본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%94%8C%EB%A0%89%EC%84%9C%EB%B8%94
최신순
조회순
OLED에 적용 가능한 새 스트레처블 기판 개발
전기및전자공학부 최경철 교수 연구팀이 높은 신축성을 갖는 유연한 기둥과 멤브레인 형태가 결합한 새로운 스트레처블 기판을 개발했다. 스트레처블 전자 소자의 핵심 부품 기술이 될 수 있는 이 기술을 활용해 연구팀은 스트레처블 OLED(유기발광다이오드)를 제작해 높은 유연성과 신축성을 갖는 새로운 스트레처블 디스플레이 기술을 개발했다. 임명섭 박사와 남민우 박사과정 주도한 이번 연구는 나노 분야 국제학술지 ‘나노 레터스(Nano Letters)’ 1월 28일 자 온라인판에 게재됐다. (논문명 : Two-dimensionally stretchable organic light-emitting diode with elastic pillar arrays for stress-relief) 스트레처블 디스플레이 기술은 한 방향으로 구부리거나 접는 기존의 플렉서블 OLED 디스플레이의 기술을 뛰어넘어 두 방향 이상으로 변환할 수 있다. 이에 따라 웨어러블, 사물인터넷, 인공지능, 차량용 디스플레이에 적합한 차세대 디스플레이 기술로 주목받고 있다. 최근 자유롭게 늘어날 수 있도록 OLED 소자와 디스플레이에 신축성을 주는 방법이 연구돼왔다. 하지만 모든 재료를 신축성 있는 재료로 바꾸는 방식은 효율이 낮아 상용화가 어렵고 패턴을 형성하기 어렵다는 한계가 있다. 기판을 먼저 늘리고 난 뒤 다시 원래대로 복원해 얇은 주름을 형성하는 방식의 스트레처블 OLED는 효율이 높고 안정적이지만 주름의 형태가 일정하지 않고 신축에 따른 화면의 왜곡이 있다. 최 교수 연구팀은 높은 휘도와 신축성을 가지는 디스플레이 구현을 위해, 단단하게 패턴화된 기판과 신축 시 이 기판에 가해지는 힘이 최소화할 수 있는 기둥구조가 형성된 유연 기판의 결합을 통해 새로운 형태의 핵심 부품 기술인 스트레처블 기판을 개발했다. 연구팀은 개발된 스트레처블 구조 기판과 기존 공정을 그대로 활용해 신축성 있는 OLED 디스플레이를 구현했다. 기존 공정을 그대로 활용하더라도 새로운 스트레처블 기판 부품 기술을 활용하면 스트레처블 디스플레이를 구현할 수 있다는 것을 증명했다. 이는 기존의 스트레처블 디스플레이 기술이 기존 공정을 활용할 수 없다는 단점을 극복한 것이다. 개발된 신축성 OLED 디스플레이는 실제 소자에 걸리는 기계적 스트레스가 거의 없어, 화면의 왜곡이나 급격한 휘도 변화 없이 안정적인 소자 구동이 가능하다. 또한, 발광 빛의 각도 의존성이 없어 다양한 스트레처블 디스플레이 응용 분야에 적용이 가능할 것으로 기대된다. 남민우 연구원은 “새로운 물질의 개발이 아닌 상용화된 공정 및 물질을 사용해 새로운 스트레처블 기판 위에 OLED 디스플레이를 구현했다”라며 “기존의 스트레처블 디스플레이 연구가 가지는 단점들을 뛰어넘어, 상용화될 수 있는 스트레처블 부품 기술을 개발하고자 했다”라고 말했다. 최경철 교수는 “제작된 스트레처블 기판을 활용하면 스트레처블 OLED, 마이크로LED, 센서 등이 구현 가능하며, 바이오 및 의료 분야와 결합한 다양한 치료 분야에 적용할 수 있다”라며 “스트레처블 및 웨어러블 전자 소자 및 전자약 기술 발전에 도움이 되기를 바란다”라고 말했다.
