리에 사용되는 경계선 인식(edge detection) 기능을 구현했으며 난제 중 하나인 그래프 색칠 문제(vertex coloring problem)를 해결했다. 또한 이번 연구는 제조 관점에서, 복잡한 회로나 기존 반도체 공정과 호환성이 낮은 소재 및 구조 대신, 현재 반도체 산업체에서 사용되는 실리콘 관련 소재 및 공정만으로 진동 신경망을 구축했기 때문에, 양산에 바로 적용 가능하다는 장점이 있다. 연구를 주도한 윤성윤 박사과정, 서강대학교 한준규 교수는 "개발된 진동 신경망은 복잡한 컴퓨팅 난제를 계산할 수 있는 뉴로모픽 컴퓨팅 하드웨어로, 자원 분배, 신약 개발, 반도체 회로 설계 및 스케줄링 등에 유용하게 사용될 수 있을 것으로 기대된다ˮ고 연구의 의의를 설명했다. 윤성윤 박사과정과 한준규 교수가 공동 제1 저자로 참여한 이번 연구는 나노과학 분야 저명 국제 학술지 ‘나노 레터스(Nano Letters)’에 2024년 3월 24권 9호에 출판되었으며, 추가 표지 논문(Supplementary Cover)으로 선정됐다. (논문명 : A Nanoscale Bistable Resistor for an Oscillatory Neural Network) (https://pubs.acs.org/doi/full/10.1021/acs.nanolett.3c04539). 한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업 및 국가반도체연구실지원핵심기술개발사업의 지원을 받아 수행됐다.
2024.04.03
조회수 4245
설명해주는 인공지능 구현을 위한 초저전력 하드웨어 기술 개발
우리 대학 신소재공학과 김경민 교수 연구팀이 다양한 멤리스터* 소자를 이용한 설명 가능한 인공지능 (XAI) 시스템을 구현하는데 성공했다고 25일 밝혔다. *멤리스터 (Memristor): 메모리 (Memory)와 저항 (Resistor)의 합성어로, 입력 신호에 따라 소자의 저항 상태가 변하는 소자 최근 인공지능 (AI) 기술의 급속한 발전이 다양한 분야에서 성과를 이루고 있다. 이미지 인식, 음성 인식, 자연어 처리 등에서 AI의 적용 범위가 확대되며 우리의 일상생활에 깊숙이 자리 잡고 있다. AI는 인간의 뉴런 구조를 모방해 만든 ‘인공신경망’을 기반으로, 적게는 수백만 개에서 많게는 수조 개에 달하는 매개변수를 통해 데이터를 분석하고 의사 결정을 내린다. 그러나 이 많은 매개변수로 인해 AI 모델의 동작 원리를 정확하게 이해하기 어렵고, 이는 통상적으로 블랙박스에 비유되곤 한다. AI가 어떤 기준으로 결정을 내는지 알 수 없다면, AI에 결함이나 오작동이 발생했을 때 이를 해결하기 어렵고, 이로 인해 AI가 적용되는 다양한 산업 분야에서 문제가 발생할 수 있다. 이에 대한 해답으로 제시된 것이 바로 설명 가능한 인공지능 (XAI)이다. XAI는 AI가 어떠한 결정을 내렸을 때, 그 근거가 무엇인지를 사람이 이해할 수 있도록 만드는 기술이다. <그림1> 생성형 AI 등 점점 더 복잡해지는 AI 기술의 등장으로 개발자, 사용자, 규제 기관 모두에게 XAI 시스템의 필요성이 강조되고 있다. 하지만, XAI는 일반적으로 엄청난 양의 데이터 처리를 요구하기 때문에, 이를 보다 효율적으로 동작할 수 있는 하드웨어 개발이 필요한 상황이다. 김경민 교수 연구팀은 교란(Perturbation) 기반 XAI 시스템을 서로 다른 멤리스터 소자를 이용해 하드웨어로 구현하는데 성공하였다. 세 가지 멤리스터 소자는 각각 휘발성 저항변화 특성, 아날로그 비휘발성 저항변화 특성, 아날로그 휘발성 저항변화 특성을 가지며 <그림 2>, 각 소자는 교란 기반 XAI 시스템의 필수적인 기능인 입력 데이터 교란, 벡터곱 연산, 그리고 신호 통합 기능을 수행한다. 연구팀은 개발된 XAI 하드웨어를 평가하기 위해, 흑백 패턴을 인식하는 신경망을 설계하였다. 여기에 개발한 XAI 하드웨어 시스템으로 설계한 신경망이 흑백 패턴을 인식하는 근거를 설명하였다. <그림3> 그 결과 기존 CMOS 기술 기반 시스템 대비 에너지 소비를 24배 감소하여 AI 판단의 이유를 제공하는 것을 확인하였다. <그림4> KAIST 김경민 교수는 “AI 기술이 일상화되면서 AI 동작의 투명성 및 해석가능성이 중요해지고 있는데, 이번 연구는 다양한 종류의 멤리스터 소자를 이용해 AI 판단에 대한 근거를 제공하는 XAI 하드웨어 시스템을 구현할 수 있었다는 점에 큰 의의가 있다”며 “이 연구는 AI 의사 결정에 도달하는 과정을 이해하기 쉽게 설명을 제공함으로써 AI 시스템의 신뢰성 향상에 기여할 수 있어, 향후 의료, 금융, 법률 등 민감한 정보를 다루는 AI 기반 서비스에 적용될 수 있을 것으로 기대된다”고 밝혔다. 