본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%B0%A8%EC%84%B8%EB%8C%80
최신순
조회순
1700% 뛰어난 신축성, 고성능 웨어러블 열전소자 개발
열 에너지를 전기로 전환시키는 열전 소자는 버려지는 폐열을 활용할 수 있어 지속 가능하고 친환경적인 에너지 플랫폼으로 주목받고 있다. 한국 연구진이 우수한 신축성과 최고 수준 성능을 보이는 열전소자를 개발하여 웨어러블 소자를 위한 체온을 이용한 차세대 에너지 공급원으로의 가능성을 한층 더 앞당겼다. 우리 대학 생명화학공학과 문홍철 교수팀이 POSTECH 화학공학과 박태호 교수팀과 공동연구를 통해 열역학적 평형 조절을 통한 기존 N형 열전갈바닉 소자*성능 한계 극복 기술을 구현했다고 14일 밝혔다. *열전갈바닉 소자: 생성되는 전자 흐름의 방향에 따라 N형과 P형으로 구분 가능 네거티브(negative)를 의미하는 N형은 전자가 저온에서 고온 쪽으로, 포지티브(positive)를 의미하는 P형은 고온에서 저온 쪽으로 전자가 이동 열전 소자의 성능을 최대한 끌어올리기 위해 P형과 N형 소자의 통합이 필수적이다. 최근 우수한 성능을 지닌 P형 열전 소자에 대한 연구는 많이 진행되었지만 N형 열전 소자는 상대적으로 연구가 부족했다. 그마저도 N형 열전 소자는 P형에 비해 성능이 떨어져 통합형 소자 구현 시 성능 밸런스가 맞지 않아 성능 극대화에 걸림돌이 되었다. 이번 연구에서 연구팀은 스스로 산도(pH) 조절이 가능한 젤 소재를 개발하여 이온을 주요 전하운반체로 사용한 이온성 열전 소자 중 한 종류인 열전갈바닉 소자를 구현하였다. 연구팀이 개발한 젤 소재를 활용하여 하이드로퀴논* 레독스 반응**의 열역학적 평형을 효과적으로 제어할 수 있었고, 이를 통하여 고성능의 N형 열전 소자 특성을 구현하였다. *하이드로퀴논: 열 에너지를 전기 에너지로 전환하는데 사용된 전기화학 반응물 **레독스 반응: 산화-환원 반응 또한 개발된 젤 소재는 가역적 가교 결합을 기반으로 약 1700%의 우수한 신축성과 함께, 상온에서도 20분 이내에 99% 이상의 높은 자가회복 성능을 구현할 수 있게 설계되었다. 본 연구에서 개발된 N형 이온성 열전 소자는 4.29 mV K-1의 높은 열전력 (thermopower)을 달성하였으며, 1.05% 의 매우 높은 카르노 상대 효율* (Carnot relative efficiency) 또한 나타내었다. 이러한 우수한 성능을 바탕으로 손목에 부착된 소자는 몸에서 지속적으로 유지되는 체온과 주변 환경의 온도 차이를 이용하여 효과적인 에너지 생산에 성공하였다. *카르노 상대 효율: 이상적인 카르노 기관의 효율 대비 열전갈바닉 소자의 실제 열전환 효율 문홍철 교수는 “이번 연구 성과는 기존 N형 이온성 열전 시스템이 갖고 있던 한계를 극복할 수 있는 기술 개발에 해당한다”며 “이는 체온을 활용한 전원 시스템 실용화를 앞당기고, 웨어러블 소자 구동을 위한 핵심 요소 기술이 될 것이라 기대”한다고 밝혔다. 이번 연구는 에너지 분야 국제 학술지인 ‘Energy & Environmental Science’ 2024년 11월7일 표지논문(Outside Front Cover)으로 발표되었다. ※ 논문명: Realizing a high-performance n-type thermogalvanic cell by tailoring thermodynamic equilibrium 한편 이번 연구는 한국연구재단의 나노 및 소재기술개발사업 (나노커넥트) 및 중견연구자지원사업 지원을 받아 수행됐다.
2024.11.14
조회수 747
경기욱 교수 연구팀, 3차원으로 변하는 모핑 구동기 개발
우리 대학 기계공학과 경기욱 교수 연구팀이 다양한 3차원 형상으로 빠르게 변화하는 모핑 구동기를 개발했다. 현대 기술은 2차원 화면을 넘어 3차원 형상을 통해 정보를 전달하는 새로운 방식을 탐구하고 있다. 그러나 3차원 형상을 빠르게 표현하고 재구성하는 것은 도전적인 과제이다. 이에 대한 해답으로, 최근 연구팀은 전기 활성 고분자의 일종인 PVC 젤, 유전성 유체, 패턴화된 전극으로 구성된 새로운 모핑 구동기를 선보였다. 연구팀의 모핑 구동기는 전기유압식 구동(electrohydraulic actuation) 원리를 이용한다. 전극과 PVC 젤 복합체 사이에 전기장을 가하면 PVC 젤 복합체가 전극에 달라붙는 정전기적 지핑(electrostatic zipping)이 발생한다. 정전기적 지핑을 국부적으로 제어함으로써 유체의 흐름을 제어할 수 있으며, 이를 통해 다양한 형상을 표현할 수 있다. 연구팀이 개발한 모핑 구동기는 1.5 mm의 얇은 두께와, 7 g의 가벼운 무게를 가지면서도 최대 2.5 mm의 수직 변위와 2.0 N의 힘을 출력할 수 있으며, 약 0.045 초 만에 형상을 표현할 수 있다. 또한 기존의 모핑 구동기가 제공할 수 없었던 풍부한 햅틱 피드백을 제공하며, 모양 변화 특성을 활용하여 표면에서 고속으로 물체를 이동시킬 수 있다. 해당 연구는 모핑 구동기의 개발을 통해 사람과 기술이 상호작용하는 새로운 방식을 제안하였으며, 이는 차세대 디스플레이 및 로보틱 인터페이스 등 다양한 방식으로 활용될 것으로 기대된다. 장승연 박사과정 학생이 제1 저자로 참여하고 ETRI와 공동으로 진행한 이번 연구 결과는 국제학술지 ‘사이언스 어드밴시스(Science Advances)’Vol.10(39)에 게재 및 Headline article로 소개되었다. (논문명: Dynamically reconfigurable shape-morphing and tactile display via hydraulically coupled mergeable and splittable PVC gel actuator) 또한 본 연구는 지난 8월 한국햅틱스학술대회에서 최우수논문상을 수상했다. 한편 본 연구는 국가과학기술연구회(CRC23021-000), 삼성미래기술육성재단(SRFC-IT2102-04), 한국전자통신연구원(24YB1700)의 지원으로 수행됐다.
