-
페트병 대체할 미생물 플라스틱 생산 성공하다
현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다.
우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다.
유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다.
*단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함
이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테리움에서 2-피론-4,6-다이카복실산과 4종의 피리딘 다이카복실산 (2,3-, 2,4-, 2,5-, 2,6-피리딘 다이카복실산)을 포함한 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 미생물 균주를 개발했다.
연구팀은 대사공학 기법을 통해 여러 유사 방향족 다이카복실산의 전구체로 사용되는 프로토카테츄산의 대사 흐름을 강화하고 전구체의 손실을 방지하는 플랫폼 미생물 균주를 구축했다.
이를 기반으로 전사체 분석을 통해 유전자 조작 타겟을 발굴해 76.17g/L의 2-피론-4,6-다이카복실산을 생산하였고, 3종의 피리딘 다이카복실산 생산 대사회로를 신규 발굴 및 구축하여 2.79g/L의 2,3-피리딘 다이카복실산, 0.49g/L의 2,4-피리딘 다이카복실산, 1.42g/L의 2,5-피리딘 다이카복실산을 생산하는 데 성공했다.
또한, 연구팀은 2,6-피리딘 다이카복실산 생합성 경로 구축 및 강화를 통해 15.01g/L의 생산을 확인하며 총 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 데 성공했다.
결론적으로, 2,4-, 2,5-, 2,6-피리딘 다이카복실산을 세계 최고 농도로 생산하는 데 성공하였다. 특히 2,4-, 2,5-피리딘 다이카복실산은 기존에 극미량 (mg/L) 생산되던 것을 g/L 규모의 생산까지 달성하였다.
이번 연구를 기반으로 다양한 폴리에스터 생산 산업공정으로의 응용이 기대되며, 유사 방향족 폴리에스터 생산에 관한 연구에도 적극 활용될 수 있으리라 기대된다.
교신저자인 이상엽 특훈교수는 “미생물을 기반으로 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 친환경 기술을 개발했다는 점에 의의가 있다”며 “이번 연구가 앞으로 미생물 기반의 바이오 단량체 산업이 석유 화학 기반의 화학산업을 대체하는 데 일조할 것”이라고 밝혔다.
해당 연구 결과는 국제 학술지인 `미국 국립과학원 회보(PNAS)'에 10월 30일 자 게재됐다.
※ 논문명 : Metabolic engineering of Corynebacterium glutamicum for the production of pyrone and pyridine dicarboxylic acids
※ 저자 정보 : 조재성(한국과학기술원, 공동 제1저자), 찌웨이 루오(한국과학기술원, 공동 제1저자), 문천우(한국과학기술원, 공동 제1저자), Cindy Prabowo (한국과학기술원, 공동저자), 이상엽(한국과학기술원, 교신저자) 포함 총 5명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제 책임자 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.11.07
조회수 786
-
인공지능 화학 학습으로 새로운 소재 개발 가능
새로운 물질을 설계하거나 물질의 물성을 예측하는 데 인공지능을 활용하기도 한다. 한미 공동 연구진이 기본 인공지능 모델보다 발전되어 화학 개념 학습을 하고 소재 예측, 새로운 물질 설계, 물질의 물성 예측에 더 높은 정확도를 제공하는 인공지능을 개발하는 데 성공했다.
우리 대학 화학과 이억균 명예교수와 김형준 교수 공동 연구팀이 창원대학교 생물학화학융합학부 김원준 교수, 미국 UC 머세드(Merced) 응용수학과의 김창호 교수 연구팀과 공동연구를 통해, 새로운 인공지능(AI) 기술인 ‘프로핏-넷(이하 PROFiT-Net)’을 개발하는 데 성공했다고 9일 밝혔다.
연구팀이 개발한 인공지능은 유전율, 밴드갭, 형성 에너지 등의 주요한 소재 물성 예측 정확도에 있어서 이번 기술은 기존 딥러닝 모델의 오차를 최소 10%, 최대 40% 줄일 수 있는 것으로 보여 주목받고 있다.
PROFiT-Net의 가장 큰 특징은 화학의 기본 개념을 학습해 예측 성능을 크게 높였다는 점이다. 최외각 전자 배치, 이온화 에너지, 전기 음성도와 같은 내용은 화학을 배울 때 가장 먼저 배우는 기본 개념 중 하나다.
기존 AI 모델과 달리, PROFiT-Net은 이러한 기본 화학적 속성과 이들 간의 상호작용을 직접적으로 학습함으로써 더욱 정밀한 예측을 할 수 있다. 이는 특히 새로운 물질을 설계하거나 물질의 물성을 예측하는 데 있어 더 높은 정확도를 제공하며, 화학 및 소재 과학 분야에서 크게 기여할 것으로 기대된다.
김형준 교수는 "AI 기술이 기초 화학 개념을 바탕으로 한층 더 발전할 수 있다는 가능성을 보여주었다ˮ고 말했으며 “추후 반도체 소재나 기능성 소재 개발과 같은 다양한 응용 분야에서 AI가 중요한 도구로 자리 잡을 수 있는 발판을 마련했다ˮ고 말했다.
이번 연구는 KAIST의 김세준 박사가 제1 저자로 참여하였고, 국제 학술지 `미국화학회지(Journal of the American Chemical Society)' 에 지난 9월 25일 字 게재됐다.
(논문명: PROFiT-Net: Property-networking deep learning model for materials, PROFiT-Net 링크: https://github.com/sejunkim6370/PROFiT-Net)
한편 이번 연구는 한국연구재단(NRF)의 나노·소재 기술개발(In-memory 컴퓨팅용 강유전체 개발을 위한 전주기 AI 기술)과 탑-티어 연구기관 간 협력 플랫폼 구축 및 공동연구 지원사업으로 진행됐다.
2024.10.10
조회수 1778
-
‘불균일 확산’ 160년 난제 풀다
우리 연구진이 160년 넘게 풀리지 않던 불균일 확산 현상의 물리적 원인을 규명했다.
우리 대학 수리과학과 김용정 교수와 바이오및뇌공학과 최명철 교수 연구팀이 기존 확산 법칙이 하지 못했던 불균일한 환경에서 발생하는 분류 현상을 설명하는 새로운 확산 법칙과 실험적 증명을 제시해, 과학의 중요한 진전을 이뤄냈다고 2일 밝혔다.