2020.02.25
조회수 15364
유재영, 서민호 연구원, 상용화 가능한 포스터치 센서 개발
〈 유재영 박사과정, 서민호 박사, 윤준보 교수 〉 우리 대학 전기및전자공학부 유재영 박사과정과 서민호 박사(지도교수: 윤준보 교수) 연구팀이 플렉서블 기기에 적용할 수 있는 상용화 수준의 고민감도 투명 유연 포스터치(Force touch) 센서를 개발했다. 이 센서는 스마트폰 뿐 아니라 다양한 곡률에서 사용되는 플렉서블 기기, 헬스케어 웨어러블 기기 등 다양한 터치 인터페이스에 적용 가능할 것으로 기대된다. 유재영 박사과정, 서민호 박사가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 9월 6일자 온라인 판에 게재됐으며, 연구의 우수성을 인정받아 오프라인 저널 후면 표지논문으로 선정됐다. 포스 터치 센서는 인식되는 터치의 위치 정보와 더불어 누르는 압력도 인식 가능한 기술로 실제 스마트폰에 집적돼 한 번의 터치만으로 다양한 기능을 제공할 수 있어 많은 관심을 받고 있다. 최근 포스 터치 센서를 스마트폰 뿐 아니라 플렉서블 기기를 포함한 다양한 응용 제품에 적용하기 위해 마이크로-나노 크기의 미세 구조를 이용한 민감도 및 유연성 향상 연구가 활발히 진행되고 있다. 그러나 기존의 고성능 센서들은 특정 성능만을 향상시킴으로써 실제로 필요한 민감도, 유연성, 투명도, 재현성, 다양한 사용 환경에서의 동작 신뢰성 등의 총체적인 성능을 동시에 만족시키지 못해 상용화에 한계가 있었다. 연구팀은 문제 해결을 위해 포스 터치 센서는 공기를 포함한 간격을 갖는다는 기존 상식에서 벗어나 속이 가득 찬 센서를 개발하는 데 집중했다. 연구팀은 센서 내부에 압력에 따른 유전율 변화를 극대화할 수 있는 금속 나노 입자가 포함된 투명 나노 복합 절연층과, 가해진 압력을 집중시켜 민감도를 높일 수 있는 나노그레이팅 구조를 개발해 고민감도의 투명 유연 포스 터치 센서를 제작하는 데 성공했다. 연구팀은 감지 전극을 감지층의 상하부에 형성한다는 기존 방식에서 벗어나 동일 평면(기계적 중립면)에 배치함으로써 볼펜심 정도의 극대화된 굽힘 정도에서도 성능의 변화 없이 동작하는 것을 확인했다. 또한 대량 양산 시 주요 고려 사항인 대면적 균일성, 제작 재현성, 온도 및 장기 사용에 따른 신뢰성 등 역시 상용화 수준임을 증명했다. 연구팀은 개발한 센서를 맥박 모니터링이 가능한 헬스케어 웨어러블 기기에 적용해 실시간 맥박을 감지해냈다. 또한 국내 포스 터치 센서 기업인 ㈜하이딥과 함께 7인치 대면적 센서를 스마트폰에 실제 장착해 실시간 압력 분포를 확인해 상용화 가능한 수준임을 확인했다. 연구를 주도한 유재영 박사과정은 “간단한 구조, 공정을 이용해 상용화 수준의 포스 터치 센서를 개발했으며, 다양한 실제 사용 환경에서도 높은 신뢰성 수준에서 동작함으로써 사용자 터치 인터페이스와 웨어러블 기기에 널리 활용될 수 있을 것으로 기대한다”며 “연구를 전폭적으로 지원해준 나노종합기술원 이재영 원장님과 임성규 책임님, 그리고 연구재단 관계자분들께 큰 감사를 드린다”고 말했다. 이번 연구는 나노종합기술원 오픈이노베이션 사업과 한국연구재단의 중견연구자 지원사업을 통해 수행됐다. 또한 원천 특허화 활용 특허로 국내 출원 6건, 해외 출원 2건과 함께 ‘어드밴스드 사이언스 뉴스(Advanced Science News)’에 영상 초록과 함께 소개될 예정이다. □ 그림 설명 그림1. 연구팀이 제작한 대면적 7인치 투명 유연 포스터치 센서 그림2. 연구팀의 후면 표지 논문 이미지 그림3. 스마트 폰 집적 후 압력 감지 확인을 위한 붓글씨 어플리케이션 동작 결과
2018.09.19
조회수 11215
유승협 교수, 무기LED 상응하는 고효율 OLED 구현