2024.09.30
조회수 1547
애물단지 열을 컴퓨팅에 활용한다
기존의 반도체 소자에서 열 발생은 피할 수 없는데, 이는 에너지 소모량을 증가시키고, 반도체의 정상적인 동작을 방해하기 때문에 문제가 되며, 이에 열 발생을 최소화하는 것이 기존 반도체 기술의 관건이었다. KAIST 연구진이 이렇게 애물단지로 여겨지던 열을 오히려 컴퓨팅에 활용하는 방법을 고안하여 화제다. 우리 대학 신소재공학과 김경민 교수 연구팀이 산화물 반도체의 열-전기 상호작용에 기반하는 열 컴퓨팅(Thermal computing) 기술 개발에 성공했다고 25일 밝혔다. 연구팀은 전기-열 상호작용이 강한 모트 전이 (Mott transition) 반도체*를 활용했으며, 이 반도체 소자에 열 저장 및 열전달 기능을 최적화해 열을 이용하는 컴퓨팅을 구현했다. 이렇게 개발된 열 컴퓨팅 기술은 기존의 CPU, GPU와 같은 디지털 프로세서보다 1,000,000(백만)분의 1 수준의 에너지만으로 경로 찾기 등과 같은 복잡한 최적화 문제를 풀 수 있었다. *모트 전이 반도체: 온도에 따라 전기적 특성이 부도체에서 도체로 변하는 전기-열 상호작용이 강한 반도체 소자 본 연구에서는 낮은 열전도도와 높은 비열을 가지고 있는 폴리이미드* 기판 상에 모트 전이 반도체 소자를 제작하여, 모트 전이 반도체 소자에서 발생한 열이 폴리이미드 기판에 저장이 될 수 있도록 하였다. 이렇게 저장된 열은 일정 시간 동안 유지되며 시간적 정보 역할을 하였다. 또한, 이 열은 공간적으로도 이웃 소자로 전파되게 되는데, 이는 공간적 정보 역할을 하였다. 이처럼 열 정보를 시공간적으로 활용할 수 있었으며, 이를 활용하여 컴퓨팅을 수행할 수 있었다. *폴리이미드: 우수한 기계적 강도, 유연성, 내열성을 가진 폴리머 소재. 디스플레이, 태양전지, 메모리 등에 다양하게 활용됨 김경민 교수는 “단순히 전기 신호만 사용하던 컴퓨팅 기술은 이제 한계에 이르렀으며, 열은 저장할 수 있고, 전달할 수 있는 특성이 있어 이를 잘 활용할 수만 있다면 컴퓨팅에서 매우 유용하게 쓰일 수 있다”며 “이번 연구의 의미는 기존에는 버려지던 열을 컴퓨팅에 활용할 수 있다는 개념을 최초로 제안한 데 있다”고 연구의 의미에 대해서 말했다. 또한 “열 컴퓨팅 기술을 활용하면 뉴런과 같은 신경계의 복잡한 신호도 매우 간단히 구현할 수 있으며, 또한 고차원의 최적화 문제를 기존의 반도체 기술을 바탕으로 효과적으로 해결할 수 있어 양자 컴퓨팅의 현실적인 대안이 될 수 있다”고 기술의 장점을 설명했다. 그리고“이번 연구는 미국의 샌디아 국립 연구소(Sandia National Laboratory)와의 공동 연구로 검증된 결과”라는 점을 강조했다. 이번 연구는 신소재공학과 김광민 박사과정, 인재현 박사, 이영현 박사과정 학생이 공동 제1 저자로 참여했으며 재료 분야 최고 권위의 국제 학술지 `네이처 머티리얼즈(Nature Materials, Impact factor: 41.2)'에 6월 18일 字에 게재됐다. (논문명 : Mott Neurons with Dual Thermal Dynamics for Spatiotemporal Computing). 한편 이번 연구는 한국연구재단, 나노종합기술원, KAIST의 지원을 받아 수행됐다.
2024.06.25
조회수 3049
차세대 뉴로모픽 컴퓨팅 신뢰성 문제를 풀다
최근 인간의 뇌를 모방해 하드웨어 기반으로 인공지능 연산을 구현하는 뉴로모픽 컴퓨팅 기술이 최근 주목받고 있다. 뉴로모픽 컴퓨팅의 단위 소자로 활용되는 멤리스터(전도성 변화 소자)는 저전력, 고집적, 고효율 등의 장점이 있지만 멤리스터로 대용량 뉴로모픽 컴퓨팅 시스템을 구현하는데 불규칙한 소자 특성으로 인한 신뢰성 문제가 발견되었다. 우리 연구진이 뉴로모픽 컴퓨팅의 상용화를 앞당길 신뢰성 향상 기술을 개발하여 화제다. 우리 대학 전기및전자공학부 최신현 교수 연구팀이 한양대학교 연구진과의 공동 연구를 통해 차세대 메모리 소자의 신뢰성과 성능을 높일 수 있는 이종원자가 이온* 도핑 방법을 개발했다고 21일 밝혔다. * 이종원자가 이온(Aliovalent ion): 원래 존재하던 원자와 다른 원자가(공유 결합의 척도, valance)를 갖는 이온을 말함 공동연구팀은 기존 차세대 메모리 소자의 가장 큰 문제인 불규칙한 소자 특성 변화 문제를 개선하기 위해, 이종원자가 이온을 도핑하는 방식으로 소자의 균일성과 성능을 향상할 수 있다는 사실을 실험과 원자 수준의 시뮬레이션을 통해 원리를 규명했다. 공동 연구팀은 이러한 불규칙한 소자 신뢰성 문제를 해결하기 위해 이종원자가 할라이드(halide) 이온을 산화물 층 내에 적절히 주입하는 방법이 소자의 신뢰성과 성능을 향상할 수 있음을 보고했다. 연구팀은 이러한 방법으로 소자 동작의 균일성, 동작 속도, 그리고 성능이 증대됨을 실험적으로 확인했다. 연구팀은 또한, 원자 단위 시뮬레이션 분석을 통해 결정질과 비결정질 환경에서 모두 실험적으로 확인한 결과와 일치하는 소자 성능 개선 효과가 나타남을 보고했다. 그 과정에서 도핑된 이종원자가 이온이 근처 산소 빈자리(oxygen vacancy)를 끌어당겨 안정적인 소자 동작을 가능하게 하고, 이온 근처 공간을 넓혀 빠른 소자 동작을 가능하게 하는 원리를 밝혀냈다. 최신현 교수는 "이번에 개발한 이종원자가 이온 도핑 방법은 뉴로모픽 소자의 신뢰성과 성능을 획기적으로 높이는 방법으로서, 차세대 멤리스터 기반 뉴로모픽 컴퓨팅의 상용화에 기여할 수 있고, 밝혀낸 성능 향상 원리를 다양한 반도체 소자들에 응용할 수 있을 것이다ˮ 고 밝혔다. 전기및전자공학부 배종민 석사과정, 한양대학교 권초아 박사후연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)' 6월호에 출판됐다. (논문명 : Tunable ion energy barrier modulation through aliovalent halide doping for reliable and dynamic memristive neuromorphic systems) 한편 이번 연구는 한국연구재단 신소자원천기술개발사업, 신재료PIM소자사업, 우수신진연구사업, 나노종합기술원 반도체공정기반 나노메디컬 디바이스개발 사업, 그리고 국가슈퍼컴퓨팅센터 혁신지원프로그램의 지원을 받아 수행됐다.