미시적 입자들의 무작위적인 움직임이 만들어 내는 거시적 질량 이동 현상을 '확산'이라고 한다. 확산은 물리, 화학, 생물, 재료 등 자연 현상뿐만 아니라 정보, 경제, 주가 변동 등 사회 현상에 이르기까지 거의 모든 분야에서 발생하는데, 이는 무작위성(randomness)이 확산 현상의 주요 원인이기 때문이다.
1905년 아인슈타인은 확산을 브라운 운동과 결합해 분자의 무작위 행보(random walk)로 설명했고, 그 이후 균일한(homogeneous) 환경에서의 확산 이론은 완벽하게 정립됐다.
반면, 1856년 루트비히(Ludwig)는 불균일(heterogeneous)한 환경에서는 물질이 확산에 의해 섞이는 것이 아니라 오히려 분류(fractionation)되는 현상을 발견했다.
이후, 확산 이외에 다른 추가적인 대류(advection) 현상이 존재해서 분류 현상을 만드는지, 아니면 입자의 무작위 움직임에 의한 것인지에 대한 의문과 논쟁은 160여 년간 이어져 왔다.
연구팀은 ‘아인슈타인의 입자적 설명'이 불균일한 환경에서 발생하는 분류 현상을 설명할 수 있을 것이라는 가정하에 연구를 진행했다. 연구 결과, 미시적 수준에서의 무작위 행보(random walk)가 불균일한 환경에 적용되면 확산 계수 D는 전도도 K와 운동성 M으로 나뉘며 (D = KM), 이 중 운동성 M에 의해 분류 현상이 발생한다는 것을 수학적 계산과 유도로 밝혔다.
물리적 직관으로 보이지 않던 것이 수학적 계산을 통해 명확해진 것이다. 이렇게 만들어진 새로운 확산 법칙은 기존의 확산 법칙처럼 계수 D 하나로만 이루어지지 않고, 두 계수에 의해 결정되는 ‘2개 요소 확산 법칙(two-component diffusion law)'이 된다.
새로운 확산 법칙이 분류 현상을 완벽하게 설명할 수 있다면, 추가적인 대류 현상은 존재하지 않으며, 오직 입자들의 무작위 운동만으로 분류 현상이 발생한다는 것이 증명된다.
확산의 특성상, 분류 현상을 검증할 정도의 정밀도로 데이터를 측정하는 것이 KAIST 연구팀이 수행한 실험의 도전적 요소였으며, 연구팀은 이 사실을 실험으로 검증해 냈다.
김용정 교수는 "이번 연구는 공간적으로 이질적인 환경에서 확산만으로도 입자의 분류가 가능하다는 것을 입증한 중요한 발견으로 기존 확산 법칙이 설명하지 못한 현상을 정확히 해석해냈다.”고 말했다. 최명철 교수는 “향후 생명과학 및 재료과학 분야에서 새로운 분리 기술 개발에 기여할 것이며 나아가, 불균일한 환경에서의 확산 현상을 다루는 다양한 분야에서 제시된 확산 법칙이 활용될 수 있을 것으로 기대한다" 고 밝혔다.
연구팀은 후속 연구로 온도 불균일에 의한 분류 현상과 고체 내의 성분 불균일에 의한 분류 현상을 연구할 계획이다. 다양한 종류의 분류 현상이 2개 요소 확산 법칙으로 설명될 수 있음을 밝히고, 그 특성을 규명할 것을 계획하고 있다.
수리과학과 김호연 박사와 바이오및뇌공학과 이근민 박사과정생이 공동 제1 저자로, 김용정 교수와 최명철 교수가 공동 교신저자로 참여한 이번 연구는 국제학술지 '미국화학회지(Journal of American Chemical Society)'에 8월 30일 字 온라인 게재됐다.
(논문명: Fractionation by Spatially Heterogeneous Diffusion: Experiments and Two-Component Random Walk Model)
이 연구는 한국연구재단, 보건복지부, KAIST의 지원을 받아 수행됐다.
2024.10.02
조회수 1653
-
염소 제거로 폐플라스틱 재활용 쉬워진다
전 세계의 플라스틱 생산량이 증가함에 따라 폐기되는 플라스틱의 양도 증가하게 돼 여러 가지 환경적, 경제적 문제를 일으키고 있다. 한국 연구진이 고성능 촉매를 개발해 플라스틱 폐기물의 분해와 재활용을 쉽고 경제적으로 할 수 있도록 하는 기술을 개발하여 화제다.
우리 대학 생명화학공학과 최민기 교수, 충남대학교 에너지 과학기술 대학원 신혜영 교수 공동연구팀이 폐플라스틱의 분해 및 재활용 공정의 중요 반응인 탈염소 반응의 반응 메커니즘을 규명하고 미량의 백금으로도 염소를 효과적으로 제거할 수 있는 촉매를 개발했다고 26일 밝혔다.
플라스틱의 재활용을 위한 다양한 연구가 진행되고 있는데, 특히 열분해를 이용한 화학적 재활용 방법은 복잡하고 비경제적인 플라스틱 폐기물의 분류 과정을 생략할 수 있어 산업적으로 큰 주목을 받고 있다. 또한 이때 생성되는 유분은 플라스틱의 원료인 에틸렌, 프로필렌으로 변환이 가능하기 때문에 완벽한 플라스틱의 순환 경제를 가능케 한다.
하지만 폐플라스틱의 열분해유 내에는 후속 공정에 앞서 제거가 필요한 다양한 불순물들이 포함돼 있다. 특히, 폴리염화비닐(PVC)의 열분해로 생성되는 염소 화합물은 반응기 부식을 유발하고, 촉매를 비활성화시키므로 화학적으로 제거하는 것은 폐플라스틱 재활용에 있어 매우 중요하다. 다만 기존 석유와 같은 탄소 자원에는 염소가 포함돼 있지 않기 때문에 염소를 제거하는 촉매 공정은 현재까지 연구된 바가 없었다.
공동연구팀은 감마 알루미나에 미량(0.1wt%)의 백금을 담지한 촉매를 사용해 탈염소 반응의 메커니즘을 규명하고, 고성능 촉매를 설계했다. 연구 결과, 탄소와 염소 사이의 결합을 끊고 백금에서 활성화된 수소가 감마 알루미나 표면에 전달돼 염소를 염산(HCl)의 형태로 제거하는 독특한 반응 메커니즘을 확인했다.
연구팀은 다량(7,500ppm)의 염소를 포함하고 있는 해양 폐기물 기반의 폐플라스틱 열분해유를 이용한 반응에서도 직접 개발한 촉매를 사용했을 때 염소가 98% 이상 효과적으로 제거됨을 밝혔으며, 높은 장기 안정성을 보임을 확인했다.