〈 유승협 교수, 송진욱 박사과정 〉 우리 대학 전기및전자공학부 유승협 교수 연구팀이 무기 LED에 상응하는 높은 효율의 유기발광다이오드(OLED)를 구현하는 데 성공했다. 이번 연구는 서울대학교 재료공학부 김장주 교수, 경상대 화학과 김윤희 교수 연구팀과의 협력을 통해 이뤄진 것으로 이 기술을 통해 OLED 조명의 대중화 및 시장 성장에 이바지할 수 있을 것으로 기대된다. 송진욱 박사과정이 1저자로 참여한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 10일자 온라인 판에 게재됐다. OLED는 수많은 모바일 기기와 고품질 TV 등의 디스플레이 기술에 광원으로 활용되고 있는 소자로, 두께가 얇고 유연 소자 제작이 가능하다는 장점을 갖고 있다. 최근에는 조명, 차량용 광원에도 OLED를 활용하기 위한 노력이 계속되고 있다. 이러한 응용에는 광원의 효율이 매우 중요하다. 최근 지속적인 연구 개발에 의해 OLED의 효율이 꾸준히 상승했고 일부는 기존 고효율 무기 LED 수준에 준하는 결과들이 보고되고 있다. 그러나 이러한 고효율 OLED의 연구 결과들은 OLED가 갖는 면광원(面光源)의 장점을 해치는 반구형 렌즈가 쓰이거나 소자 내부에 빛을 추출하는 나노 구조가 도입돼 안정적인 동작을 방해하는 등의 문제로 상용화에 한계가 있었다. 연구팀은 OLED의 광 추출용으로 개발됐던 여러 방법 중 실용화 가능성이 가장 큰 기술인 나노입자 기반의 광 산란층을 소자 외부에 도입하는 방법에 주목했다. 특히 광 산란을 이용한 기존 OLED 광 추출 향상 연구가 반복적인 실험을 통해 경험적인 방식으로 이뤄졌던 것과는 다르게 연구팀은 종합적이고 분석적 방법론을 정립해 최대 효율을 이끌어낼 수 있는 구조를 이론적으로 예측했다. OLED에 광 추출 구조를 적용해 가능한 최대의 효율에 도달하기 위해선 광 추출 구조와 OLED 구조를 각각이 아닌 전체로 보고 최적화를 이뤄야 한다. 연구팀은 산란 현상을 수학적으로 기술하는 이론을 OLED 발광 특성 예측 모델과 최초로 결합해 여러 구조를 가지는 수많은 소자들의 특성을 짧은 시간에 예측했고, 이를 기반으로 최대 효율을 갖는 최적 구조를 이론적으로 예측하는 데 성공했다. 연구진은 이론적으로 예측된 최적의 광 산란 필름을 실험적으로 구현하고 이를 고효율 유기 발광소재를 이용한 소자 구조에 접목해 56%의 외부 양자 효율 및 221lm/W의 전력 효율을 이끌어내는데 성공했다. 이는 큰 렌즈나 내부 광 추출구조 없이 구현된 OLED 단위 소자 효율로는 최고의 결과이다. 유승협 교수는 “다양한 OLED 광 추출 효율 향상 기술이 개발됐지만 실용화 가능성은 높지 않은 경우가 많았다. 이번 연구는 상용화 가능성에서 가장 의미가 큰 기술을 활용하면서 고효율 LED의 효율에 상응하는 OLED 구현 방법을 체계적으로 제시했다는데 의의가 있다”며 “낮은 전력소모가 특히 중요한 조명용 광원이나 웨어러블 기기의 센서용 광원에 OLED가 활용되는 데 기여할 것이다”고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업 및 나노소재원천기술개발사업, 한국전자통신연구원(ETRI)의 초저가플렉서블 Lightning Surface 기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 외부 산란층과 결합된 OLED 구조 모식도
2018.08.21
조회수 15545
조용훈 교수, 종이 위에서 빛나는 초소형 반도체 레이저 개발
우리 대학 물리학과 조용훈 교수 연구팀이 종이 위에서 작동하는 초소형 반도체 레이저를 개발했다. 나노 크기의 광결정 소자를 흡수성이 높은 종이와 결합함으로써 최첨단 반도체 센서를 저렴한 가격으로 다양한 질병 진단에 활용할 수 있을 것으로 기대된다. 이 연구 결과는 소재 분야 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 11월 17일자에 게재됐다. 빛을 매개체로 사용하는 광소자는 높은 대역폭을 갖고 있어 대용량으로 정보 전송이 가능하고 낮은 전력으로도 구동할 수 있다. 일반적으로 반도체 광소자는 직접적으로 특정 기능을 수행하는 부분 외에 이들을 단순히 지탱하기 위한 반도체 기판이 필요하다. 반도체 기판의 부피는 전체 소자 부피의 대부분을 차지하고 자연적으로 부패하지 않는 물질이기 때문에 소자를 폐기할 때 환경 문제를 일으킨다. 연구팀은 문제 해결을 위해 두꺼운 반도체 기판을 제거했고 일상생활에서 쉽게 구할 수 있는 종이를 광소자의 기판으로 사용했다. 종이의 주원료는 나무이기 때문에 자연적으로 썩어 없어진다. 또한 일상생활에서 쉽게 찾아볼 수 있고 가격이 저렴하기 때문에 종이를 이용한 소자는 단가를 획기적으로 낮출 수 있다. 