2024.06.21
조회수 3480
수 초 만에도 급속충전 가능 소듐전지 개발
소듐(Na)은 리튬(Li) 대비 지구상에 500배 이상으로 존재하기 때문에 이를 활용한 소듐 이온 배터리는 최근 큰 주목을 받고 있다. 그러나 리튬 이온 배터리에 비해 낮은 출력, 제한된 저장 특성, 긴 충전 시간 등의 근본적인 한계점이 있어 이를 극복하는 차세대 에너지 저장 소재 개발이 필요하다. 우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 급속 충전이 가능한 고에너지·고출력 하이브리드 소듐 이온 전지를 개발했다고 11일 밝혔다. 최근 활발하게 연구가 진행되고 있는 하이브리드 에너지 저장 시스템은 배터리용 음극과 축전기용 양극을 결합해 높은 저장 용량과 빠른 충·방전 속도를 모두 지닐 수 있는 장점을 가지고 있다. 이는 기존 소듐 이온 배터리의 한계를 극복해 리튬이온 배터리를 대체할 수 있는 차세대 에너지 저장 장치로 주목받고 있다. 하지만 고에너지 및 고출력 밀도의 하이브리드 전지를 구현하기 위해서 배터리용 음극의 상대적으로 느린 에너지 저장 속도를 향상해야 하는 동시에 음극에 비해 상대적으로 낮은 용량을 갖는 축전기용 양극재의 에너지 저장 용량을 끌어 올려야 한다. 이에 강 교수 연구팀은 두 가지 서로 다른 금속-유기 골격체를 활용해 하이브리드 전지에 최적화된 전극 소재의 합성법을 제시했다. 우선 금속-유기 골격체에서 기인한 다공성 탄소 소재에 미세한 활물질을 함유해 속도 특성이 향상된 음극 소재를 개발했다. 고용량 양극 소재를 합성했고, 이를 조합해 양극 간의 에너지 저장 속도 특성의 차이를 최소화하면서도 용량 균형을 최적화한 소듐 이온 에너지 저장 시스템을 개발했다. 연구팀은 개발된 음극과 양극을 완전셀로 구성해 고성능 하이브리드 소듐이온 에너지 저장 소자를 구현했다. 하이브리드 소듐 이온 에너지 저장 소자는 기존 상용화된 리튬이온 배터리를 뛰어넘는 에너지 밀도와 축전기의 출력 밀도 특성을 모두 가짐을 확인했으며, 차세대 에너지 저장 장치로 수 초에서 수 분 만에 급속 충전이 가능해 전기 자동차, 스마트 전자기기, 항공 장치 등에 적용할 수 있을 것으로 예상된다. 강 교수는 "전극 기준으로 높은 에너지 밀도(247 Wh/kg)를 가지며, 고출력 밀도(34,748 W/kg)에 의한 급속 충전이 가능한 하이브리드 소듐 이온 에너지 저장 소자는 현 에너지 저장시스템의 한계를 극복할 수 있는 새로운 돌파구가 될 것이다ˮ라며 "전기 자동차를 포함한 모든 전자기기의 활용 범위를 확대해 적용될 수 있을 것이다ˮ고 말했다. 신소재공학과 최종휘 박사과정과 김동원 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 에너지 저장 소재 분야의 국제 학술지 `에너지 스토리지 머터리얼스(Energy Storage Materials)'에 3월 29일 字 게재됐다. (논문명: Low-crystallinity conductive multivalence iron sulfide-embedded S-doped anode and high-surface area O-doped cathode of 3D porous N-rich graphitic carbon frameworks for high-performance sodium-ion hybrid energy storages) 한편 이번 연구는 과학기술정보통신부와 한국연구재단의 나노 및 소재기술개발사업 미래기술연구실의 지원을 받아 수행됐다.
2024.04.11
조회수 4881
차세대 반도체 솔리톤 안정화 기술 최초 개발
초고속 초저전력 차세대 반도체 기술을 구현할 스핀트로닉스 기술을 한 단계 성장시키는 원동력으로 위상적 솔리톤이라는 구조체를 이용해 정보를 저장하고 전송할 수 있는 초고속 비휘발성 메모리 소자 기술이 개발되었다. 우리 대학 물리학과 김세권 교수 연구팀이 기초과학연구원 복잡계 이론물리 연구단(PCS-IBS) 김경민 박사팀, 한양대학교 물리학과 박문집 교수팀과의 공동 연구로 뒤틀림 자성체*를 이용해 위상적 솔리톤을 안정화시킬 수 있는 기술을 세계 최초로 개발해 물리 및 화학 분야 세계적인 학술지 `나노 레터스(Nano Letters)'에 게재했다고 20일 밝혔다. *자성체: 자성을 띄는 여러 물체를 통칭함 스핀트로닉스는 성장 한계에 다다른 기존 반도체 기술의 근본적인 문제점들을 전자의 양자적 성질인 스핀을 이용해 해결하고자 하는 연구 분야다. 이는 기존 정보처리 기술을 혁신적으로 발전시켜 초고속 초저전력 차세대 반도체 기술을 구현할 것으로 기대되고 있다. 한편 솔리톤이란 특정한 구조가 주변과 상호작용을 통해 사라지지 않고 계속 유지하는 현상을 말하며, 위상적 솔리톤이라는 구조체를 이용해 정보를 저장하고 전송할 수 있는 초고속 비휘발성 메모리 소자 개발이 전 세계 각국 학계와 산업계에서 경쟁적으로 연구가 이뤄지고 있다. 이전까지 차세대 메모리 소자 개발을 위해 연구됐던 위상적 솔리톤으로는 스핀 구조체로 자연계에 존재하는 다양한 자성체 중 수직 이방성*이라고 하는 특수한 성질을 갖는 자성체에서만 안정하다고 알려져, 물질 선택의 제한으로 인해 솔리톤 기반 정보처리 기술 발전에 어려움이 있었다. * 수직 이방성: 자화 방향이 자성체에 수직한 방향을 선호하게 되는 성질 김세권 교수 연구팀은 특정 단층 강자성체* 두 겹을 서로 뒤틀어 접합시켜 이중층 자성체를 구성할 경우, 수직 이방성을 띠지 않는 다른 종류의 자성체에서도 위상적 솔리톤을 안정화시킬 수 있음을 세계 최초로 발견했다. *강자성체: 자성체 중에서도 상온의 철과 같이 자발적 자화를 띄는 물체를 뜻함 이번 연구를 통해 발견된 안정한 위상적 솔리톤은 수직이방성이 아닌 수평 이방성을 띄는 자성체에 존재하는 ‘메론’이라고 불리는 스핀 구조체로서 이전에는 그 안정화 메커니즘이 알려지지 않았던 솔리톤이다. 