최민기 교수는 “탈염소 반응은 폐플라스틱의 재활용에 있어 매우 중요한 반응이지만 현재까지 심도 있게 연구되지 않았다”며, “이번 연구는 세계 최초로 탈염소 반응의 메커니즘을 규명한 것으로 고성능 탈염소 촉매 개발을 앞당기는 데 큰 역할을 할 것이다”고 말했다.
이번 연구는 생명화학공학과 석진 박사과정 학생, 충남대학교 에너지 과학기술대학원 판 티 옌 니(Phan Thi Yen Nhi) 석사과정 학생이 공동 제1 저자로 참여했으며, 연구 결과는 국제 저명 학술지 ‘미국화학회지(Journal of the American Chemical Society)’에 지난 8월 28일 자 온라인판에 게재됐다.
※ 논문명: Catalytic Synergy between Lewis Acidic Alumina and Pt in Hydrodechlorination for Plastic Chemical Recycling
한편, 이 연구는 롯데케미칼 탄소중립연구센터와 한국연구재단 중견연구자 지원사업의 지원을 받아 수행되었다.
2024.09.28
조회수 1349
-
지질 뗏목의 원리 밝혀 질병 치료에 희소식
지질 뗏목은 세포막 간 융합, 신호 전달, 바이러스 침투 등 세포 기능과 질병 발병의 핵심 과정에 중요한 역할을 한다. 한국 연구진이 지금까지 알려지지 않았던 지질 뗏목의 정렬 원인과 그 조절 메커니즘을 밝혀내어 세포막 간 상호작용을 조절하여 질병 치료에 새로운 접근법을 제공할 수 있을 것으로 기대된다.
우리 대학 바이오및뇌공학과 최명철 교수팀이 고등과학원(원장 최재경) 현창봉 교수팀, 포항가속기연구소(소장 강흥식) 이현휘 박사와 공동으로 세포막 간의 상호작용을 매개하는 지질 뗏목(Lipid Raft)의 정렬 현상의 원리를 최초로 규명했다고 5일 밝혔다. 세포 융합, 바이러스 침투, 세포 간 신호 전달 등 다양한 세포막 간의 상호작용을 조절할 수 있는 핵심 기전을 밝힌 것이다.
세포막(Cell membrane)은 세포의 내부와 외부를 구분하는 얇고 유연한 막으로, 지질 이중층(lipid bilayer)으로 구성돼 있다. 세포막에는 수많은 막단백질(membrane proteins)이 존재하는데, 이들은 세포가 외부 환경과 소통할 수 있는 창구 기능을 한다.
지질 뗏목은 세포막의 특정 영역으로서, 높은 유동성을 가지는 세포막의 다른 부분들과는 달리 매우 낮은 유동성을 가지며, 기능적으로 연관된 막단백질들을 안정된 뗏목 안으로 모아 효율적인 상호작용을 가능하게 한다. 세포막을 바다로, 막단백질을 사람으로 비유하자면, 망망대해에서 멀리 떨어져 헤엄치는 사람들끼리는 서로 의사소통하기 어렵지만, 이들을 한 뗏목 위에 모두 태워 놓으면 서로 쉽게 대화할 수 있는 것과 비슷하다.
연구팀은 지질 뗏목 위에 존재하는 막단백질 중 많은 수가 세포막 간의 상호작용, 즉 두 세포막이 서로 생체신호를 주고받거나, 단백질을 통해 결합하거나, 두 막이 하나로 합쳐지는 등의 작용에 관여한다는 점에 주목했다.
연구팀은 두 세포막 간의 거리가 지질 뗏목의 정렬을 조절하는 핵심 요인일 것이라는 가설을 세우고, 세포막을 여러 겹 쌓아 놓은 구조의 지질 다중막(lipid multilayer)을 재구성해 이 가설을 검증했다. 이때 지질 뗏목들은 단순히 정렬만 되는 것이 아니라, 각각의 지질 뗏목의 크기가 커지면서 보다 안정된 구조를 형성했다. 두 세포막 사이의 거리가 지질 뗏목의 정렬과 크기를 조절하는 핵심 스위치인 것을 밝혀낸 것이다.
연구팀은 분자동역학(molecular dynamics) 시뮬레이션*을 통해 물 분자층을 분석한 결과, 지질 뗏목들이 정렬된 상태가 정렬되지 않은 상태보다 불안정한 수소결합 층의 부피가 작기 때문에 전체 시스템의 에너지를 최소화하기 위해 지질 뗏목이 자연적으로 정렬되는 것을 밝혀냈다.
*분자동역학 시뮬레이션: 분자 간 상호작용이 주어졌을 때 운동 방정식을 수치적으로 풀어 구조와 동적 과정을 해석하는 방법
최명철 교수는 “지질 뗏목이 세포막 간의 상호작용에 관여한다는 사실은 잘 알려져 있지만, 어떤 원리로 상호작용을 매개하는지는 아직 베일에 싸여 있었다”며, “이번 논문은 세포막 간의 거리가 지질 뗏목의 정렬, 나아가 세포막 사이의 상호작용을 조절하는 핵심 스위치임을 밝혀내어 생명 현상의 바탕이 되는 물리적 환경의 중요성을 재조명하는 이정표적 연구”라고 연구의 의의를 설명했다.
최 교수는 또한 “특히 물 분자의 수소결합이 지질 뗏목의 정렬을 매개하는 중요한 요소임을 보여주었는데, 이는 우리 몸의 약 70%를 차지하는 물이 생명 현상이 일어나는 무대에서 단순한 조연이 아닌 주연으로 활약할 수 있음을 보여준다”고 강조했다. 이어 최 교수는 “지질 뗏목을 모사하는 구조는 현재 생체 센서 등에 활발하게 활용되고 있으며, 이번에 발견한 세포막 사이의 거리라는 스위치를 통해 보다 다양한 기능을 가진 생체 센서들이 개발될 수 있는 공학적 토대도 제공할 것이다”라고 기대감을 내비쳤다.
우리 대학 이수호 박사와 고등과학원 박지현 박사가 공동 제1 저자로, 고등과학원 현창봉 교수와 KAIST 최명철 교수가 공동 교신저자로 참여한 이번 연구 결과는 국제학술지 ‘미국화학회지(Journal of American Chemical Society)’에 5월 22일 字 표지논문(supplementary journal cover)으로 게재됐다. (논문명: Water Hydrogen-Bond Mediated Layer by Layer Alignment of Lipid Rafts as a Precursor of Intermembrane Processes)
한편 이번 연구는 한국연구재단, 보건복지부, KAIST의 지원을 받아 수행됐다.