이번 연구는 KAIST 신소재공학과 송한찬 박사과정, 박우준 박사과정 학생이 공동 제1 저자로 참여했으며, 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials, IF: 29.4)’에 03월 20일 字 온라인 게재됐으며, 한국연구재단 중견연구사업, 차세대지능형반도체기술개발사업, PIM인공지능반도체핵심기술개발사업, 나노종합기술원 및 KAIST 도약연구사업의 지원을 받아 수행됐다. (논문명: Memristive Explainable Artificial Intelligence Hardware, 논문링크: https://doi.org/10.1002/adma.202400977)
2024.03.25
조회수 3258
음악 본능을 인공지능으로 밝혀내다
음악은 세계 공통어로 불릴만큼 문화적 보편 요소로 알려졌다. 그렇다면 어떻게 다양한 문화권의 환경 차이에도 불구하고, ‘음악적 본능’은 어느 정도 공유될 수 있는 것일까? 우리 대학 물리학과 정하웅 교수 연구팀이 인공신경망 모델을 활용해, 사람 뇌에서 특별한 학습 없이도 음악 본능이 나타날 수 있는 원리를 규명했다고 16일 밝혔다. 기존 학자들은 다양한 문화권에 존재하는 음악의 보편성과 차별성을 규명하고, 어떻게 이런 공통성이 나타날 수 있는지에 대해 이해하고자 시도해 왔다. 2019년 세계적인 과학 저널 ‘사이언스’에 게재된 연구를 통해 민족지학적으로 구분된 모든 문화에서 음악을 만들어 내고, 유사한 형태의 박자와 멜로디가 사용된다는 것이 발견됐다. 또한, 신경과학자들은 우리 뇌의 청각 피질(Auditory cortex)에 음악 정보처리를 담당하는 특정한 영역이 존재한다는 것을 밝혀냈다. 연구팀은 인공신경망을 사용해, 음악에 대한 학습 없이도 자연에 대한 소리 정보 학습을 통해 음악 인지 기능이 자발적으로 형성됨을 보였다. (그림2) 연구팀은 구글에서 제공하는 대규모 소리 데이터(AudioSet)를 활용해, 인공신경망이 이러한 다양한 소리 데이터를 인식하도록 학습했다. 흥미롭게도, 연구팀은 네트워크 모델 내에 음악에 선택적으로 반응하는 뉴런(신경계의 단위)이 발생함을 발견했다. 즉, 사람의 말(speech), 동물 소리, 환경 소리, 기계 소리 등의 다양한 소리에는 거의 반응을 보이지 않으나 기악이나 성악 등 다양한 음악에 대해서는 높은 반응을 보이는 뉴런들이 자발적으로 형성된 것이다. 이 인공신경망 뉴런들은 실제 뇌의 음악정보처리 영역의 뉴런들과 유사한 반응 성질을 보였다. 예를 들어, 인공 뉴런은 음악을 시간적으로 잘게 나누어 재배열한 소리에 대해 감소된 반응을 보였다. 이는 자발적으로 나타난 음악 선택성 뉴런들이 음악의 시간적 구조를 부호화하고 있음을 의미한다. 이러한 성질은 특정 장르의 음악에만 국한된 것이 아니라, 클래식, 팝, 락, 재즈, 전자음악 등 25개에 달하는 다양한 장르 각각에 대해서도 공통적으로 나타났다. 심지어, 네트워크에서 음악 선택성 뉴런의 활동을 억제하게 되면, 다른 자연 소리에 대한 인식 정확도를 크게 떨어뜨릴 수 있음을 보였다. 즉, 음악 정보처리 기능이 다른 자연 소리 정보처리에 도움을 주며, 따라서 ‘음악성’이란 자연 소리를 처리하기 위한 진화적 적응에 의해 형성되는 본능일 수 있다는 설명이다. 연구를 주도한 정하웅 교수는 “이러한 결과는 다양한 문화권에서 음악 정보처리의 공통된 기저를 형성하는데, 자연 소리 정보처리를 위한 진화적 압력이 기여했을 수 있음을 시사한다”며, “사람과 유사한 음악성을 인공적으로 구현하여, 음악 생성 AI, 음악 치료, 음악 인지 연구 등에 원천 모델로 활용될 수 있을 것으로 기대한다”고 연구의 의의를 설명했다. 그러나 “현 연구는 음악 학습에 의한 발달 과정을 고려하고 있지 않으며, 발달 초기의 기초적인 음악 정보처리에 대한 논의임을 주의해야 한다”고 연구의 한계를 덧붙였다. 우리 대학 물리학과 김광수 박사(現 MIT 뇌인지과학과)가 제1 저자로, 김동겸 박사(現 IBS)와 함께 진행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 출판됐다. (논문명: ‘Spontaneous emergence of rudimentary music detectors in deep neural networks’, 국문 번역: ‘심층신경망에서 음악 인지기능의 자발적 발생’) 한편 이번 연구는 한국연구재단의 지원을 통해 수행됐다.