종이는 기계적으로도 우수한 특성들을 지닌다. 자유자재로 구부릴 수 있고 접었다 피는 것을 반복해도 끊어지지 않는다. 이러한 특성은 기존 플렉서블 기판들이 구현하고자 하는 우수한 특성이다. 연구팀은 반도체 광소자를 종이 위에 옮기기 위해 나노 광소자를 마이크로 스탬프로 떼어 내는 기술을 이용했다. 이를 통해 반도체 기판에 높은 집적도로 패터닝(특정 부분을 깎아내는 식각 과정을 통해 회로를 새겨 넣는 과정)한 나노 광소자를 새로운 종이 기판에 원하는 간격으로 재배열 할 수 있었다. 이번에 종이 위에 결합된 광소자는 폭 0.5 마이크로미터. 길이 6 마이크로미터, 높이 0.3 마이크로미터 크기로 머리카락(약 0.1 mm) 두께의 100분의 1 수준이다. 연구팀은 개발한 광소자를 유체 채널(Fluid channel)이 형성된 종이 위에 결합해 굴절률 센서로도 활용 가능함을 증명했다. 이미 상용화된 임신진단키트 등에서도 볼 수 있듯이 종이는 좋은 흡수성을 가지고 있고 광결정 소자는 높은 민감도를 가지고 있어 센서 응용에 매우 적합하다. 조 교수는 “이 기술은 종이를 광소자의 기판으로 사용함으로써 최근 화두인 친환경 광소자 플랫폼을 만드는데 크게 기여할 수 있다”며 “저렴한 종이와 고성능 광결정 센서를 결합해 전체 소자의 단가는 낮추면서 성능은 뛰어난 적정기술로 활용할 수 있다”고 말했다. 물리학과 김세정 박사가 1저자로 참여한 이번 연구는 서강대학교 신관우 교수, 우리 대학 이용희 교수가 참여했고, 한국연구재단 중견연구자지원사업과 KAIST 기후변화연구허브사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 종이 기판 위 광결정 레이저 모식도 그림2. 종이 기판위에서 동작하는 광결정 공진기 레이저 및 굴절률 센서
2016.11.25
조회수 18606
이건재 교수, 유연고집적회로의 연속적패키징 기술 개발
〈 이 건 재 교수 〉 우리 대학 신소재공학과 이건재 교수와 한국기계연구원 김재현 박사 공동 연구팀이 롤 기반 공정을 통해 플렉서블 기기의 핵심기술인 유연 고집적회로를 연속적으로 패키징(소자와 전자기기를 연결하는 전기적 포장) 및 전사(轉寫)할 수 있는 기술을 개발했다. 또한 개발된 롤 기반 전사 및 패키징 기술을 유연 낸드플래시 메모리(전원이 끊겨도 저장된 데이터를 잃어버리지 않는 비휘발성 메모리의 일종)에 적용하는데 성공했다. 이번 연구 결과는 재료과학 분야 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 7월 20일자 온라인 판에 게재됐다. 롤 공정(유연기판을 회전하는 롤에 감으며 동시에 공정을 진행하는 방식) 기반의 유연전자 생산기술은 높은 생산효율을 바탕으로 웨어러블 및 플렉서블 기기 상용화에 중요한 역할을 할 것으로 기대되고 있다. 그러나 지금까지는 고집적회로를 롤 공정으로 구현하는 방법 및 주변회로와 상호 연결하는 패키징 기술이 해결되지 않아 실용화에 한계가 있었다. 문제 해결을 위해 연구팀은 기존 반도체 공정을 이용해 실리콘 기판에 낸드 플래시 메모리를 형성한 후 수백 나노미터(10분의 1m) 두께로 얇게 만들었다. 그 후 개발한 롤 기반 전사 및 패키징 기술을 통해 소자를 유연기판에 옮기는 동시에 이방성 전도 필름을 이용해 상호 연결하는 기술을 구현했다. 연구팀의 최종적인 실리콘 기반 유연 낸드플래시 메모리는 반복적인 휘어짐에도 모든 기능이 정상적으로 동작했고 외부와의 상호연결도 매우 안정적으로 유지됐다. 개발된 롤 기반 유연 고집적회로 기술은 유연 어플리케이션 프로세서(AP), 고집적 메모리, 고속 통신소자 등의 양산에 응용 가능할 것으로 기대된다. 이 교수는 “높은 생산성을 지닌 롤 기반 전사 기술을 이용해 단결정 실리콘 박막 고집적회로를 유연한 인쇄회로 기판 위에 패키징하는 생산기술을 확보했다”며 “향후 유연 디스플레이 및 배터리 기술과 함께 휘어지는 컴퓨터 구현의 핵심 생산 기술이 될 것으로 기대된다”고 말했다. 김재현 박사는 “한국기계연구원이 보유한 롤 기반 전사 기술을 이용해 단결정 실리콘 고집적소자를 유연한 폴리머 인쇄회로 기판 상에 손상 없이 전사함과 동시에 소자와 인쇄회로기판이 전기적으로 연결되도록 하는 롤 기반의 생산 공정 기술을 개발하였다”며 “이 기술은 향후 고성능 전자 소자를 유연 기판 위에 형성해 사물인터넷 및 웨어러블용 고성능 전자기기를 제조하는 핵심 생산 기술이 될 것으로 전망한다.”