2024.06.05
조회수 3309
-
현존 최고 성능 세라믹 전기화학전지 개발
온실가스 배출량을 '0'으로 만드는 글로벌 약속 '탄소중립(Net-zero)' 달성을 위해 탄소 배출을 줄이는 수소 에너지의 활용 및 생산은 선택이 아닌 필수적인 요소로 부상하고 있다. 이를 위한 에너지 변환 기술 중 고효율 전력 변환 및 그린수소 생산이 가능한 프로토닉 세라믹 전기화학전지(PCEC)가 미래 수소 에너지 사회를 촉진할 차세대 기술로 주목받고 있다.
우리 대학 기계공학과 이강택 교수, 신소재공학과 정우철 교수, 한국에너지기술연구원 이찬우 박사, 전남대학교 송선주 교수 공동 연구팀이 프로토닉 세라믹 전기화학전지의 산화물 전극 결정구조 제어를 통해 양성자 확산경로를 2차원에서 3차원으로 확장하는 데 성공해 전극의 촉매활성을 크게 향상시켰다고 14일 밝혔다.
비대칭 구조를 갖는 페로브스카이트 산화물계 전극은 구조적인 한계로 인해 양성자의 격자 내 이동이 제한으로 촉매 활성이 낮아 연료전지의 성능이 낮아진다는 문제점이 있었다. 연구팀은 이를 해결하기 위해, 이종 금속원소 후보군을 선정 및 도핑해 격자내에서 양성자가 이동하기 어려운 비대칭 구조를 성공적으로 대칭 구조화하여 양성자 수송 특성을 극대화 하였고, 이를 통해 고성능 전극 설계에 대한 단초를 마련했다. 또한 연구팀은 계산화학*을 통해 전극의 결정구조가 양성자 수송 특성에 미치는 영향에 대한 상관관계를 규명했다.
*계산화학: 컴퓨터를 이용해 화학 시스템의 구조와 반응성을 이론적으로 모델링하고 예측하는 학문
연구팀이 개발한 전극 소재는 프로토닉 세라믹 전기화학전지에 적용돼 현재까지 보고된 소자 중 가장 뛰어난 전력 변환 성능(650도에서 3.15 W/cm2)을 보이며 생산 과정 중 이산화탄소가 배출되지 않는 그린수소 또한 높은 생산 성능(650도에서 시간당 약 770 ml/cm2)을 보였다. 500시간의 장시간 구동 후에 가역 구동(전력 및 그린수소를 교대로 생산)에서도 안정적인 성능을 보여, 제시한 전극 설계 방법의 우수성이 입증됐다.
이강택 교수는 “이번 연구에서 제안한 전극 설계 기법이 프로토닉 세라믹 전기화학전지의 고성능 전력/그린수소 생산에 대한 새로운 방향성을 제시할 것으로 기대되며, 이 기술이 글로벌 넷제로 달성을 위한 수소 생산 및 친환경 에너지 기술 상용화에 촉매제가 될 수 있을 것”이라고 말했다.
우리 대학 기계공학과 김동연 박사과정, 정인철 박사, 신소재공학과 안세종 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 에너지·재료 분야의 세계적 권위지인 ‘어드밴스드 에너지 머터리얼즈, Advanced Energy Materials (IF:27.8)’에 지난 4월 12일 字 후면표지(Back cover) 논문으로 게재됐다. (논문명: On the Role of Bimetal-Doped BaCoO3-���� Perovskites as Highly Active Oxygen Electrodes of Protonic Ceramic Electrochemical Cells)
한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 이공분야기초연구사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2024.05.14
조회수 3783
-
미생물로 자스민 향도 만든다
우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘벤질아세테이트 생산을 위한 미생물 공정’논문을 발표했다고 26일 밝혔다. 이번 논문은 네이처(Nature) 誌가 발행하는 ‘네이처 화학공학(Nature Chemical Engineering)’의 표지논문으로 선정됐다.
※ 논문명 : A microbial process for the production of benzyl acetate
※ 저자 정보 : 최경록(한국과학기술원, 제1 저자), Luo Zi Wei(한국과학기술원, 제2 저자), 김기배(한국과학기술원, 제3 저자), Xu Hanwen(한국과학기술원, 제4 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 5명
향은 화장품 및 식품 산업에서 중요한 요소다. 그중에서도 자스민 향과 일랑일랑 향은 각종 향수와 화장품, 개인 위생용품뿐만 아니라 식품 및 음료 제조에까지 널리 애용되고 있다. 하지만 자스민과 일랑일랑 꽃으로부터의 추출을 통해 생산되는 향료의 양이 수요를 충족시키기 못하기 때문에 산업에서는 두 향료의 향을 내는 주요한 방향성 성분인 벤질아세테이트를 석유로부터 유래한 원료를 이용해 화학적으로 합성해 첨가해 제품을 생산하고 있다. 이상엽 특훈교수 연구팀은 각종 산업에서 널리 이용되는 방향성 화합물인 벤질아세테이트를 친환경적이고 지속가능한 방식으로 생산하고자 시스템 대사공학을 통해 포도당으로부터 벤질아세테이트를 생산하는 대장균 발효 공정을 개발했다. 시스템 대사공학은 석유에 대한 의존도가 높은 기존의 화학산업을 대체할 바이오산업의 핵심인 미생물 세포공장을 보다 효과적으로 개발하기 위해 이상엽 특훈교수가 창시한 연구 분야다.