2024.01.16
조회수 3599
‘라이보’ 로봇, 해변을 거침없이 달리다
우리 대학 기계공학과 황보제민 교수 연구팀이 모래와 같이 변형하는 지형에서도 민첩하고 견고하게 보행할 수 있는 사족 로봇 제어기술을 개발했다고 26일 밝혔다. 황보 교수 연구팀은 모래와 같은 입상 물질로 이루어진 지반에서 로봇 보행체가 받는 힘을 모델링하고, 이를 사족 로봇에 시뮬레이션하는 기술을 개발했다. 또한, 사전 정보 없이도 다양한 지반 종류에 스스로 적응해가며 보행하기에 적합한 인공신경망 구조를 도입해 강화학습에 적용했다. 학습된 신경망 제어기는 해변 모래사장에서의 고속 이동과 에어 매트리스 위에서의 회전을 선보이는 등 변화하는 지형에서의 견고성을 입증해 사족 보행 로봇이 적용될 수 있는 영역을 넓힐 것으로 기대된다. 기계공학과 최수영 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 로보틱스(Science Robotics)' 1월 8권 74호에 출판됐다. (논문명 : Learning quadrupedal locomotion on deformable terrain) 강화학습은 임의의 상황에서 여러 행동이 초래하는 결과들의 데이터를 수집하고 이를 사용해 임무를 수행하는 기계를 만드는 학습 방법이다. 이때 필요한 데이터의 양이 많아 실제 환경의 물리 현상을 근사하는 시뮬레이션으로 빠르게 데이터를 모으는 방법이 널리 사용되고 있다. 특히 보행 로봇 분야에서 학습 기반 제어기들은 시뮬레이션에서 수집한 데이터를 통해서 학습된 이후 실제 환경에 적용돼 다양한 지형에서 보행 제어를 성공적으로 수행해 온 바 있다. 다만 학습한 시뮬레이션 환경과 실제 마주친 환경이 다른 경우 학습 기반 제어기의 성능은 급격히 감소하기 때문에, 데이터 수집 단계에서 실제와 유사한 환경을 구현하는 것이 중요하다. 따라서, 변형하는 지형을 극복하는 학습 기반 제어기를 만들기 위해서는 시뮬레이터는 유사한 접촉 경험을 제공해야 한다. 연구팀은 기존 연구에서 밝혀진 입상 매체의 추가 질량 효과를 고려하는 지반 반력 모델을 기반으로 보행체의 운동 역학으로부터 접촉에서 발생하는 힘을 예측하는 접촉 모델을 정의했다. 나아가 시간 단계마다 하나 혹은 여러 개의 접촉에서 발생하는 힘을 풀이함으로써 효율적으로 변형하는 지형을 시뮬레이션했다. 연구팀은 또한 로봇의 센서에서 나오는 시계열 데이터를 분석하는 순환 신경망을 사용함으로써 암시적으로 지반 특성을 예측하는 인공신경망 구조를 도입했다. 학습이 완료된 제어기는 연구팀이 직접 제작한 로봇 `라이보'에 탑재돼 로봇의 발이 완전히 모래에 잠기는 해변 모래사장에서 최대 3.03 m/s의 고속 보행을 선보였으며, 추가 작업 없이 풀밭, 육상 트랙, 단단한 땅에 적용됐을 때도 지반 특성에 적응해 안정하게 주행할 수 있었다. 또한, 에어 매트리스에서 1.54 rad/s(초당 약 90°)의 회전을 안정적으로 수행했으며 갑작스럽게 지형이 부드러워지는 환경도 극복하며 빠른 적응력을 입증했다. 연구팀은 지면을 강체로 간주한 제어기와의 비교를 통해 학습 간 적합한 접촉 경험을 제공하는 것의 중요성을 드러냈으며, 제안한 순환 신경망이 지반 성질에 따라 제어기의 보행 방식을 수정한다는 것을 입증했다. 연구팀이 개발한 시뮬레이션과 학습 방법론은 다양한 보행 로봇이 극복할 수 있는 지형의 범위를 넓힘으로써 로봇이 실제적 임무를 수행하는 데에 이바지할 수 있을 것으로 기대된다. 제1 저자인 최수영 박사과정은 "학습 기반 제어기에 실제의 변형하는 지반과 가까운 접촉 경험을 제공하는 것이 변형하는 지형에 적용하는 데 필수적이라는 것을 보였다ˮ 라며 "제시된 제어기는 지형에 대한 사전 정보 없이 기용될 수 있어 다양한 로봇 보행 연구에 접목될 수 있다ˮ 라고 말했다. 한편 이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2023.01.26
조회수 6579
우수한 소재를 설계하는 딥러닝 방법론 개발
우리 대학 기계공학과 유승화 교수 연구팀이 능동-전이 학습 (active-transfer learning)과 데이터 증강기법(Data augmentation)에 기반해, 심층신경망 초기 훈련에 쓰인 소재들과 형태와 조합이 매우 다른 우수한 특성을 지닌 소재를 효율적으로 탐색하고 설계하는 방법론을 개발했다고 16일 밝혔다. 인공신경망에 기반해 방대한 설계 공간에서 새로운 소재를 찾기 위한 역설계 연구는 최근 매우 활발하게 진행되고 있다. 하지만 이러한 기존 설계 방식은 목표로 하는 소재의 형태와 조합이 심층신경망 훈련에 활용된 소재들과 매우 다를 때 인공신경망이 가지는 낮은 예측능력으로 인해 극히 많은 수의 소재 데이터 검증이 요구되며, 이에 따라 제한적으로만 활용이 가능하다. 연구팀은 이번 연구에서 이를 극복하기 위해 초기 훈련 데이터 영역에서 벗어나 우수한 소재를 효율적으로 탐색할 수 있는 인공신경망 기반 전진 설계 (Forward design) 방법론을 제안했다. 이 방법론은, <그림 1>에 도시된 바와 같이 유전 알고리즘과 결합된 능동-전이 학습 및 데이터 증강기법을 통해 심층신경망을 점진적으로 업데이트함으로써, 초기 훈련데이터를 벗어난 영역에서 심층신경망의 낮은 예측능력을 적은 숫자의 데이터 검증 및 추가로 보완한다. 유전 알고리즘에 의해 제안되는 우수 소재 후보군은 기보유한 소재 데이터를 조합해 도출하기 때문에 심층신경망의 신뢰할 수 있는 예측 영역과 설계 공간 측면에서 상대적으로 가까워 예측정확도가 유지된다. 이 후보군과 능동-전이 학습을 활용해 점진적으로 심층신경망의 신뢰성 있는 예측 범위를 확장하면, 초기 훈련데이터 영역 밖에서도 적은 데이터를 생성해 효율적인 설계 과정이 가능하다. 