라고 말했다. 이건재 교수는 2013년도에 0.18 씨모스(CMOS) 공정기반으로 컴퓨터의 두뇌에 해당하는 휘어지는 유연 고집적회로를 최초로 구현했다. 특히 반도체분야 최고 권위학회인 국제반도체소자학회(IEDM)에서 초청받아 발표하는 등 세계적인 주목을 받았다. 한국기계연구원 김재현 박사 연구팀은 2009년부터 롤 스탬프를 이용해 박막소자를 옮기는 기술을 연구하고 있다. 관련 롤 전사 장비 기술을 디스플레이 및 반도체 용도의 롤 장비 회사에 기술이전하기도 했다. 이번 연구는 2013년부터 진행된 한국기계연구원의 나노소재 응용 고성능 유연소자기술 기반구축사업의 일환으로 수행됐다. 이건재 교수는 교원창업을 통해 유연한 고집적회로 관련 기술 상용화를 계획 중이다. □ 그림 설명 그림1. 연속 롤-패키징 공정의 개요 모식도 그림2. 제작된 유연 실리콘 낸드 플래시메모리
2016.09.01
조회수 15818
배병수 교수, 오징어 폐기물로 플렉서블 전자소자 제작용 투명종이 개발
〈 배 병 수 교수 〉 우리 대학 신소재공학과 배병수 교수와 울산대학교 첨단소재공학부 진정수 교수 공동 연구팀이 오징어의 폐기물을 재료로 플렉서블 기기의 기판으로 사용 가능한 투명종이를 개발했다. 이번 연구 성과는 재료분야 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’7월 7일자 표지논문으로 선정됐다. 식물의 주성분인 셀룰로오스로 이뤄진 종이는 기존의 일상적인 용도에서 벗어나 최근 다양한 미래 친환경 플렉시블 전자소자의 기판소재로서 주목을 받고 있다. 하지만 기존의 일반적인 종이는 마이크로(10-6)미터 크기의 굵은 셀룰로오스 섬유로 이루어져 가시광의 산란을 일으켜 불투명할 뿐만 아니라 쉽게 찢어지는 문제가 있었다. 반면 투명 종이는 나노(10-9)미터 크기의 나노섬유로 제작해 기존의 종이에 비해 매우 높은 투명성과 우수한 기계적 특성을 나타낼 수 있다. 차세대 플렉시블 디스플레이나 생체친화적인 기능성 전자소자의 기판소재로 국제적으로 활발한 연구가 진행 중이다. 현재까지 보고된 투명종이의 원료는 대부분 식물의 성분인 셀룰로오스 나노섬유에 집중돼 있었다. 그러나 연구팀은 게와 새우 껍질 및 오징어 내골격의 주성분이면서 셀룰로오스보다 생체친화성이 뛰어난 키틴 나노섬유를 이용해 투명종이 개발에 성공했다. 키틴은 셀룰로오스와 함께 지구상에 가장 많이 존재하는 천연고분자로서 ‘바다의 셀룰로오스’라고 불린다. 기계적으로 매우 강하면서도 생분해성과 생체친화성이 뛰어나 미래 친환경 소재로 각광받고 있다. 그러나 이 같은 장점에도 불구하고 수소결합에 의한 키틴 특유의 불용성(용매에 녹지 않는 성질)과 필름 제작 시 생기는 수축현상으로 인해 키틴 나노섬유를 이용한 투명종이 개발에는 상당한 어려움이 있었다. 이러한 문제를 해결하기 위해 연구팀은 용해성이 상대적으로 높은 오징어 내골격 유래 키틴과 수소결합을 효과적으로 끊을 수 있는 용매를 사용했다. 동시에 필름 제작 시 생기는 수축 현상을 원심력을 이용해 억제할 수 있는 새로운 필름 제작 공정을 설계했다. 이를 통해 균일하면서도 매우 투명한 키틴 나노섬유 투명종이를 개발하는 데 성공하였다. 특히 연구팀이 개발한 키틴 나노섬유 투명종이는 기존의 종이처럼 접을 수 있고 인쇄도 가능할 뿐만 아니라, 대표적인 고성능 합성 플라스틱 필름들과 견주어도 전혀 손색이 없는 성능을 보였다. 또한 연구팀은 이번에 개발한 키틴 나노섬유 투명종이를 기판으로 사용해 최초로 플렉서블 유기발광다이오드(OLED) 디스플레이 소자를 제작하는 데 성공함으로써 나노섬유 투명종이의 응용 가능성을 검증하였다. 연구팀은 “버려지는 오징어 폐기물을 원료로 개발한 키틴 나노섬유 투명종이는 친환경 소재의 중요성과 수요 증대와 발맞춰 향후 플렉시블 디스플레이뿐만 아니라 다양한 미래 친환경 전자소자의 플랫폼으로도 이용될 수 있을 것이라고 기대된다.”라고 밝혔다. 이번 연구는 산업통상자원부 및 민간기업의 협력 투자로 발족된 '미래 디스플레이 핵심 원천기술 개발(KDRC)' 사업의 일환으로 진행됐다. □ 사진 설명 사진 1. 휘어지는 유기발광다이오드 사진 사진2. 제작된 키틴 나노 섬유 투명 종이는 기존의 종이처럼 접을 수 있고 그를 이용한 인쇄도 가능함