이상엽 특훈교수팀은 2019년 대장균을 대사공학적으로 개량해 포도당으로부터 벤조산을 생산하는 미생물 균주를 개발한 바 있다. 이번 연구에서는 해당 전략을 바탕으로 포도당으로부터 벤조산을 거쳐 벤질아세테이트를 생합성하는 대사 경로를 개발했다. 연구팀은 포도당으로부터 벤조산을 생합성하는 대사경로를 도입한 상단 균주와 벤조산을 벤질아세테이트로 전환하는 대사 경로가 도입된 하단 균주의 공생배양을 통해 포도당으로부터 벤질아세테이트를 생산하는 데 성공했다. 하지만 해당 공생배양 전략을 활용할 경우 벤조산을 벤질아세테이트로 전환하는 데에 이용되는 효소가 벤조산 생합성 중 생성되는 중간체에 비특이적으로 작용해 신나밀아세테이트라는 부산물을 생성하는 것이 확인됐다. 특히 이 과정에서 벤조산 생합성에 필요한 중간체가 소모되어 목표 화합물인 벤질아세테이트의 생산 효율이 감소된다. 이상엽 특훈교수 연구팀은 효소의 기질 비특이성으로 인한 부산물 생성 문제를 극복하기 위해 발효 초반에는 포도당으로부터 벤조산을 생산하는 상단 균주만을 배양해 벤조산을 우선적으로 생산하고, 하단 균주를 뒤늦게 접종해 배양액 내에 축적된 벤조산을 벤질아세테이트로 전환하는 지연 공생배양 전략을 고안했다. 하단 균주가 도입되는 시점에는 배양액 내 벤조산의 농도가 중간체의 농도보다 월등히 높아 벤조산이 벤질아세테이트로 전환되는 반응이 중간체가 부산물로 전환되는 반응보다 우세하게 진행된다. 연구진은 지연 공생배양 전략을 적용함으로써 추가적인 효소 및 균주 개량을 거치지 않고도 부산물의 생성은 억제하는 동시에 목표 화합물인 벤질아세테이트의 생산 농도는 기존 플라스크 수준의 발효 대비 10배 이상인 2.2 g/L까지 향상시킬 수 있었다. 또한 기술 경제성 분석을 통해 해당 미생물 공정을 통한 벤질아세테이트의 상업적 생산 가능성을 확인했다.
이번 논문의 제1 저자인 최경록 연구교수는 “이번 연구는 벤질아세테이트라는 산업적으로 유용한 화합물을 효과적으로 생산하는 미생물 공정을 개발함과 동시에, 대사공학을 연구 중 효소의 기질 비특이성으로 인해 빈번하게 발생하는 부산물 생성 및 이로 인한 목표 화합물 생산 효율의 저하 문제를 극복하는 새로운 접근을 제시했다는 데 큰 의의가 있다”고 말했다. 또한 이상엽 특훈교수는 “산업적으로 유용한 화합 물질을 지속가능한 방식으로 생산할 수 있는 미생물 공정의 종류와 수를 늘려 나감과 동시에 미생물 균주 개발 중 고질적으로 필연적으로 발생하는 여러 문제를 해결하는 효과적인 전략의 개발에도 힘쓴다면 석유화학산업의 친환경적이고 지속가능한 바이오산업으로의 전환을 더욱 앞당길 수 있을 것”이라고 밝혔다.
한편, 이번 연구는 과기정통부가 지원하는 바이오의료기술개발사업의 ‘지능형 세포공장기술 구현’ 과제 (과제책임자 KAIST 이상엽 특훈교수) 및 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식)의 ‘미생물 대사 시스템 제어를 통한 무기물로부터의 단백질 생산 기술 개발’ 과제 (과제책임자 KAIST 최경록 연구교수)의 지원을 받아 수행됐다.
2024.02.26
조회수 4546
-
전자의 눈으로 본 분자의 놀라운 변신: 이온의 생성 순간과 탈바꿈의 비밀을 밝히다
우리 대학 화학과 이효철 교수(IBS 첨단반응동역학 연구단) 연구팀은 기체 상태 이온의 탄생과 변화 과정을 실시간으로 관찰하는 데 성공했다고 발표했다. 이 연구는 메가전자볼트 초고속 전자 회절 기법을 활용해 분자 이온이 형성되는 순간부터 이온 내 원자들의 위치 변화를 실시간으로 추적하는 데 최초로 성공한 것으로, 이온 화학 분야에서 중요한 돌파구를 마련했다.
이온은 실생활에서부터 우주 공간까지 도처에서 중요한 역할을 수행하고 있다. 소금이 나트륨 이온과 염화 이온으로 분해되어 물에 녹으면, 짠맛을 내고, 몸으로 흡수된 나트륨 이온과 염화 이온은 신경전달과 근육의 움직임을 조절하며, 태양에서는 기체상의 이온의 집합인 플라스마를 통해 핵융합 반응이 일어나 지구에 빛과 에너지를 전달한다. 일상에서 가장 흔하게 접하는 이온의 예는 리튬 이온 배터리인데, 스마트폰, 노트북, 전기 자동차 등에서 널리 사용되는 이 배터리는 리튬 이온이 양극과 음극 사이를 이동하면서 전기를 저장하고 방출하는 원리로 작동한다. 이처럼, 이온은 우리 생활 곳곳에서 중요한 역할을 하고 있으며, 이온의 변화 과정과 구조적 특성, 나아가 동역학을 이해하는 것은 과학과 기술 발전에 있어 매우 중요하다. 그러나 이러한 이온이 형성되는 순간과 이온의 분자 구조 및 형태 변환은 실험적 어려움으로 인해 충분히 탐구되지 못했다. 특히, 기체 상태에서 이온의 구조적 동역학을 포착하는 것은 더욱 도전적인 과제였다.
연구진은 이전에 분자결합이 끊어지는 순간(Science, 2005)과 화학결합을 통해 분자가 탄생하는 순간(Nature, 2015), 그리고 화학 반응의 시작부터 끝까지 전 과정의 분자 구조를 원자 수준에서 관측한 바 있으며(Nature, 2020), 이번에 세계 최초로 기체상 이온의 생성 순간과 구조변화를 실시간으로 관찰하는 데 성공했다. 연구팀은 1,3-다이브로모프로판(DBP)에서 유래한 양이온의 생성 및 구조적 변환을 면밀히 관찰했다. 실험 데이터 분석을 통해 이 분자의 양이온이 생성된 후 구조변화가 일어나지 않는 "구조적 암흑 상태”에 머무르는 현상을 발견하였다. 이 상태는 약 3.6 피코초(1 피코초는 1조 분의 1초) 동안 지속되었으며, 이후 양이온은 네 개의 원자로 이루어진 고리 구조를 가지며, 느슨하게 결합된 브롬 원자를 포함하는 특이한 중간체로 변환되었다. 최종적으로, 느슨하게 붙어 있던 이 브롬 원자는 분리되어 떨어져 나가고, 남은 부분은 세 개의 원자로 이루어진 고리 구조를 가진 브로모늄 이온을 형성했다. 이온은 높은 반응성을 보이기 때문에 오랜 시간 존재하기 힘들고, 선택적인 생성이 힘들기 때문에 이온이 보이는 구조변화를 실시간으로 관측하는 것은 그 중요성만큼이나 힘든 일이었다. 이번 연구는 기존의 한계를 극복하고, 양이온의 생성부터 구조적 변환 과정 모두를 밝혀냄으로써 이온 화학종의 연구에 있어 중요한 돌파구를 마련한 중요한 사례로 평가된다.