이번 방법은 천문학적인 수의 설계 구성을 가지는 그리드 복합소재 최적화 문제에 적용해 검증했으며, 이를 통해 전체 가능한 복합재 구조의 1029분의 1 가량인 10만 개의 복합재들만 초기 훈련 데이터로 활용해 심층신경망을 학습한 후, 이후 약 500개에 미치지 못하는 데이터 검증을 통해 초기 훈련에 쓰인 복합재와 매우 다른 구조를 가지고 우수한 특성을 지닌 복합재 구조를 설계할 수 있음을 보였다. 연구진이 개발한 방법론은 국소 최적점(Local optima)에 수렴하는 문제를 완화하면서도 인공신경망의 신뢰할 수 있는 예측 영역을 점진적으로 확장하는 효율적인 방법을 제공하기 때문에, 큰 설계 공간을 다루는 다양한 분야의 최적화 문제에 적용할 수 있을 것으로 기대되며, 특히 설계에 요구되는 데이터 검증의 숫자가 적기 때문에 데이터 생성에 시간이 오래 걸리고 비용이 많이 드는 설계 문제에서 이 방법론이 크게 활용될 수 있을 것으로 기대된다. 이번 연구는 공동 제 1저자 김용태 박사과정, 김영수 박사(한국기계연구원) 주도하에 진행됐으며, 유승화 교수(우리 대학 기계공학과)가 교신저자로 참여해, 국제학술지인 `npj 컴퓨테이셔널 머터리얼(Computational Material, IF:12.241)'에 `Deep Learning Framework for Material Design Space Exploration using Active Transfer Learning and Data Augmentation' 라는 제목으로 게재됐다. 이번 연구는 한국연구재단의 중견 연구자지원사업(3D 프린팅 복합재의 최적설계기법 및 피로수명 예측기법 개발)과 미래소재 디스커버리 사업 (레이저-물질 상호작용 멀티스케일 모델링을 통한 분자디자인), KAIST 글로벌 특이점 프렙 사업의 지원을 통해 수행됐다.
2021.09.16
조회수 9747
양용수 교수팀, 나노물질 표면과 내부 3차원 원자구조 규명
우리 대학 물리학과 양용수 교수 연구팀이 인공신경망을 이용한 주사투과전자현미경(STEM) 기반 원자분해능 전자토모그래피 기술을 개발, 이를 적용해 백금 나노입자 표면과 내부의 3차원 원자 구조를 15 pm(피코미터)의 정밀도로 규명했다. 1 pm(피코미터)는 1 미터의 1조 분의 일에 해당하는 단위로, 15 pm의 정밀도는 수소 원자 반지름의 약 1/3 정도에 해당하는 매우 높은 수준이다. 전자토모그래피는 전자현미경으로 다양한 각도에서 측정된 2차원 투영된 이미지로부터 3차원 이미지를 얻어내는 기술이다. 최근 주사투과전자현미경과 3차원 토모그래피 재구성 알고리즘의 기술 발전으로 전자토모그래피의 분해능은 단일 원자까지 구분할 수 있는 수준에 이르렀다. 이를 통해 많은 나노물질의 구조와 물성의 근본적인 이해가 가능해졌다. 그러나 일반적인 전자토모그래피 실험에서는 시편을 탑재한 홀더 또는 그리드가 전자빔을 가리게 되는 실험적 제약으로 인해 고 각도(약 75도 이상)의 이미지 측정이 불가능하다. 이로 인해 고 각도 방향의 분해능이 저하되고, 재구성된 3차원 이미지에 원치 않는 노이즈들이 생겨난다. 이러한 현상을 손실 웨지 문제(missing wedge problem)라 부르며, 이러한 문제 때문에 기존의 전자토모그래피 방법으로는 표면/계면의 3차원 원자 구조를 고분해능으로 측정하기 힘들었다. 양용수 교수 연구팀은 인공신경망을 이용해 고 각도 방향의 데이터를 복원함으로써 이러한 손실 웨지 문제(missing wedge problem)를 해결하는 데 성공했다. 이를 통해 고분해능 3차원 표면/계면 원자 구조의 결정이 가능하게 됐고, 나노물질의 표면/계면에서 나타나는 물성의 메커니즘을 단일 원자 수준에서 근본적으로 해석할 수 있게 됐다. 물리학과 이주혁 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 3월 30일 字 게재됐다. (논문명 : Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography) 연구팀은 모든 물질은 원자들로 구성돼 있다는 원자성(atomicity)에 근거해 원자 구조 토모그래피 3차원 데이터를 시뮬레이션을 통해 생성했다. 고 각도의 데이터가 손실된 불완전한 원자 구조 토모그래피 3차원 데이터와 이상적인 원자 구조 3차원 데이터 사이의 상관관계를 학습시키기 위해 인공지능 신경망(3d-unet기반 모델)을 지도학습했다. 원자성에 기반해 학습된 인공지능 신경망은 손실된 고 각도 데이터를 성공적으로 복원함으로써 손실 웨지 문제로 인한 분해능 저하 문제를 해결했다. 이는 높은 정밀도의 3차원 표면/계면 원자 구조 규명을 가능하게 한다. 연구팀은 개발된 인공신경망 기반 전자토모그래피 기술을 이용해 실제 백금 나노입자의 3차원 표면 및 내부 구조를 단일 원자 수준에서 규명할 수 있었다. 원자 구조의 정밀도는 인공신경망 적용 전 26 pm에서 적용 후 15 pm으로 큰 폭으로 향상됐다. 연구를 주도한 양용수 교수는 "인공신경망 기반 전자토모그래피는 구성 원소, 물질의 구조/형태에 의존하지 않는 매우 일반적인 방법으로서, 전자토모그래피로 얻은 원자 구조 부피데이터에는 종류에 상관없이 바로 적용할 수 있다ˮ며 "이를 통해 많은 물질의 3차원 표면/계면 원자 구조가 정밀하게 규명되고, 표면/계면에서 일어나는 물성과 이에 연관된 메커니즘의 근본적인 이해를 바탕으로 고성능 촉매 개발 등에 응용될 것ˮ이라고 연구의 의의를 설명했다. 한편 이번 연구는 한국연구재단 개인기초연구지원사업 및 KAIST 글로벌 특이점 사업(M3I3)의 지원을 받아 수행됐다.