메론 안정화 기술의 확보로 지금까지 수직 이방성 자성체에만 국한되어 있었던 솔리톤 기반 차세대 반도체 기술 연구를 다양한 자성체로 확대 발전시킬 수 있을 것으로 기대되며, 스핀트로닉스 기술을 한 단계 성장시키는 원동력으로 작용할 것으로 예상된다. 이번 연구 결과는 자성체 내부에서는 안정하지 않은 위상적 솔리톤이 두 자성체를 뒤틀어 접합할 경우, 자성체 간 상호작용을 통해 안정화될 수 있다는 것을 보인 첫 예시다. 여러 자성체를 뒤틀어 접합시키는 경우 자성체의 종류와 뒤틀림 각도를 조절함으로써 무한히 많은 자성 시스템을 구현할 수 있으므로, 이번 연구 결과는 뒤틀림 자성체 기반 스핀 기술이라고 하는 넓은 연구 영역을 새로이 개척했다고 판단된다. 우리 대학 김세권 교수는 "이번 논문은 무한히 많은 가능성을 갖는 뒤틀림 자성체 기반의 새로운 물리 현상 탐색과 활용 연구의 시발점으로 작용할 것ˮ이라고 기대감을 내비쳤다. 이번 연구는 우리 대학 김세권 교수, 우리 대학 고경춘 박사, 그리고 PCS-IBS 김경민 박사, 한양대학교 박문집 교수의 공동 연구로 진행되었으며, 한국연구재단 해외우수과학자 유치사업 플러스(브레인 풀 플러스)의 지원을 받아 수행됐다.
2024.02.20
조회수 3323
차세대소형위성 2호 성공적 관측영상 공개
우리 대학은 지난 5월 25일 나로우주센터에서 발사된 누리호 3차 주탑재 위성인 차세대소형위성 2호에 대한 초기 운영을 완수했다고 5일 밝혔다. 차세대소형위성 2호는 2023년 5월 25일 18시 24분에 발사된 후 고도 550km 궤도에 안착했으며, KAIST는 지난 3개월 동안 차세대소형위성 2호에 대한 초기 운영을 통해 위성 본체, 탑재체, 지상국 전반에 걸친 기능 점검과 시스템 안정화 및 탑재체 시험 관측을 모두 수행했다. 초기 운영 기간 중 KAIST 인공위성연구소는 주 탑재체인 ‘영상레이다 (SAR: Synthetic Aperture Radar)’로 전 세계 여러 곳을 시험 촬영하는 데 성공했으며, 초기 운영 종료 시점에 즈음하여 대표적인 시험 관측 영상을 공개했다. 영상레이다는 전파를 지상으로 쏜 후 지상에서 산란되어 되돌아온 전파를 수신하여 신호처리를 통해 영상을 얻기 때문에 주·야간 빛의 영향을 받지 않으며 구름 등 기상 상황과 관계없이 지상관측을 수행할 수 있다. 공개된 시험 관측 영상은 초기 운영 기간 중 영상레이다 탑재체 시험 운영 과정에서 촬영된 영상으로서, 가시광선이 아닌 마이크로파(microwave)로 바라본 세상을 담고 있는 것이 특징이다. 또한 초기 운영 기간 중 과학 탑재체 ‘레오도스 (LEO-DOS)’의 기능을 점검하고 정상적인 작동상태를 확인하였으며, 시험 운영을 통해 우주방사선 관측자료를 확보했다. 한국천문연구원(원장 박영득)이 개발한 근지구궤도 우주방사선 관측장비 ‘레오도스 (LEO-DOS: Low-Earth Orbit space radiation DOSimeter)’가 시험 운영기간 동안 획득한 전 지구 우주방사선 등가선량 지도를 공개했다. 아울러 KAIST 인공위성연구소는 초기 운영 기간 중 산·학·연에서 국산화한 핵심기술검증 탑재체 4종 (① GPS·Galileo 복합 항법 수신기, ② 상변환 물질을 이용한 열 제어장치, ③ X-대역 GaN기반 전력증폭기, ④ 태양전지배열기)에 대한 시험 운영을 통해 모든 탑재체가 정상적으로 작동함도 확인했다. 첫 번째, 항법위성으로부터 신호를 획득해 궤도를 돌고 있는 차세대소형위성 2호의 위치와 속도를 측정하는 ‘GPS·Galileo 복합 항법 수신기((주) 두시텍 개발)’의 모든 기능이 정상적임을 확인하였다. 두 번째, ‘상변환 물질을 이용한 열 제어장치(한국공학대 개발)’에 대한 작동시험 결과 등온 축열 기능을 이용해 열교환을 수행하고 위성 내부 고발열 유닛 온도를 일정하게 유지하는 열제어 기능이 정상 작동함을 확인했다. 세 번째, ‘X-대역 전력증폭기(한국전자통신연구원 개발)’의 상태 정보를 점검하고, 탑재된 전용 안테나를 통해 방사한 X-대역 시험 신호를 지상의 추적안테나로 수신함으로써 전력증폭기가 정상적으로 작동하고 있음을 확인하였다. 네 번째, ‘태양 전지 배열기(KAIST 개발)’가 임무 궤도에서 생성하는 전압과 전류 검침 정보를 통해 우주에서 정상적으로 전력을 생산함을 확인했다. KAIST 인공위성연구소는 차세대소형위성 2호 발사 후 3개월간의 초기 운영을 완수함에 따라, 이후 영상레이다 탑재체에 대한 기술 검증 임무와 과학 탑재체 및 핵심 기술 검증 탑재체에 대한 정상 임무에 돌입할 예정이다. 영상레이다 탑재체는 향후 8개월간 추가적인 기술 검증을 거친 후 정상 임무를 통해 본격적으로 활용될 예정이다. 추가 기술 검증 기간에는 영상레이다에 대한 기술 시험 운영과 검보정을 수행하게 된다. 기술검증을 최종 완료한 후 정상 임무를 통해 북극 해빙 변화 탐지, 산림변화 탐지 및 해양 환경오염 탐지 등에 활용될 영상레이다 관측 자료를 제공할 예정이다. KAIST 인공위성연구소 한재흥 소장은 “차세대소형위성 2호의 목표궤도 진입 후 정상적인 위성 관제와 임무 수행을 지속하고 있으며, 영상레이다 탑재체 시험 관측, 과학 탑재체 시험 관측, 핵심기술검증 탑재체 기능 점검을 모두 성공적으로 마쳤다”고 초기 운영 결과를 밝혔다. 한소장은 “KAIST가 개발한 차세대소형위성 2호는 위성 본체와 탑재체 대부분이 국내 독자 기술로 개발됐으며, 공개된 영상은 KAIST가 국내에서는 처음으로 국산화한 우주용 영상레이다를 이용해 촬영한 지구관측 사진이라는 점에서 큰 의미가 있다. 이번에 확보한 귀중한 기술자산과 운영경험이 향후 국산 영상레이다 기술 고도화에 활용되기를 바란다”고 덧붙였다.