연구진은 기존보다 더 빠르고 작은 움직임을 볼 수 있도록 향상된 메가전자볼트 초고속 전자 회절 실험 기법과 새롭게 고안한 신호 처리 기술 및 구조변화 모델링 분석기법을 통해 기체상 분자의 이온화 과정과 그에 따른 구조변화를 실시간으로 포착했다. 한 가지 종류의 이온을 실험에서 관측 가능할 정도의 양으로 만드는 것이 중요한데, 연구팀은 이를 위해, 공명 증강 다광자 이온화 기법을 적용하여 중성 분자에서 전자를 하나 제거하여 양이온을 생성하였다. 이 이온화 과정은 분자를 섬세하게 이온화시키는 데 중요한 역할을 하며, 이를 통해 화합물이 무작위로 분해되는 것을 방지하고, 원하는 특정 이온을 대량으로 생성하게 한다. 연구진은 이 기술을 도입함으로써 분자 이온의 구조적 변화를 정밀하게 관찰하는 것이 가능해질 것이라 기대하였는데, 이번 연구에서 그 효과를 입증하였다. 이러한 실험 결과, 생성된 기체 이온은 바로 구조변화를 나타내는 것이 아니라, 특정한 형태를 유지하다가 급격한 변화를 보이며, 나아가 화학적으로 가장 안전한 고리 형태의 분자가 형성됨을 규명했다.
이 연구는 분자 이온의 구조적 동역학을 실시간으로 관찰한 최초의 사례이다. 연구팀은 메가전자볼트 초고속 전자 회절을 활용하여, 기체 상태에서 이온의 미세한 구조변화를 세밀하게 포착할 수 있었다. 이 실험 기법은 고해상도 공간 및 시간 분해능을 제공함으로써, 이온이 생성되는 순간부터 구조적 변화가 일어나는 전 과정을 정밀하게 추적할 수 있게 하였다. 또한, 이 연구에서는 공명 증강 다광자 이온화 기법을 통해, 분자의 이온화 과정을 더욱 정밀하게 제어할 수 있었다. 이를 통해 연구팀은 원하는 특정 이온을 대량으로 생성하고, 그 구조적 변화를 실시간으로 관찰하는 데 성공했다. 이러한 접근 방식은 기존에는 불가능했던 이온의 세밀한 구조적 특성과 동역학을 이해하는 데 중요한 역할을 했다. 이 연구는 기체 상태의 이온에 대한 깊은 이해를 가능하게 함으로써, 화학 반응의 메커니즘, 물질의 특성 변화, 그리고 우주 화학과 같은 다양한 분야에 대한 새로운 통찰을 제공한다. 이는 이온 화학 분야뿐만 아니라, 관련 과학기술 전반에 걸쳐 큰 영향을 미칠 것으로 기대된다.
제1 저자인 허준 박사는 "이번 발견은 이온 화학의 근본적인 이해를 한 단계 끌어올리며, 미래의 다양한 화학 반응 설계와 우주 화학 연구에 중요한 영향을 미칠 것"이라고 밝혔다. 제1 저자인 김도영 학생은 “기초과학 분야의 발전에 있어 초석의 역할을 할 수 있는 좋은 연구를 하게 되어 기쁘고, 좋은 과학자가 될 수 있도록 앞으로도 열심히 연구하겠다"라고 포부를 밝혔다. 이효철 교수는 “과학기술이 눈부시게 발전했지만, 아직도 우리가 모르는 것 물질세계의 경이로운 비밀이 많다. 이번 연구는 흔하지만 아직은 몰랐던 이온의 신비로운 현상을 하나 더 밝혀낸 것에 불과하다"라고 언급했다. 그리고 “기초과학에 아낌없는 투자가 있었기에 작지만 의미 있는 이정표적 연구 성과를 낼 수 있었다. 앞으로도 R&D 예산이 효과적으로 지원되기를 기대한다"라고 덧붙였다. 이 연구는 이온의 구조적 특성과 반응 메커니즘에 대한 새로운 지식을 제공하며, 향후 관련 분야의 연구에 큰 기여를 할 것으로 기대된다.
이번 연구 결과는 네이처(Nature)지에 게재되었으며, 1월 11일 01시에 온라인으로 공개되었다. 연구 논문의 제목은 "Capturing the generation and structural transformations of molecular ions"이다.
2024.01.11
조회수 3910
-
헤라클레스 인공근육, 2023년 10대 기술 선정
우리 대학 신소재공학과 김상욱 교수 연구팀이 2022년 개발한 헤라클레스 인공근육 기술이 세계 최대 화학/소재분야 학술기관인 국제화학연합(IUPAC, International Union of Pure and Applied Chemistry)에서 ‘2023년 10대 유망기술’로 선정되었다고 5일 밝혔다. (그림 1)
IUPAC은 전 세계 화학/소재 관련 연구자들의 국제적인 협력과 정보교환을 위해 1919년에 설립된 세계 최대 조직기구로서, 2019년부터 매년 인류가 직면하고 있는 다원적 위기에 대한 해결책을 제시하는 10대 유망기술을 선정해 오고 있다. 인공 근육 기술이 이번에 10대 유망기술로 선정된 것은 사회의 지속가능성을 위한 과학기술적 중요성을 인정받은 것이다.
헤라클레스 인공 근육은 국내에서도 그 중요성을 인정받아 과학기술정보통신부와 나노기술연구협의회가 수여하는 2023년 10대 나노기술에도 선정됐다. (기술명: 그래핀 나노 복합소재를 통해 인간 근육보다 17배 강한 헤라클레스 인공근육 개발 기술, 그림 4) 또한 과학기술정보통신부의 2023년 기계·소재 부문 국가연구개발 우수성과 100선에도 선정된 바 있다. (기술명: 그래핀-액정탄성체 복합소재 개발로 인간 근육보다 17배 강한 헤라클레스 인공 근육 세계 최초 구현)
인공 근육에 대한 개념은 17세기 영국 과학자 로버트 훅(Robert Hooke)의 실험에서 최초로 시작됐으나 현실적으로 의미 있는 높은 수축률과 기계적 강도의 실현이 쉽지 않아 그 실용적인 가능성은 최근 30년 전에야 제시되기 시작했다. 또한 합성소재인 인공 근육을 생명체의 생체조직과 어떻게 서로 조화시킬 것인가에 대한 문제 역시 풀리지 않는 난제로 남아있었다.