2016.07.11
조회수 14673
유승협 교수, 효율성과 유연성 갖춘 OLED 기술 개발
〈 유 승 협 교수 〉 우리 대학 전기및전자공학부 유승협 교수와 POSTECH 신소재공학과 이태우 교수 공동 연구팀이 손상 없이 반복적으로 휘어지면서 우수한 효율을 갖는 플렉서블 유기발광다이오드 (OLED) 기술을 개발했다. 그래핀, 산화티타늄, 전도성 고분자를 복합 전극으로 활용하는 이 기술로 효율 극대화와 우수한 유연성을 동시에 얻을 수 있어 향후 편의성과 활용도를 높일 수 있을 것으로 기대된다. 최성율 교수, 김택수 교수가 공동 연구팀으로 참여하고 이재호 박사과정 학생, POSTECH 한태희 박사와 박민호 박사과정 학생이 공동 1저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 2일자 온라인 판에 게재됐다. 현재 플렉서블 OLED 기술은 엣지형 스마트폰, 커브드 OLED 텔레비전 등에 사용되지만 플렉서블 OLED를 곡면 형태로 휘게 만든 후 고정 시키는 방식으로만 적용되고 있다. 반복적 휨이 가능한 플렉서블 OLED의 구현을 위해선 소재 및 관련 기술의 지속적 발굴이 중요하다. 특히 반복적으로 휘어질 때 각 구성 요소들이 깨지거나 손상되지 않도록 하는 것이 매우 중요하다. 그래핀은 얇은 두께를 통한 우수한 유연성 및 전기적 특성, 광학적 투명성을 갖는다. 이 특성들은 OLED에 주로 사용되는 산화물계 투명전극의 쉽게 깨지는 현상을 극복할 수 있는 기술로 각광받고 있다. 그러나 플렉서블 OLED가 주로 쓰이는 웨어러블 기기는 배터리 용량이 제한적이기 때문에 유연성과 동시에 OLED의 효율을 함께 확보하는 것이 중요하다. OLED는 일반적으로 공진현상(Resonance)(용어설명) 현상을 활용해 발광 효율을 향상시킬 수 있다. 공진현상을 일으키기 위해서는 일정량 이상의 빛 반사가 발생하는 투명 전극이 필요한데 그래핀만을 투명전극으로 사용하면 반사가 적어 광 효율이 낮다는 한계가 있다. 연구팀은 위의 유연성 및 효율성 문제를 해결하기 위해 기존의 그래핀에 산화티타늄(TiO2)과 전도성 고분자 형태를 결합한 복합 전극층을 개발했다. 이 구조에서 각각의 전극 층은 서로의 단점을 보완해주는 협력적 역할을 해 공진 효과를 극대화한다. 연구팀이 개발한 복합전극 층은 산화티타늄의 높은 굴절률과 전도성 고분자의 낮은 굴절률이 함께 활용된다. 이를 통해 전극으로부터의 유효 반사율을 높여줘 공진현상이 충분히 활용될 수 있다. 또한 전도성 고분자의 낮은 굴절률은 표면 플라즈몬의 손실로 인한 효율 감소까지 줄여준다. 기존 27.4%의 양자효율에서 1.5배 향상된 40.5%의 외부양자효율을 보이는 OLED를 구현했다. 이는 동일 발광재료를 이용해 보고된 그래핀 기반 OLED 중 가장 높은 효율이다. 효율을 향상시키는 구조를 도입하면 유연성 등의 다른 특성이 나빠지는 트레이드 오프 현상이 종종 발생한다. 연구팀은 산화티타늄 막이 구부러질 때 깨짐을 방해하는 자체 특성이 있어 기존 산화물 투명전극보다 4배 높은 변형에도 견디는 것을 확인했다. 이를 이용해 유연성 저하를 최소화하고 성능 극대화에 성공했다. 연구팀의 플렉서블 OLED는 곡률 반경 2.3mm에서 1천 회 구부림에도 밝기 특성이 변하지 않아 높은 성능과 유연성을 동시에 확보할 수 있음을 증명했다. 유 교수는 “분야를 넘어선 융합연구가 아니었다면 이번 연구는 불가능했을 것이다”며 “이번 연구 성과가 플렉서블, 웨어러블 디스플레이나 인체 부착형 센서용 플레서블 광원의 성공에 중요한 기틀을 제공할 것이다”고 말했다. 이번 연구는 한국연구재단 공학연구센터 사업의 일환인 차세대 플렉서블 디스플레이 융합센터 (CAFDC), 글로벌 프론티어 소프트 일렉스토닉스 연구단, KAIST 그래핀 연구센터, 산업통상자원부의 IT R&D 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 그래핀 복합 전극층 기반 OLED의 동작사진 그림2. 산화티타늄 (TiO2)-그래핀-전도성 고분자 복합 전극 기반 플렉시블 OLED 구조 모식도
2016.06.03
조회수 15067