2023.09.05
조회수 3357
차세대소형위성2호 초기 교신 성공
우리 대학 인공위성연구소(소장 한재흥)에서 개발한 차세대소형위성2호가 지난 5월 25일 18시 24분에 발사된 누리호에서 안전하게 분리되어 목표 궤도에 성공적으로 안착하였으며, 같은날 19시 58분 대전 KAIST 지상국과 최초 교신에 성공했다. 차세대소형위성2호의 최초 비콘 신호는 누리호 발사 후 약 40분 만인 25일 저녁 7시 4분경 항공우주연구원의 남극 세종기지 안테나를 통해 수신할 예정이었으며, 실제로는 7시 7분에 수신이 확인되었다. 위성 발사 후 약 94분 만인 25일 저녁 7시 58분경 대전 KAIST 지상국과 최초 교신에 성공했다. 이후, 남극 세종기지에서 비콘 신호를 2차례 더 확인했고, 스웨덴 보덴 지상국과 대전 KAIST 지상국에서 8차례 교신을 수행하면서 차세대소형위성2호의 통신시스템과 자세제어시스템, 전력시스템, 탑재 컴퓨터 등의 기능을 점검했다. 특히, 국내 우주핵심기술 연구개발 성과물로 차세대소형위성2호의 자세제어시스템에 처음 적용된 반작용휠과 광학자이로의 기능을 점검하고, 차세대소형위성2호 태양전지판이 태양을 바라보는 자세제어와 고속데이터 송신을 위해 안테나를 지상국으로 지향하는 자세제어 기능을 확인했다. 또한, 태양전지판과 태양전력조절기, 리튬이온 배터리 등 차세대소형위성2호의 전력시스템을 점검해, 태양전지판에서 안정적으로 생성된 약 256W의 전력을 통해 위성 배터리가 만충전 상태를 유지하고 있는 것을 확인했다. 차세대소형위성2호는 중점임무인 영상레이더 기술검증과 지구관측, 우주과학임무인 근지구궤도 우주방사선 관측, 그리고 4종의 국내 개발 핵심기술에 대한 우주검증을 수행할 예정이다. 영상레이더는 광학카메라와 달리 빛과 구름의 영향을 받지 않아, 주야간 및 악천후에도 지상 관측이 가능하다. 순수 국내 기술로 개발된 차세대소형위성2호의 X-대역 영상레이더는 해상도 5m, 관측폭 40km의 레이더 영상을 획득을 목표로 한다. 우주방사선 관측기는 근지구 궤도의 중성자·하전입자에 대한 정밀 선량 지도를 작성하고, 태양활동 상승 주기의 우주방사선 변화에 따른 우주환경 영향과 근지구 궤도의 중성자 가중치를 연구하는 데 활용된다. 아울러 산·학·연에서 국산화한 위성핵심기술 4종(①상변환 물질을 이용한 열제어장치, ②X-대역 GaN기반 전력증폭기, ③GPS·Galileo 복합항법수신기, ④태양전지배열기)에 대한 우주검증도 함께 수행된다. 차세대소형위성2호는 약 3개월의 초기 운영 기간 동안 위성 본체 및 탑재체에 대한 기능을 상세히 점검한 후, 계획된 영상레이더에 대한 기술검증•지구관측, 우주방사선 관측 및 핵심기술 검증의 정상적인 임무를 약 2년간 수행할 예정이다. 위성 발사 후 1주일 동안 위성 본체 및 탑재체에 대한 기초적인 상태 점검을 수행하고, 발사 후 1개월까지 위성 본체에 대한 세부 기능을 상세히 점검한 뒤, 발사 후 3개월까지 모든 탑재체에 대한 세부 기능점검을 완료함으로써 향후 정상 임무를 위한 위성 상태 최적화를 수행할 예정이다. 이광형 KAIST 총장은 "우리별 1호부터 30여 년간 축적해온 소형위성 개발과 운영 경험을 바탕으로 차세대소형위성2호의 임무를 성공적으로 완수하여 우리나라 소형위성 기술 수준을 한 단계 높일 수 있을 것으로 기대한다"라고 밝혔다.