김상욱 교수 연구팀은 인간 근육을 모방한 구조를 가지면서도 높은 기계적 물성과 구동 성능을 가지는 인공 근육 기술을 개발하는 데 성공했다. 그래핀 소재와 액정섬유를 결합한 복합소재를 통해 가역적인 근육운동이 가능하면서도 근육운동의 다양한 물성값들이 인간 근육을 크게 능가하는 인공 근육을 세계 최초로 개발한 것이다. 이 섬유 형태의 인공 근육은 인간의 근육과 매우 유사한 거동을 해 노약자/장애인을 위한 웨어러블 신체 보조장치나 우주, 심해, 재난환경 등 극한 환경에서도 운동능력을 유지할 수 있는 생체 모방로봇 등에 응용이 가능하다. (그림 2) 이 연구 결과는 세계적인 과학기술 학술지인 ‘네이처 나노테크놀로지(Nature Nanotechnology, IF: 40.5)’에 표지 논문으로 발표된 바 있다. (그림 3)
연구를 주도한 김상욱 교수는 “우리 인공근육 기술이 전 세계의 과학자들이 주목하는 IUPAC 10대 유망기술 및 국내 10대 나노 기술로 선정된 것은 인공 근육 기술의 중요성과 그 의미를 대외적으로 인정받은 것”이라며 “4차 산업 혁명과 같이 향후 미래 사회에 대두될 과학기술 분야에서도 큰 역할을 할 것으로 기대된다”라고 말했다.
한편, 2023년 IUPAC 10대 유망기술에는 김 교수팀의 인공 근육 기술 외에 생물학적 재활용 PET 플라스틱, 바닷물 CO2 제거, 고분자 분해 반응, 화학을 위한 GPT 모델, 광촉매 수소, 웨어러블 센서, 저당도 백신, 박테리아 치료제, 합성 전기화학 등이 선정됐다.
2024.01.05
조회수 8240
-
이산화탄소 분해 과정 원자 수준에서 관찰하다
대기 중의 온실가스를 제거하고 미래 청정 원료를 생산하기 위해 신재생에너지를 활용한 전기화학적 전환 기술은 탄소중립 달성을 위한 산업계 체제 전환 대응 핵심 기술로 주목받고 있다. 하지만, 이산화탄소를 산업적으로 분해/활용하기 위해서 최근 단원자 전이 금속 촉매가 이산화탄소를 분해하는 차세대 촉매로 큰 기대를 모으고 있으나 아직 이 화학반응 메커니즘 및 촉매 활성 부위가 명확히 밝혀지지 않아 고성능 촉매를 개발하는데 여전한 큰 걸림돌이 돼 왔다.
우리 대학 화학과 박정영 교수 연구팀이 이산화탄소(CO2) 전기환원 과정에서 단원자 구리(Cu) 금속 촉매가 분해되는 과정을 실시간 원자단위로 관찰하고, 주된 반응 활성자리임을 규명하는 데 성공했다고 28일 밝혔다.
전기화학 반응을 이용한 이산화탄소 전환 기술은 공정과 반응 조건이 비교적 간단하면서도 특히 구리 기반 촉매를 사용하면 열역학적 방법으로는 불가능한 고부가가치 화합물을 생산할 수 있어 연구활용 가치 기대가 매우 높다. 하지만, 이산화탄소의 환원반응은 일산화탄소(CO), 메탄(CH4), 에탄올(C2H5OH), 수소(H2) 등의 다양한 생성물들을 함께 만들어 낼 뿐만 아니라 촉매 표면 구조의 변화를 일으킨다는 문제점이 함께 한다. 따라서, 이를 해결하기 위해 전극 표면에서 일어나는 이산화탄소의 환원반응 경로 규명 및 표면 구조 거동 분석이 매우 중요해지고 있으나 액체 전해질 환경에서 반응이 이루어지는 탓에 분석에 어려움을 겪고 있다.
박 교수 연구팀은 전기화학 주사 터널링 현미경(EC-STM) 분석법을 적용해 단원자 구리금속 촉매 표면에서 일어나는 이산화탄소 환원반응을 관찰하고, 이때 표면에 형성되는 산화구리 나노 복합체가 주된 반응 활성자리임을 시각적 증거로 처음 제시했다. 연구진은 구리 전극 표면이 이산화탄소 전환과정에서 환원되며 반응 활성도 및 촉매 표면 구조가 달라진다는 점에 착안, 액체-고체 계면에서 단원자 구리금속 촉매 전극과 반응하는 이산화탄소 분자의 분해 과정을 실시간 원자단위로 포착했다.
우리 대학 박정영 교수는 “이번 연구는 액체-고체 계면 분석에 난항을 겪고 있는 상황에서 단원자 구리금속 기반 촉매 표면의 이산화탄소 전기환원 반응 현상을 원자수준으로 관찰할 수 있었고, 이를 통해 촉매 물질의 활성자리를 결정하고 정밀한 화학반응 경로 설계가 가능하다. 이러한 기술성과는 차후에 이산화탄소의 전기화학적 전환 연구 외에도 탄소중립 정책을 위한 다양한 촉매 소재 연구개발에 기여할 것으로 기대한다”고 말했다.
한편, 기초과학연구원, 한국과학기술연구원(KIST), 한국산업통상자원부 그리고 한국연구재단(NRF)의 지원을 받은 이번 연구성과는 국제학술지 ‘어드밴스드 사이언스(Advanced Science IF 17.5)’내부 표지 논문으로 최근 선정됐으며 11월 29일 자로 온라인 게재됐다. (논문 제목: In Situ Probing of CO2 Reduction on Cu-Phthalocyanine-Derived CuxO Complex)
2023.12.28
조회수 3633
-
2.4배 가격 효율적인 챗GPT 핵심 AI반도체 개발
오픈AI가 출시한 챗GPT는 전 세계적으로 화두이며 이 기술이 가져올 변화에 모두 주목하고 있다. 이 기술은 거대 언어 모델을 기반으로 하고 있다. 거대 언어 모델은 기존 인공지능과는 달리 전례 없는 큰 규모의 인공지능 모델이다. 이를 운영하기 위해서는 수많은 고성능 GPU가 필요해, 천문학적인 컴퓨팅 비용이 든다는 문제점이 있다.