몸에 스티커 붙여 생체신호 측정한다
우리 대학 전기 및 전자공학과 유회준 교수, 유승협 교수 공동 연구팀이 신체 모든 부위에 손쉽게 부착이 가능한 생체신호 측정 스마트 스티커 센서를 개발했다. 연구팀의 스티커 센서는 반도체 칩과 휘어지는 유기광전소자를 결합한 초저전력 센서로 심전도, 근전도 뿐 아니라 산소 포화도도 측정 가능해 의료 및 헬스케어 분야에서 광범위하게 응용될 것으로 기대된다. 이용수 박사과정과 이현우 석사과정이 주도한 이 기술은 미국 샌프란시스코에서 열린 세계적 반도체 학술대회 ISSCC(국제고체회로설계학회)에서 3일(현지시간) 하이라이트 논문으로 발표됐다. 스마트 스티커 센서는 길이 55mm, 너비 25mm의 직사각형 페트 필름(PET Film)에 센서, 처리기, 무선송수신기 기능을 집적한 초저전력 시모스 단일칩시스템(CMOS SoC)을 부착한 형태로 하이브리드 집적기술을 활용했다. 연구팀은 적, 녹색의 유기발광다이오드(OLED)와 유기광센서(OPD)로 구성된 유기광전소자를 사용해 전력 소모를 크게 줄였다. 산소 포화도 측정에는 녹색, 적색 광원이 동시에 필요한데 녹색 파장대역에서 효율이 낮은 기존 발광다이오드와 달리, OLED는 두 색의 파장대역 모두에서 고르게 높은 양자효율을 보인다. 동시에 광손실이 적도록 인체에 밀착 가능한 유연함을 가져 적은 구동 전류로 충분한 신호를 확보했다. 연구팀은 기존 기기들이 블루투스 통신으로 데이터를 전송하는 것과 달리 전도성이 존재하는 인체를 통신매질로 이용했다. 고속 저전력 전송이 가능한 인체매질통신 기술을 실현해 무거운 외부 소자 없이 초저전력으로 데이터 통신이 가능하다. 또한 기존 기기들이 개인차나 부위에 상관없이 항상 최대의 빛을 방출하는 것에 비해 스마트 스티커 센서는 자동으로 수신부의 빛 양을 모니터링해 상황에 맞춰 빛을 조절한다. 이를 통해 주변 빛이나 동작에 따른 신호 잡음을 효과적으로 제거하는 기술도 갖췄다. 또한 유기광전소자 특성상 빛의 밝기가 시간의 흐름에 따라 서서히 감소할 수 있지만 이 스티커 센서는 일정한 빛이 나오도록 제어해 장기간 일정한 밝기를 유지할 수 있다. 스마트 스티커 센서는 총 200마이크로와트(μW) 미만의 초저전력으로 구동 가능해 기존 기기의 수~수십 밀리와트(mW)에 비해 매우 감소된 전력 소비량을 보였다. 또한 동전 배터리 포함 약 2그램의 무게로 피부에 완벽히 부착이 가능해 48시간 이상 지속적으로 생체신호를 측정할 수 있다. 유회준 교수는 “국내외 IT 기업들이 차세대 산업으로 웨어러블 헬스케어를 주목하고 관련 디바이스를 출시하고 있다”며 “시장 선점을 위해서는 초저전력 및 소형화는 물론이고 시계, 밴드 같은 액세서리 형태에서 한 단계 나아가는 변화를 보여야 할 것이다”고 말했다. 유승협 교수는 “이번 스마트 스티커 센서의 개발로 플렉서블 OLED와 유기광센서 응용에 새 가능성을 열었다”고 말했다. 연구팀은 관련 회사에 기술이전을 통해 올해 내로 상용화할 예정이라고 밝혔다. □ 그림 설명 그림1. 스마트 스티커 센서에 쓰인 플렉서블 OLED와 유기포토센서 그림2. 반도체 칩과 유기광전 소자 결합 하이브리드 스마트 스티커 센서 그림3. 스마트 스티커 센서 씨모스 단일칩시스템(CMOS SoC)
2016.02.05
조회수 15437
신용카드 두께 플렉서블 리튬이온 배터리 개발
최장욱 교수 우리 대학 EEWS 대학원 최장욱(40) 교수와 한국표준과학연구원 송재용(44) 박사 공동 연구팀은 신용카드보다 얇고 무선 충전이 가능한 플렉서블 리튬이온 배터리를 개발했다고 밝혔다. 연구 성과는 나노과학분야 학술지 ‘나노 레터스(Nano Letters)’ 3월 6일자 온라인 판에 게재됐다. 이번 연구는 모바일 전자기기, 전기 자동차 등 폭넓은 분야의 전원으로 사용되는 리튬이온 배터리가 플렉서블 전자기기에도 적합한 전원으로 개발됐다는 의의를 갖는다. 기존 리튬이온 배터리는 양극, 분리막, 음극을 샌드위치처럼 층층이 쌓는 적층방식이기 때문에 두께를 줄이기 어려웠다. 또한 층 사이에 발생하는 마찰로 인해 구부리기 어렵고, 전극 필름이 벗겨져 성능 유지에 한계가 있었다. 연구팀은 적층이라는 고정관념에서 벗어나 분리막을 없애고 양극과 음극을 평면으로 동일선상에 배열한 뒤, 양극 간 격벽을 둬 리튬이온 배터리에서 발생할 수 있는 합선, 전압강하 등의 현상을 없애는 데 주력했다. 