2021.04.05
조회수 82074
백세범 교수팀, 고등 인지 기능의 자발적 발생 원리 규명
우리 대학 바이오및뇌공학과 백세범 교수 연구팀이 학습 과정을 전혀 거치지 않은 신경망에서 고등 시각 인지 기능이 자발적으로 발생할 수 있음을 보였다고 4일 밝혔다. 이번 연구 결과는 신경망에서 상위 인지 기능을 발생시키기 위해서는 반드시 충분한 데이터 학습이 필요하다는 기존의 상식과 완전히 상반되는 것으로, 현재 통용되고 있는 인공지능의 구현 방식에 대한 근본적인 의문을 던진다. 또한 연구팀의 결과는 다양한 생물 종의 뇌에서 관측되는 선천적인 인지 기능의 발생에 대한 설명 가능한 이론을 제시할 뿐만 아니라, 뇌신경과학 연구의 가장 근본적인 질문 중 하나인 `인지 지능의 발생 및 진화'의 원리에 대한 기존과는 전혀 다른 새로운 시각을 제시한다. 연구팀은 뇌의 시각 신경망을 모사한 인공신경망 시뮬레이션을 통해, 모든 연결 가중치가 무작위로 정해지도록 초기화된 신경망이 전혀 학습을 거치지 않은 상태에서도 특정 숫자에 선택적으로 반응하는 `수량 선택성'을 자발적으로 생성함을 발견했다. 또한 이렇게 자발적으로 발생한 수량 선택적 유닛은 실제 동물의 뇌에서 발견되는 수량 선택적 뉴런들이 보이는 *`베버-페히너 법칙' 등의 주요 특성을 동일하게 따름을 확인했다. ☞ 베버-페히너 법칙(Webber-Fechner law): 자극과 감각 사이의 상대적 관계를 나타내는 심리물리학적 법칙. 인지 가능한 자극 강도 변화량은 현재 강도에 지수적으로 비례한다는 것으로 이는 인지생물학에서 기본적인 원리로 알려져 있다. 우리 대학 물리학과 김광수 석박사통합과정, 바이오및뇌공학과 장재선 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스(Science)'의 온라인 자매지 `사이언스 어드밴시스(Science Advances)' 1월 1일 字에 게재됐다. (논문명 : Visual number sense in untrained deep neural networks) 신경망에서 인지 지능의 발생에 관한 연구는 뇌인지과학과 인공지능 분야 모두에서 핵심적인 연구 주제 중 하나다. 흥미롭게도 인지 기능을 발생시키기 위해서 일반적으로 많은 양의 데이터 입력을 통한 학습 과정을 거쳐야 하는 인공신경망과 달리 동물의 뇌는 태어난 직후부터 다양한 인지 기능을 수행하는 `선천적' 인지 지능을 가지고 있는 것이 관찰돼왔다. 이러한 차이점은 생물학적 지능의 발생과 진화의 원리를 이해하는 데 결정적인 역할을 하고, 현재 개발된 인공지능과의 차이점을 보여주는 핵심적인 단서를 제공할 것으로 기대되고 있으나 이러한 인지 기능이 어떻게 자발적으로 발생하는지는 아직 명확하게 알려진 바가 없었다. 이에 연구팀은 학습을 거치지 않은 신경망의 초기 상태에서 나타나는 단순한 물리적 구조 특성이 다양한 인지 기능을 발생시킬 수 있을 것이라 예상했다. 이를 확인하기 위해 수행한 심층신경망 시뮬레이션 연구를 통해 모든 연결 가중치가 무작위로 초기화된 신경망에서도 `계층 구조'와 무작위적 피드 포워드 연결만 형성된다면 특정 수량에 선택적으로 강한 반응을 보이는 신경망 유닛들이 자발적으로 생성됨을 확인했다. 이러한 신경망 유닛들은 실제 뇌에서 발견되는 수량 선택적 신경세포의 주요한 성질들과 유사한 특성을 보였다. 이 결과는 생물학적 뇌에서 생애 초기에 발견되는 선천적인 숫자 선택성 역시 동일한 원리에 의해 발생할 가능성을 시사한다. 이러한 결과는 기초적인 인지 기능이 신경망의 초기 구조가 갖춰진 시점에 이미 존재하고 이후 다양한 학습을 통해 조절될 수 있음을 보여주며, 뇌신경과학의 중요한 화두 중 하나인 `지능의 선천적 혹은 후천적(nature vs. nurture) 형성'에 관해 매우 중요한 단서를 제공하는 발견으로 평가된다. 연구팀의 결과는 학습과 훈련에 의존해 대부분의 뇌 기능이 발생한다는 기존의 시각을 탈피해, 선천적이고 자발적으로 발생하는 뇌 기능에 대한 보다 심도 있는 연구가 필요하다는 사실을 시사한다. 한편으로 현재의 인공지능 구현 기법들과 완전히 다른 인공지능 구현 원리를 제시할 수 있는 생물학적 뇌 기반 이론을 제시한다. 백세범 교수는 "뇌 신경망 연구를 통해 얻은 아이디어를 인공신경망 연구에 적용하고, 그 결과를 다시 뇌과학적 원리를 발견하는 데 사용해 중요한 통찰을 가능하게 한 의미있는 연구ˮ라며 "뇌신경과학과 뇌공학 분야 모두에서 가장 중요한 질문 중 하나라고 할 수 있는 인지 지능의 기원에 대한 이해의 전환점을 가져올 것으로 기대된다ˮ라고 언급했다. 한편 이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2021.01.04
조회수 60108
바이오및뇌공학과 김진우 학사과정, 국제 학술지 표지 논문 게재