2023.05.26
조회수 6730
세계 최초 네트워크 기술이 적용된 SSD 시스템 반도체 개발
우리 대학 전기및전자공학부 김동준 교수 연구팀이 세계 최초로 `패킷 기반 네트워크' 기술이 적용된 SSD(Solid State Drive, 반도체 기억소자를 사용한 저장장치) 시스템 개발을 통해 차세대 SSD의 읽기/쓰기 성능을 비약적으로 높이는 시스템 반도체를 개발했다고 28일 밝혔다. 패킷이란 다양한 크기를 지닌 데이터를 일정한 크기로 분할한 후 제어 정보를 추가한 데이터 전송의 기본 단위를 말하며, 효율적이고 신뢰성 있게 데이터를 전송할 수 있다는 장점이 있어 주로 컴퓨터 네트워크 기반 정보 기술에서 사용되고 있다. 최근 시스템 반도체 분야에서는 다양한 계산 자원들을 칩 내부 네트워크로 연결하여 효율적으로 활용하는 기술이 적용되고 있다. 본 연구는 이러한 시스템 반도체 분야에서 효과적인 네트워크 연결 기술을 메모리 반도체에 적용하였다는 점에서 큰 의미를 가지고 있다. SSD는 플래시메모리를 이용해 정보를 저장하는 장치로, 기존 자기디스크를 이용한 데이터 저장장치인 `하드디스크 드라이브(HDD)'에 비해 데이터 입출력(읽기/쓰기) 속도가 빠르고 발열과 소음이 적어 데이터 센터 및 클라우드 서비스를 위한 주요 저장장치로 활용되고 있다. 전 세계적으로 수십억 명이 사용하는 페이스북(Facebook), 트위터(Twitter) 등과 같은 SNS 서비스를 제공하는 기업들뿐만 아니라 구글, 마이크로소프트 등과 같이 수십억 명의 사용자 정보를 저장하고 이를 활용해 서비스를 제공하는 기업들은 더 많은 데이터를 저장하고 성능이 좋은 고용량/고성능 SSD 제품을 필요로 한다. 특히 인터넷 서비스 제공 기업들은 많은 양의 정보가 데이터 센터에서 저장되고 처리되면서 더 많은 데이터를 저장할 수 있고, 더 빠르게 데이터를 읽고 쓰는 것이 가능한 고성능 SSD 제품을 요구한다. 따라서 SSD는 지속해서 성능과 용량의 개선을 요구하는 상황에 놓이게 된다. 이에 삼성, SK 하이닉스, 등과 같은 SSD 및 메모리를 제공하는 기업에서는 고성능 SSD 기술에 크게 주목하고 있으며, 이는 많은 애플리케이션의 성능 향상에 도움이 될 뿐만 아니라 비용적인 측면에서도 효율적으로 서버 시스템을 확장하는 데 도움이 될 것으로 기대하고 있다. 하지만 이러한 장점에도 불구하고, 고용량 및 고성능 SSD를 위해 규모를 증가시키는 스케일 업(scale-up)은 하드웨어 패키징 한계에 제한돼 쉽게 확장하기 어렵다. 무엇보다도 기존 SSD 시스템은 사용 가능한 처리량 (bandwidth)이 있음에도 불구하고 효율적으로 사용하지 못하는 비효율적인 데이터 송수신 방식 채택해 사용하고 있다. 이에 김동준 교수 연구팀은 기존 SSD 시스템 설계를 분석해 CPU, GPU 등과 같은 비메모리 시스템 반도체 설계에서 주로 활용되는 네트워크 기술을 적용해 SSD 성능을 크게 높일 수 있는 `네트워크 기술이 적용된 SSD 시스템 반도체'를 개발했다. 김동준 교수팀이 개발한 SSD 시스템은 플래시 인터커넥트(interconnection network) 와 패킷 기반 플래시 컨트롤러 (packet-based flash controller) 등으로 구성되어 있으며, 현재 사용되는 기존 SSD 시스템 대비 2배 많은 처리량을 제공하고 응답시간을 약 10배 줄인 성능을 보인다고 연구팀 관계자는 설명했다. 또한 이번 개발을 통해서 기존 하드웨어의 한계를 비메모리 시스템 반도체에서 주로 사용되는 패킷(packet) 기반 송수신 기법의 사용으로 극복해 고성능 SSD 기술에 도움을 줄 수 있을 것으로 기대된다고 연구팀 관계자는 설명했다. 전기및전자공학부 김지호 박사과정이 제1 저자로, 한양대학교 컴퓨터소프트웨어학과 강석원 박사과정, 박영준 연세대학교 컴퓨터과학과 교수가 공동 저자로 참여한 이번 연구는 미국 시카고에서 열리는 컴퓨터 구조 분야 최우수 국제 학술대회인 `55th IEEE/ACM International Symposium on Microarchitecture (MICRO 2022)'에서 오늘 10월 발표될 예정이다. (논문명 : Networked SSD: Flash Memory Interconnection Network for High-Bandwidth SSD) 연구를 주도한 김동준 교수는 "이번 연구는 지금까지는 없던 네트워크 패킷(packet)이 적용된 SSD 시스템 반도체를 세계 최초로 개발했다는 점에서 의의가 있으며, 데이터 센터 및 클라우드 서비스 시장에서 지속적으로 증가하는 고성능 SSD 요구에 발맞춰 큰 도움을 줄 수 있을 것으로 보인다ˮ며, "SSD의 성능 향상은 인공지능 연구 및 빅데이터 분석 기술을 활용하는 다양한 알고리즘 성능 개선에도 기여할 것으로 보인다ˮ고 연구의 의의를 설명했다. 한편 이번 연구는 한국연구재단과 정보통신기획평가원 차세대지능형반도체기술개발사업의 지원을 받아 수행됐다.
2022.09.28
조회수 7498
준강자성체를 이용한 차세대 반도체 기술의 발전방향 제시
우리 대학 물리학과 이경진 교수, 김세권 교수 연구팀이 스핀 기반 차세대 반도체 기술(스핀트로닉스)의 최신 연구 동향 및 미래 발전 전략을 정리한 `*준강자성체 기반 스핀트로닉스' 리뷰 논문을 물리 및 재료 분야의 세계적인 학술지 `네이처 머터리얼스 (Nature Materials)' 2022년 1월호에 표지논문으로 게재했다고 6일 밝혔다. ※ 준강자성체: 반강자성체와 같이 서로 이웃하는 자성 이온이 반대 방향으로 정렬되지만, 서로 자성의 크기가 달라서 물질 전체적으로는 자발적인 자성이 남아있는 물체 스핀트로닉스는 성장 한계에 다다른 기존 반도체 기술의 근본적인 문제점들을 전자의 양자적 성질인 스핀을 이용해 해결하고자 하는 연구 분야다. 이는 기존 정보처리 기술을 혁신적으로 발전시켜 초고속 초고집적 차세대 반도체 기술을 구현할 것으로 기대되고 있다. 스핀트로닉스 장치의 핵심 구성 요소는 자성체이기 때문에, 스핀 기반의 초고속 초고집적 정보처리를 구현하기 위해서는 최적의 자성 물질을 규명하는 것이 필수적이다. 지난 수십 년간 스핀트로닉스에서 주로 사용돼왔던 강자성체는 스핀 동역학 속도가 기존 정보 처리 기술의 수준과 유사한 기가헤르츠(GHz) 수준에 머물러 정보 처리 속도 향상에 어려움을 겪고 있었다. 또한, 강자성체가 생성하는 강력한 주위 자기장으로 인해 강자성체 기반 장치들이 서로 강하게 간섭해, 스핀 장치의 집적률을 증가시키는 데도 어려움이 있었다. 물리학과 이경진 교수와 김세권 교수는 지난 수년간의 연구를 통해 새로운 자성체인 준강자성체를 이용하면 강자성체가 갖는 문제점들을 해결해 초고속 초고집적 스핀 기반 정보 처리 장치를 개발할 수 있음을 밝혀왔고, 이를 기반으로 이번 리뷰 논문을 게재했다. 과거 2017년 연구팀은 준강자성체의 스핀 동역학 속도가 기존 정보 처리 기술보다 약 천배 빠른 테라헤르츠(THz) 수준이라는 점을 주목하고, 이를 이용해 스핀 메모리로 활용되는 자구벽을 강자성체보다 월등히 빠른 속도로 구동할 수 있음을 보여 네이처 머터리얼스에 논문을 게재했다. 또한, 2018년 이경진 교수는 반강자성체를 이용하면 스핀 양자 정보의 장거리 전송이 가능함을 밝혀 네이처 머터리얼스에 보고했다. 수년간에 걸친 꾸준한 연구성과로 인해 준강자성체 기반의 초고속 초고집적 스핀트로닉스에 대한 관심이 고조돼, 현재 세계적으로 관련 연구가 활발히 진행중이다. 최신 연구 동향 정리와 더불어, 연구팀은 준강자성체 기반 스핀트로닉스의 미래 발전 방향도 제시했다. 준강자성체 기반의 초고속 자기광학 장치 개발, 준강자성체가 갖는 독특한 스핀파 성질을 이용한 파동/양자 정보처리 장치 개발, 그리고 준강자성체를 이용한 뇌 모사 컴퓨팅 개발 등이 기대된다. 또한, 새로 개발된 준강자성체는 기존의 자성체와 근본적으로 다른 흥미로운 물리현상을 보일 것으로 기대돼 준강자성체 기반의 근본 자성 연구에 대한 발전 방향도 제시했다. 이경진 교수는 "이번 리뷰논문은 그동안 강자성체에만 집중돼왔던 스핀트로닉스 연구를 준강자성체로 확장시키는 데 중요한 이정표가 될 것ˮ이라고 기대감을 내비쳤다. 이번 연구는 이경진 교수, 김세권 교수, 그리고 미국 MIT Geoffrey Beach 교수, 일본 교토대학 Teruo Ono 교수, 네덜란드 Radboud 대학 Theo Rasing, 싱가포르국립대 양현수 교수의 공동 연구로 진행되었으며, 삼성미래기술육성재단과 한국연구재단의 지원을 받아 수행됐다.