이후 5천 번 이상의 연속 굽힘 실험을 통해 배터리 성능 유지와 더불어 더 유연한 새로운 개념의 전극 구조가 가능함을 확인했다. 플렉서블 배터리는 통합형 스마트 카드, 미용 및 의료용 패치, 영화 ‘아이언 맨’처럼 목소리와 몸짓으로 컴퓨터에 명령할 수 있는 피부 부착형 센서 등에 적용될 수 있다. 더 나아가 연구팀은 이 배터리에 전자기 유도 및 태양전지를 적용해 무선 충전 기술도 함께 개발하는 데 성공했다. 현재는 이 동일 평면상 배터리 기술을 프린팅 기술과 접목해 대량 생산 공정을 개발 중이며, 궁극적으로 반도체, 배터리 등의 전자제품을 3D 프린터로 생산할 수 있는 새 패러다임을 목표로 하고 있다. 최장욱 교수는 “현재 개발된 기술은 피부 부착형 의료용 패치의 전원 역할을 해 패치 기능의 다양화에 기여할 것”이라고 말했다. 이번 연구는 한국연구재단의 중견연구자사업과 국가과학기술연구회 융합실용화 연구사업의 지원을 받아 수행됐다. □ 사진설명 사진 1. 약물 전달 패치와 일체화된 플렉서블 이차전지 사진 2. 플렉서블 배터리 구성도 사진 3. 플렉서블 배터리를 이용해 제작한 스마트카드
2015.03.17
조회수 14838
김봉수 교수 연구팀, 그래핀을 이용한 플렉서블 전계방출 디스플레이(FED)용 이미터 전극 개발
-『Advanced Materials』온라인판 11월 5일자 게재 - 우리대학 화학과 김봉수 교수 연구팀이 新소재 그래핀 위에 코발트 게르마늄 나노선을 성장시켜 ‘차세대 플렉서블 전계방출 디스플레이’용 이미터 전극을 개발했다. ‘차세대 플렉서블 전계방출 디스플레이(FED)"용 고효율 · 고내구성 이미터(Emitter) 전극 기술이 개발되어, 향후 초박형(超薄形) 두루마리 컴퓨터 · TV, 3차원 디스플레이 등 다양한 분야에 응용될 것으로 기대된다. ‘꿈의 디스플레이로’로 불리는 전계방출 디스플레이(Field Emission display, FED)는 LCD보다 얇게, 브라운관 화질보다 선명하게 화면을 구현할 수 있고, 전력소모가 LCD의 1/4, PDP의 1/6밖에 안 들며 내부에 수은 등 공해 물질이 전혀 없는 친환경 디스플레이다. 특히 휘도가 아주 높아서 차세대 3차원 디스플레이를 구현할 수 있다. FED는 상하 기판 사이에 진공으로 채워진 구조로 되어있으며, 상판(양극판)에는 형광체가 도포되어 있고, 하판(음극판)에는 미세한 마이크론 크기의 전자발사체(Emitter) 들이 무수히 형성되어 있다. 우수한 FED를 만들기 위해서는 고효율․안정한 구조의 이미터가 무엇보다 중요한 데, 지금까지 이미터 재료로서 주로 연구되던 탄소나노튜브(CNT)는 깜빡거림 및 내구성 등의 문제점을 가지고 있었다. 김봉수 교수 연구팀은 새로운 이미터 재료로 최근 新소재로 각광받고 있는 그래핀과 단결정 코발트 게르마늄 합금을 활용하여, ‘플렉서블’하면서 ‘효율적인’ 전계 방출 디스플레이 개발의 새로운 전기(轉機)를 마련했다. 그래핀은 흑연에서 얇은 한 층을 떼어낸 것으로 투명하고 수 nm이하의 초박형 제작이 가능하며, 뛰어난 전기전도성과 열전도성을 지니고 있어 고성능 투명전극으로 적합하다. 금번 연구팀은 큰 종횡비를 가지고 화학적 및 열적 내구성이 매우 우수한 단결정 코발트 게르마늄 합금 나노선을 최초로 개발했고, 이를 다층 그래핀 위에 수직으로 성장시키는 데 성공했다. 이 구조는 탄소나노튜브(CNT)에 필적하는 뛰어난 전계방출 특성을 보이면서 보다 우수한 내구성을 가지는 것으로 나타났다. 김봉수 교수는 "투명하고 구부릴 수 있는 그래핀 전극 위에 코발트 게르마늄 합금 나노선을 결합시켜 개발된 고효율 전계 방출 이미터는, 초박형 두루마리 컴퓨터·TV 및 3차원 디스플레이 등의 다양한 응용이 가능하여 차세대 디스플레이 시장을 선도할 수 있는 핵심 원천기술이 될 것이다.“라고 밝혔다. 한편, 이번 연구결과는 신소재 분야의 세계적 학술지인 "어드밴스드 머티리얼즈 (Advanced Materials)"지 온라인판 11월 5일자에 게재되었고, 현재 국·내외 특허 출원 중이다.
2009.11.13
조회수 18445
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1