우리 대학 바이오및뇌공학과 백세범 교수 연구팀에 소속된 대학생(학사과정)의 연구논문이 뇌신경과학 분야 저명 국제학술지에 게재됐음은 물론 해당 저널의 표지 논문으로 선정돼 화제가 되고 있다. 바이오및뇌공학과 4학년에 재학 중인 김진우 학생(22세)이 백세범 교수의 지도하에 수행한 학부생 개별연구 프로젝트에서 두뇌의 *시각 피질에서 관측되는 주요 신경망 연결 구조 중 하나인 '장거리 수평 연결(Long-range horizontal connection)'이 두뇌 발생 초기에 형성되는 원리를 규명한 연구결과가 뇌신경과학 분야 '저널 오브 뉴로사이언스'의 표지 논문으로 선정됐다. ☞ 시각 피질(Visual Cortex): 두뇌에서 시각 정보처리를 담당하는 영역. 망막 신경망 영역을 통해 입력받은 외부 공간에 대한 시각 정보를 처리하여 인지 과정을 구현하는 기능성 신경망 구조로 이루어져 있다. 연구팀은 이번 연구를 통해 어린 포유류 동물이 눈을 뜨기 전, 시각적인 학습이 전혀 이뤄지지 않은 상태, 즉 두뇌 발생 초기 상태에서 *망막 내 신경세포들의 자발적인 활동으로부터 발생하는 '*망막 파동'이 두뇌 시각 피질의 신경세포들을 특정한 공간적 패턴으로 자극하고, 이를 통해 시각 정보 처리에서 중요한 역할을 담당하는 '장거리 수평 연결'을 형성한다는 사실을 밝혀냈다. ☞ 망막(Retina): 눈의 안쪽을 둘러싸고 있는 신경세포의 얇은 층으로, 시각 시스템에서 외부 시각 정보가 신경세포 신호로 처음 변환되는 영역 ☞ 망막 파동(Retinal Wave): 포유류의 초기 발달과정의 망막에서 나타나는, 신경절 세포들이 차례대로 발화하며 파도와 같은 파형으로 활동패턴이 확산하는 현상 김진우 학생과 송민 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 뇌신경과학 분야의 대표 국제학술지인 '저널 오브 뉴로사이언스 (Journal of Neuroscience)' 19일 字에 게재되는 한편 해당 호 표지 논문으로 선정됐다. (논문명: Spontaneous retinal waves generate long-range horizontal connectivity in visual cortex) 포유류의 시각 피질에서는 신경세포들이 외부 시각 자극의 특정 요소에만 선택적으로 반응하는 신경 선택성(neural tuning)을 보이는데, 비슷한 신경 선택성을 가지는 세포들은 공간적으로 멀리 떨어져 있어도 '장거리 수평 연결'이라는 특별한 상호 연결망 회로로 이어져 있다. 이처럼 특이한 신경망 연결 구조는 포유류의 시각 인지기능에 중요한 역할을 하는 것으로 생각돼왔지만, 이러한 회로가 뇌의 발생 초기 단계에서 외부 시각 정보에 의한 자극 없이 어떻게 자발적으로 발생하는지는 아직까진 명확히 알려진 바가 없었다. 백 교수 연구팀은 망막 내 신경망 구조를 모델화하고, 이를 통해 망막 파동의 패턴이 시각 피질 내 구조 형성에 미치는 영향을 시뮬레이션했다. 그 결과, 연구팀은 망막의 신경절에서 자발적으로 발생하는 망막 파동이 시각 피질로 전달되는 과정에서 형성되는 선택적 활동 패턴이 시각 피질 내의 장거리 연결 구조를 형성함을 밝혀냈고, 이 모델을 기반으로 동물실험에서 관측되는 초기 시각 피질의 특징적인 신경 활동 패턴을 재현하는 데 성공했다. 이 연구를 통해 연구팀은 동물실험에서 관측된 시각 피질의 장거리 수평 연결이 형성되는 과정과 주요 인자들을 정확히 확인했다. 이 결과를 기반으로 연구팀은 뇌 피질 내에서의 활동 패턴이 피질 구조를 결정한다는 기존 모델의 오류를 지적하는 한편, 망막에서 전달된 활동 패턴이 시각 피질의 구조를 형성하는 데 결정적인 영향을 끼친다는 새로운 발생 모델을 제시했다. 백세범 교수는 "외부의 정보를 학습할 수 없는 감각 신경망의 발생 초기 단계에서, 감각기관 말단의 신경 활동 패턴이 뇌 신경망의 주요 구조 형성에 결정적으로 기여한다는 새로운 뇌 구조 발생 모델을 제시한 연구라는 점에서 의미가 크다ˮ고 설명했다. 김진우 학생은 "이번 연구는 뇌가 외부 세계에 대한 감각 정보를 처음으로 경험하기 이전에 어떻게 비 지도적으로 학습을 하는지에 대해, 알려진 실험 데이터에 기반한 명확한 이론적 설명을 제공한다는 점에서 흥미롭다ˮ고 말했다. 그는 이어 "이와 같은 방향의 연구가 향후 데이터 학습에 의존하지 않는 새로운 형태의 인공신경망 연구에도 큰 도움이 될 것으로 기대가 된다ˮ고 덧붙였다. 이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2020.08.23
조회수 26222
뼈의 단단함을 모사해 광학적 특성을 매우 증대시킨 신물질 개발