2022.01.06
조회수 7426
물과 고온·고습 환경에서도 안정적인 페로브스카이트 나노 입자 수지 개발
우리 대학 신소재공학과 배병수 교수 연구팀이 서울대학교 재료공학부 이태우 교수팀과 공동연구를 통해 물과 고온‧고습 환경 및 각종 화학물질에서도 매우 안정된 차세대 디스플레이용 색 변환 소재인 *페로브스카이트 나노 입자 발광 수지를 개발했다고 24일 밝혔다. ☞ 페로브스카이트(perovskite): 1839년 러시아 우랄산맥에서 새로 발견된 광물로 차세대 태양전지의 소재로 꼽히나 수분에 취약한 구조로 알려져 있음. 공동연구팀은 이번 연구를 통해 그동안 페로브스카이트 나노 입자의 가장 큰 난제였던 수분, 고온 및 다양한 화학적 환경에서 안정성을 담보할 수 없었던 기존 약점을 크게 개선했다. 따라서 배 교수팀의 연구는 페로브스카이트 나노 입자를 차세대 초고화질 디스플레이의 색 변환 소재로 활용할 수 있는 길을 연 것으로 학계는 평가하고 있다. 이번 연구 결과는 재료 분야 국제학술지 어드밴스드 머터리얼즈(Advanced Materials)에 12월 4일 字 온라인으로 게재됐으며 연구의 우수성을 인정받아 내부 표지논문(Inside Cover Article)으로도 선정됐다.(논문명: Extremely Stable Luminescent Crosslinked Perovskite Nanoparticles under Harsh Environments over 1.5 Years) 페로브스카이트는 유기 원소, 금속 그리고 할로겐원소로 구성돼있는 특별한 구조를 지닌 소재로 다양한 광전자소자와 태양전지 등에 사용되고 있다. 또 원료의 값이 싸며, 발광 효율이 높은 게 특징이다. 특히 매우 좁은 발광 파장 폭 때문에 현재 디스플레이에 사용되고 있는 퀀텀닷이나 유기 발광체와 대비해 폭넓은 색 재현율을 구현할 수 있어 기존 퀀텀닷을 대체하는 차세대 디스플레이의 색 변환 소재로 주목받고 있다. 이와 함께 페로브스카이트 발광체는 현존하는 발광체 중에서 유일하게 새로운 디스플레이의 색 표준인 REC. 2020을 만족하는 소재다. 다만 빛이나 수분 및 고온에 취약해서 대기 중에서 짧은 시간 내에 성능이 급격히 떨어지는 문제 때문에 실제 사용은 거의 불가능하다. 이런 문제해결을 위해 그동안 학계나 기업들은 페로브스카이트 물질을 유기 결합체가 둘러싸고 있는 나노 단위의 입자의 형태로(1 나노미터는 10억분의 1 미터) 제조해 수분이나 산소의 침투를 막거나, 나노 입자에 무기물 코팅, 복합구조 제작 및 고분자 수지로 제작하는 등 다양한 연구를 진행해왔다. 하지만 대부분 외부로부터 수분을 물리적으로 막는 방법들이며 제조공정이 매우 복잡하고 대기에서 매우 제한적인 안정성을 나타낸다. 게다가 강산, 강염기, 극성용매 및 고온 고습 환경에서 안정성을 담보하는 페로브스카이트 나노 입자 색 변환 소재는 지금까지 개발된 적이 없다. 공동연구팀은 우선 자체 개발한 솔-젤(Sol-Gel) 합성공정을 이용해 실록산(실리콘 기반의 고분자) 분자구조와 페로브스카이트 나노 입자를 한꺼번에 둘러싸는 캡슐화된 복합체 수지를 개발했다. 연구팀은 이 기술로 열에 강한 실록산 분자구조에 의해 페로브스카이트 나노 입자를 화학적으로 보호하고 별도의 차단층 없이도 페로브스카이트 나노 입자의 발광 안정성을 크게 향상하는 데 성공했다. 연구팀은 새로운 기술을 퀀텀닷에도 똑같이 적용하는 한편 고온‧고습 환경에도 안정된 실록산 캡슐화 퀀텀닷 수지를 개발하는 데 성공했다. 실록산으로 캡슐화된 페로브스카이트 나노 입자 수지는 제조과정 중 자외선 경화에 의해 발광 효율이 낮게 나타났지만 이후 다양한 화학적 환경 과 고온‧고습 환경(85℃/85%)에서도 원래의 높은 값(> 70%)으로 회복되는 특이한 현상을 보였다. 또 물속에서도 600일 이상 유지되는 등 매우 우수한 발광 안정성을 보였다. 연구팀은 화학적 캡슐화 작업과 함께 페로브스카이트 나노 입자 복합체가 물에 의해 안정화되는 현상을 광‧물리학적으로 분석했으며, 이론적으로 그 메커니즘을 규명했다. 공동연구팀은 마지막으로 디스플레이의 색 변환 층으로 성능을 확인한 결과 양자효율 및 색 재현율이 기존 퀀텀닷 대비 향상됐음을 밝혔다. 또한, 실록산 캡슐화를 통해 페로브스카이트 나노 입자 내의 납 (Pb)의 독성을 막아줌으로써 생체친화적인 특성도 나타내 상용화를 추진하는데도 문제가 없음을 확인했다. 이번 연구를 주도한 신소재공학과 배병수 교수는 "페로브스카이트 나노 입자가 차세대 디스플레이 색 표준을 맞출 수 있는 유일한 발광체이자 가격도 싼 편이지만 수분에 취약하다는 약점 때문에 대기 중에서 사용할 수 없어 디스플레이 색 변환 소재로 상용화하는 데는 매우 회의적이었다ˮ고 말했다. 배 교수는 이어 "연구팀이 개발한 신기술은 페로브스카이트 나노 입자가 기존 퀀텀닷을 대체하는 새로운 디스플레이 색 변환 소재로 활용하는 연구개발을 촉진하는 계기가 될 것이며 결과적으로 조기 상용화도 기대된다ˮ고 말했다. 한편 이번 연구는 한국연구재단의 선도연구센터 웨어러블 플랫폼 소재 기술센터와 리더연구과제 (창의연구) 지원사업의 지원을 받아 수행됐다.