우리 대학 전기및전자공학부 김주영 교수 연구팀이 챗GPT에 핵심으로 사용되는 거대 언어 모델의 추론 연산을 효율적으로 가속하는 AI 반도체를 개발했다고 4일 밝혔다.
연구팀이 개발한 AI 반도체 ‘LPU(Latency Processing Unit)’는 거대 언어 모델의 추론 연산을 효율적으로 가속한다. 메모리 대역폭 사용을 극대화하고 추론에 필요한 모든 연산을 고속으로 수행 가능한 연산 엔진을 갖춘 AI 반도체이며, 자체 네트워킹을 내장하여 다수개 가속기로 확장이 용이하다. 이 LPU 기반의 가속 어플라이언스 서버는 업계 최고의 고성능 GPU인 엔비디아 A100 기반 슈퍼컴퓨터보다 성능은 최대 50%, 가격 대비 성능은 2.4배가량 높였다. 이는 최근 급격하게 생성형 AI 서비스 수요가 증가하고 있는 데이터센터의에서 고성능 GPU를 대체할 수 있을 것으로 기대한다.
이번 연구는 김주영 교수의 창업기업인 ㈜하이퍼엑셀에서 수행했으며 미국시간 7월 12일 샌프란시스코에서 진행된 국제 반도체 설계 자동화 학회(Design Automation Conference, 이하 DAC)에서 공학 부문 최고 발표상(Engineering Best Presentation Award)을 수상하는 쾌거를 이뤘다.
DAC은 국제 반도체 설계 분야의 대표 학회이며, 특히 전자 설계 자동화(Electronic Design Automation, EDA)와 반도체 설계자산(Semiconductor Intellectual Property, IP) 기술 관련하여 세계적인 반도체 설계 기술을 선보이는 학회다. DAC에는 인텔, 엔비디아, AMD, 구글, 마이크로소프트, 삼성, TSMC 등 세계적인 반도체 설계 기업이 참가하며, 하버드대학교, MIT, 스탠퍼드대학교 등 세계 최고의 대학도 많이 참가한다.
세계적인 반도체 기술들 사이에서 김 교수팀이 거대 언어 모델을 위한 AI 반도체 기술로 유일하게 수상한 것은 매우 의미가 크다. 이번 수상으로 거대 언어 모델의 추론에 필요한 막대한 비용을 획기적으로 절감할 수 있는 AI 반도체 솔루션으로 세계 무대에서 인정받은 것이다.
우리 대학 김주영 교수는 “미래 거대 인공지능 연산을 위한 새로운 프로세서 ‘LPU’로 글로벌 시장을 개척하고, 빅테크 기업들의 기술력보다 우위를 선점하겠다”라며 큰 포부를 밝혔다.
2023.08.04
조회수 5637
-
빛을 이용해 간단하게 유용한 화합물 만든다
환경 오염을 유발하는 부산물이나, 높은 에너지가 필요한 고온 공정 없이 빛을 이용해 친환경적으로 의약품의 주요 원료를 만들 수 있는 새로운 합성 공정이 개발됐다.
우리 대학 화학과 홍승우 교수(IBS 분자활성 촉매반응 연구단 부연구단장) 연구팀은 광(光)촉매를 이용해 질소 고리화합물을 합성하는 새로운 화학반응을 제시하고, 의약품의 주요 골격인 ‘락탐’과 ‘피리딘’을 하나의 분자에 도입하는 데 성공했다.
‘질소 고리화합물’은 약용 화합물의 주요 구성요소다. 고리(원) 형태로 결합한 탄소 원자 사이에 질소 원자가 끼어 있는 구조로, 여기에 작용기를 결합해 약품을 합성한다. 미국 식품의약국(FDA)이 승인한 약물의 60% 이상이 질소 고리화합물 구조를 포함하고 있다. 신약 후보 물질 발굴만큼이나 질소 고리화합물을 쉽게 합성할 수 있는 전략 개발이 중요한 이유다.
연구팀은 안정적인 유기 분자를 불안정한 삼중항 상태(triplet state)로 만들어 유용 물질을 합성하는 전략을 새롭게 제시했다. 우선 연구팀은 피리딘에 아미드 그룹을 부착한 피리디늄 염이 삼중항 에너지를 가질 수 있음을 계산화학적으로 예측했다. 삼중항은 분자에서 스핀이 한 방향으로 존재하는 상태로, 매우 불안정하여 자연에서는 잘 발견되지 않는다. 삼중항 상태를 상온에서 구현한다면, 기존에 없었던 새로운 화학반응에 적용할 수 있다.
이후 실제 실험을 통해 피리디늄 염을 삼중항 상태로 만들었다. 피리디늄 염이 빛 에너지를 받아 삼중항 상태가 될 수 있도록 광촉매를 활용했다.
제1저자인 이우석 연구원은 “계산화학적 예측과 실험적 확인을 통해 ‘삼중항 에너지 전달’이라는 새로운 화학반응을 보고했다”며 “환경 오염을 유발하는 시약을 첨가해야 던 기존 합성법과 달리 가시광선을 활용하기 때문에 친환경적이다”라고 설명했다.
더 나아가 연구진은 하나의 분자에 피리딘과 락탐을 동시에 선택적으로 생성할 수 있음을 처음으로 보여줬다. 기존에는 피리딘과 락탐을 동시에 도입하기 위해서는 별도의 재료와 여러 단계의 화학반응을 거쳐야 했지만, 이제는 한 번의 반응으로 두 작용기가 선택적으로 결합된 화합물을 합성할 수 있다. 주요한 생리활성을 지닌 골격을 한 분자에 결합시킬 수 있어 더 경제적인 합성이 가능할 뿐만 아니라 약효도 증가시킬 수 있다. 또한, 연구진은 삼중항 에너지 전달 메커니즘을 피리딘뿐만 아니라 여러 고리 구조 합성 반응에 적용할 수 있다는 것도 확인했다.
연구를 이끈 홍승우 부연구단장은 “삼중항 에너지 전달을 이용하면 의약품 합성에 필요한 단계를 줄일 수 있다”며 “과정이 간단할 뿐만 아니라 친환경적인 방법으로 향후 신약 및 각종 화학제품 개발 등 산업계 전반에 큰 도움을 줄 것으로 기대된다”고 말했다.
2023.07.11
조회수 4439