우리 연구진이 동물 뼈가 그의 구성성분인 단백질보다 수천 배 단단할 수 있는 생체역학적 원리를 모사해 광학적 비선형성이 기존 물질 대비 수천에서 수십억 배나 큰 신물질을 개발했다. 비선형성이란 입력값과 출력값이 비례관계에 있지 않은 성질인데 광학에서 큰 비선형성을 확보할 경우, 빛의 속도로 동작하는 인공 신경망이나 초고속 통신용 광 스위치 등의 광소자를 구현할 수 있다. 우리 대학 신소재공학과 신종화 교수 연구팀은 벽돌을 엇갈려 담을 쌓는 것과 같이 나노 금속판을 3차원 공간에서 엇갈리게 배열하면 물질의 광학적 비선형성이 매우 크게 증대될 수 있음을 확인했다. 신종화 교수 연구팀이 이번 연구를 통해 발견한 비선형성 증대원리는 광학뿐만 아니라 역학, 전자기학, 유체역학, 열역학 등 다양한 물리 분야에도 적용이 가능하다. KAIST 신소재공학과 장태용 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `커뮤니케이션즈 피직스(Communications Physics)' 5월 8일 字 온라인판에 게재됐다. (논문명 : Mimicking bio-mechanical principles in photonic metamaterials for giant broadband nonlinearity). 영화 스타워즈의 광선 검처럼 잘 제어된 빛을 만드는 것이나 빛만으로 구동되는 광컴퓨터를 만드는 것은 비선형성을 이용할 때 가능한데, 아직 실현되지 않고 있는 이유는 강한 비선형성을 가진 소재가 없기 때문이다. 자연 물질의 작은 비선형성으로도 초고속 광소자, 3차원 광식각 공정, 초 고분해능 현미경 등의 기술들이 구현될 수 있지만, 이들은 크고 비싼 고출력 레이저를 사용하거나, 큰 장비 혹은 소자가 필요하다는 공통적인 한계를 지니고 있다. 이를 극복하기 위해 기존에는 미세한 인공 구조체를 설계해서 그 틈에 빛을 모으는 방법이 많이 시도돼왔다. 비선형성은 빛의 세기에 비례하기 때문에 이 같은 방법을 이용하면 같은 부피의 자연 물질 대비 작은 빛의 세기로 비슷한 수준의 비선형 효과를 얻을 수 있다. 그러나 최대로 얻을 수 있는 비선형 효과의 크기는 결국 달라지지 않기 때문에 응용하는데 한계가 있다. 신 교수 연구팀은 물질의 근본적인 전기적 특성인 유전분극(물체가 전기를 띠는 현상)을 매우 크게 조절하는 방법을 고안했다. 나노 금속판이 3차원에서 엇갈려 배열돼있으면 국소분극이 공간을 촘촘하게 채우면서, 마치 시냇물이 모여서 강이 되듯, 전체적으로 매우 큰 분극을 만들게 된다는 점에 착안했다. 빛의 세기가 아닌 분극의 크기를 조절해 큰 비선형성 및 비선형 효과를 얻는 방법은 이번 신 교수 연구팀이 이번 연구에서 처음 제시한 개념인데 비선형 광학이 60년 동안 달성하고자 했던 고효율의 작은 비선형 광소자 개발에 한 발 더 다가선 것으로 평가되고 있다. 연구팀은 이번에 고안한 메타물질(자연계에 존재하지 않는 특성을 구현하기 위해 매우 작은 크기로 만든 인공 원자의 주기적인 배열로 이루어진 물질)이 시간적으로 짧은 광신호에 대해서도 큰 비선형 효과를 얻을 수 있음을 통해 기존보다 효율적이면서도 더 빠른 광소자 구현이 가능함을 확인했다. 이 연구에서 활용된 소자는 비슷한 신호 시간을 가지는 기존 소자보다는 에너지 효율이 약 8배나 뛰어나고 비슷한 에너지 효율을 가지는 기존 소자보다도 신호 시간은 약 10배 정도 짧다. 즉, 신호의 시간과 소요되는 에너지의 곱으로 표현되는 성능 기준으로 보면, 이 소자는 현재까지 개발된 광소자 중 가장 우수한 성능을 보였다. 연구팀은 또 고안한 메타물질이 광학 이외의 물리 현상에도 적용될 수 있음을 입증했다. 연구팀은 단백질의 단단함 대비 뼈의 단단함을 설명하는 모델이 이번 연구에서 고안한 광학적 비선형성 증대원리와 수학적으로 매우 유사함을 증명했다. 따라서 유체역학에서의 물질전달률, 열역학에서의 열전도율 등의 증대에도 신 교수 연구팀의 연구방법이 적용될 수 있을 것으로 기대된다. 신종화 교수는 "올해는 지난 1960년 레이저가 발명된 지 60년이 되는 해로, 레이저의 발명이 `센 빛'을 최초로 만든 것이라면 이번 연구성과는 `센 물질', 즉 광대역에서 매우 큰 유전분극 증대율을 보이는 물질을 최초로 발견하고 증명한 연구라는 점에서 의미가 크다ˮ며 "기계학습을 위한 초고속 인공 신경망 등 다양한 광 응용 소자의 구현을 위해 후속 연구를 진행 하고 있다ˮ고 말했다. 한편 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
2020.06.09
조회수 14915
인공신경망 기반 핵융합플라즈마 자기장 재구성 기술 개발
우리 대학 원자력및양자공학과 김영철 교수 연구팀(핵융합및플라즈마연구실)이 국가핵융합연구소, ㈜모비스 연구진과 공동으로 인공신경망 기반 핵융합플라즈마 자기장의 재구성 기법을 개발했다. 김 교수 연구팀은 비실시간으로 엄밀히 계산된 자기장 구조와의 오차를 최소화함과 동시에 실시간으로 해당 정보를 제공할 수 있는 인공신경망을 개발해 핵융합플라즈마 제어 성능을 높이는 데 기여할 것으로 기대된다. 정세민 박사과정이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘뉴클리어 퓨전(Nuclear Fusion)’ 2019년 12월 3일 자에 게재됐다. (논문명: Deep neural network Grad-Shafranov solver constrained with measured magnetic signals) 핵융합 연구에 널리 사용되는 토카막은 실시간으로 재구성된 자기장 구조를 바탕으로 초고온(약 1억도) 핵융합 플라즈마의 운전과 제어를 가능하게 만든다. 