2020.12.28
조회수 51005
세계 최고 수명을 지닌 불타지 않는 ESS(에너지저장시스템) 수계전지 개발
우리 대학 생명화학공학과 김희탁 교수(나노융합연구소 차세대배터리센터) 연구팀이 아연 전극의 열화 메커니즘을 규명하고 이를 해결함으로써 전 세계에서 보고된 모든 레독스 흐름 전지 가운데 가장 오래가는 수명을 가지는 수계 아연-브롬 레독스 흐름 전지 개발에 성공했다고 5일 밝혔다. 생명화학공학과 이주혁 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `Energy and Environmental Science'에 최근(9월) 게재되는 한편 표지논문으로 선정됐다. (논문명: Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries) 최근 들어 신재생에너지의 간헐성을 보완하고 전력 피크 수요를 충당하기 위해 신재생에너지 및 심야 전력을 대용량으로 저장, 필요할 경우 저장된 에너지를 설비에 공급함으로써 에너지 이용 효율을 높일 수 있는 에너지저장시스템(Energy storage systems, 이하 ESS) 기술이 각광받고 있다. 현재 대부분의 ESS는 값이 저렴한 `리튬이온전지' 기술을 채택하고 있지만, 리튬이온전지는 태생적으로 발화로 인한 화재 위험성 때문에 대용량의 전력을 저장하는 ESS에는 적합하지 않다는 지적을 받아왔다. 실제 2017년~ 2019년까지 2년간 국내에서 발생한 리튬이온전지로 인한 ESS 화재사고 33건 가운데 가동이 중단된 곳은 전체 중 35%에 달한다. 현재까지 집계된 손해액만도 약 7,000억 원 이상으로 추정되고 있다. 따라서 최근에는 배터리 과열 현상을 원천적으로 차단할 수 있는 수계(물) 전해질을 이용한 *레독스 흐름 전지가 큰 주목을 받고 있다. 특히, 초저가의 브롬화 아연(ZnBr2)을 활물질로 이용하는 아연-브롬 레독스 흐름 전지는 다른 수계 레독스 흐름 전지와 비교할 때 높은 구동 전압과 함께 에너지 밀도를 높일 수 있고, 가격이 싸다는 장점 때문에 70년대부터 ESS용으로 개발돼왔다. ☞ 레독스 흐름 전지(Redox flow battery): 레독스 흐름 전지는 양극 및 음극 전해액 내에 활물질을 녹여서 외부 탱크에 저장한 후 펌프를 이용해 전극에 공급하면 전극 표면에서 전해액 내의 활성 물질의 산화·환원 반응을 이용해 에너지는 저장하는 전지이다. 문제는 아연-브롬 레독스 흐름 전지의 경우 아연 음극이 나타내는 짧은 수명 때문에 상용화가 지연되고 있다는 점이다. 특히 아연 금속이 충·방전 과정 중에 보이는 불균일한 돌기 형태의 *덴드라이트 형성은 전지의 내부 단락을 유발해 수명을 단축하는 주요 원인으로 지적되고 있다. 현재 덴드라이트 형성 메커니즘은 명확히 규명되진 않고 있지만 충전 초기 전극 표면에 형성되는 아연 핵의 불균일성 때문일 것으로 전문가들은 추정하고 있다. 이런 문제 해결을 위해 그동안 균일한 핵의 생성을 유도하는 기술이 경쟁적으로 개발돼왔으나, 여전히 충분한 수명향상 효과를 얻지 못하고 있다. ☞ 덴드라이트(Dendrite): 아연 이온이 환원되어 금속 전극 표면에 증착될 때, 금속 표면 일부에서 비정상적으로 성장하는 나뭇가지 형태의 결정. 김희탁 교수 연구팀은 낮은 표면에너지를 지닌 탄소 전극 계면에서는 아연 핵의 `표면 확산(Surface diffusion)'을 통한 `자가 응집(Self-agglomeration)' 현상이 발생한다는 사실에 주목하고 양자 역학 기반의 컴퓨터 시뮬레이션과 전송 전자 현미경 분석을 통해 자가 응집 현상이 아연 덴드라이트 형성의 주요 원인임을 규명하는 데 성공했다. 연구팀은 이와 함께 특정 탄소결함구조에서는 아연 핵의 표면 확산이 억제되기 때문에 덴드라이트가 발생하지 않은 사실을 발견했다. 탄소 원자 1개가 제거된 단일 빈 구멍 결함(single vacancy defect)은 아연 핵과 전자를 교환하며, 강하게 결합함으로써 표면 확산이 억제되고 균일한 핵생성 또는 성장을 가능하게 한다. 김 교수 연구팀은 고밀도의 결함 구조를 지닌 탄소 전극을 아연-브롬 레독스 흐름 전지에 적용해, 리튬이온전지의 30배에 달하는 높은 충·방전 전류밀도(100 mA/cm2)에서 5,000 사이클 이상의 수명 특성을 구현하는데 성공했다. 연구팀 관계자는 지금까지 다양한 레독스 흐름 전지에 대해 보고된 결과 중 가장 뛰어난 수명성능을 지닌 전지라는 점을 강조했다. 우리 대학 나노융합연구소 차세대배터리센터장 김희탁 교수는 "차세대 수계 전지의 수명 한계를 극복하기 위한 새로운 기술을 제시한 게 이번 연구의 성과”라면서 "기존 리튬이온전지보다 저렴할 뿐만 아니라 에너지 효율 80% 이상에서 5,000 사이클 이상 구동이 가능하다는 점에서 신재생에너지의 확대 및 ESS 시장 활성화에 기여할 것”이라고 밝혔다. 한편 이번 연구는 우리 대학 나노융합연구소와 과학기술정보통신부의 지원을 받아 수행됐다.
2020.10.05
조회수 30223
<<
첫번째페이지
<
이전 페이지
1
2
3
>
다음 페이지
>>
마지막 페이지 3