따라서 재구성된 자기장 구조의 정확도는 토카막 운전 성능과 밀접한 관계가 있다. 2계 비선형 미분방정식을 따르는 토카막의 내부 자기장은 일반적으로 수치해석 기법과 외부에서 측정된 자기장 값을 이용하여 재구성된다. 실시간과 비실시간 재구성 기법이 존재하며, 비실시간 기법의 정확도가 실시간보다 높다고 알려졌지만 이름에서도 확인할 수 있듯 실시간 운전에 활용하기 어렵다는 아쉬움이 있다. 연구팀은 비실시간 기법의 정확도를 유지하되 실시간으로 해당 정보를 확보할 수 있는 알고리즘을 인공신경망을 활용해 개발했다. 측정된 외부 자기장과 토카막 내부 공간 정보를 입력값으로 하고 비실시간 기법을 활용해 재구성된 자기장을 출력값으로 신경망을 훈련했다. 또한, 신경망의 출력값은 앞서 언급된 2계 비선형 미분방정식을 만족해야 하므로 이 역시 신경망의 훈련 조건으로 둬 단순한 자기장 재구성을 넘어서 해당 문제의 지배방정식 역시 만족하도록 했다. 연구팀이 개발한 기법은 그 성능의 우수성과 더불어 토카막의 고성능 운전 달성에 큰 영향을 미칠 것을 인정받았다. 세계적으로 활발히 진행 중인 토카막 연구에 가장 기초적이며 중추적인 토카막 내부 자기장 정보를 최소화된 오차 내에서 실시간으로 제공할 수 있다는 점에서 토카막을 활용한 핵융합발전의 가능성을 제고할 수 있을 것으로 기대된다. 이번 연구는 과학기술정보통신부 한국연구재단의 핵융합기초연구사업과 개인연구사업(신진연구) 및 기관고유과제 KAI-NEET의 지원을 받아 수행됐다. 타기관 참여연구진 국가핵융합연구소(공저자순): 박준교, 이상곤, 한현선, 김현석 ㈜모비스(공저자순): 이근호, 권대호 □ 그림 설명 그림1. 토카막 내부 재구성된 자기장 구조
2020.02.05
조회수 10425
김지한 교수, 인공지능 이용한 다공성 물질 역설계 기술 개발
〈 김지한 교수 연구팀 〉 우리 대학 생명화학공학과 김지한 교수 연구팀이 인공지능을 활용해 원하는 물성의 다공성 물질을 역설계하는 방법을 개발했다. 김백준, 이상원 박사과정이 공동 1 저자로 참여한 이번 연구결과는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 1월 3일 자 온라인판에 게재됐다. (논문명 : Inverse Design of Porous Materials Using Artificial Neural Networks) 다공성 물질은 넓은 표면적과 풍부한 내부 공극(孔劇)을 가지고 있어 촉매, 기체 저장 및 분리, 센서, 약물 전달 등 다양한 분야에서 활용되고 있다. 기존에는 이러한 다공성 물질을 개발하기 위해 반복적인 실험을 통한 시행착오를 거치면서 시간과 비용이 많이 소모됐다. 이러한 낭비를 줄이기 위해 가상 구조를 스크리닝해 다공성 물질 개발을 가속화 하려는 시도들이 있었지만, 데이터베이스에 존재하지 않는 새로운 구조를 발견하지 못한다는 문제가 있었다. 최근에는 인공지능 기반의 역설계로 원하는 물성을 가진 물질을 개발하는 연구가 주목받고 있지만, 지금까지의 연구들은 단순한 소형 분자들 위주로 적용되고 있으며 복잡한 다공성 물질을 설계하는 연구는 보고되지 않았다. 김지한 교수 연구팀은 인공지능 기술과 분자 시뮬레이션 기술을 활용해 다공성 물질의 한 종류인 제올라이트 구조를 설계하는 방법을 개발했다. 연구팀은 인공지능 생성모델인 적대적 생성 신경망(GAN, Generative Adversarial Network)과 기존 분자 시뮬레이션에서 활용되는 3차원 그리드 데이터를 활용해 복잡한 다공성 물질의 특성을 인공지능이 학습하고 생성할 수 있도록 구조를 개발했다. 개발된 인공신경망 생성모델은 3차원 그리드로 이루어진 구조 정보와 흡착 물성 데이터를 같이 학습하게 되며, 학습 과정 안에서 흡착 물성을 빠르게 계산할 수 있다. 이를 통해 에너지 저장 소재의 특성을 효율적으로 학습할 수 있음을 증명했다. 또한, 연구팀은 인공지능 학습 과정에서 기존의 알려진 제올라이트 구조 중 일부를 제외해 학습시켰고, 그 결과 인공지능이 학습하지 않았던 구조들도 생성할 수 있음을 확인했다. 김지한 교수는“인공지능을 이용해 다공성 물질을 설계한 최초의 사례이다”라며 “기체 흡착 용도에 국한된 것이 아니라 다른 물성에도 쉽게 적용할 수 있어 촉매, 분리, 센서 등 다른 분야의 물질 개발에도 활용될 것으로 기대한다”라고 말했다. 이번 연구는 BK21, 한국연구재단 중견 연구자 지원 사업 그리고 에너지 클라우드 사업단의 지원을 받아 수행됐다. □ 그림 설명 그림 1. 인공지능 기반 다공성 물질(제올라이트) 생성 개요도
2020.01.07
조회수 12806
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2