-
로봇 등 온디바이스 인공지능 실현 가능
자율주행차, 로봇 등 온디바이스 자율 시스템 환경에서 클라우드의 원격 컴퓨팅 자원 없이 기기 자체에 내장된 인공지능 칩을 활용한 온디바이스 자원만으로 적응형 AI를 실현하는 기술이 개발됐다.
우리 대학 전산학부 박종세 교수 연구팀이 지난 6월 29일부터 7월 3일까지 아르헨티나 부에노스아이레스에서 열린 ‘2024 국제 컴퓨터구조 심포지엄(International Symposium on Computer Architecture, ISCA 2024)’에서 최우수 연구 기록물상(Distinguished Artifact Award)을 수상했다고 1일 밝혔다.
* 논문명: 자율 시스템의 비디오 분석을 위한 연속학습 가속화 기법(DaCapo: Accelerating Continuous Learning in Autonomous Systems for Video Analytics)
국제 컴퓨터 구조 심포지움(ISCA)은 컴퓨터 아키텍처 분야에서 최고 권위를 자랑하는 국제 학회로 올해는 423편의 논문이 제출됐으며 그중 83편 만이 채택됐다. (채택률 19.6%). 최우수 연구 기록물 상은 학회에서 주어지는 특별한 상 중 하나로, 제출 논문 중 연구 기록물의 혁신성, 활용 가능성, 영향력을 고려해 선정된다.
이번 수상 연구는 적응형 AI의 기반 기술인 ‘연속 학습’ 가속을 위한 NPU(신경망처리장치) 구조 및 온디바이스 소프트웨어 시스템을 최초 개발한 점, 향후 온디바이스 AI 시스템 연구의 지속적인 발전을 위해 오픈소스로 공개한 코드, 데이터 등의 완성도 측면에서 높은 평가를 받았다.
연구 결과는 소프트웨어 중심 자동차(SDV; Software-Defined Vehicles), 소프트웨어 중심 로봇(SDR; Software-Defined Robots)으로 대표되는 미래 모빌리티 환경에서 온디바이스 AI 시스템을 구축하는 등 다양한 분야에 활용될 수 있을 것으로 기대된다.
상을 받은 전산학부 박종세 교수는 “이번 연구를 통해 온디바이스 자원만으로 적응형 AI를 실현할 수 있다는 것을 입증하게 되어 매우 기쁘고 이 성과는 학생들의 헌신적인 노력과 구글 및 메타 연구자들과의 긴밀한 협력 덕분이다”라며, “앞으로도 온디바이스 AI를 위한 하드웨어와 소프트웨어 연구를 지속해 나갈 것이다”라고 소감을 전했다.
이번 연구는 우리 대학 전산학부 김윤성, 오창훈, 황진우, 김원웅, 오성룡, 이유빈 학생들과 메타(Meta)의 하딕 샤르마(Hardik Sharma) 박사, 구글 딥마인드(Google Deepmind)의 아미르 야즈단바크시(Amir Yazdanbakhsh) 박사, 전산학부 박종세 교수가 참여했다.
한편 이번 연구는 한국연구재단 우수신진연구자지원사업, 정보통신기획평가원(IITP), 대학ICT연구센터(ITRC), 인공지능대학원지원사업, 인공지능반도체대학원지원사업의 지원을 받아 수행됐다.
2024.08.01
조회수 2642
-
‘컴퓨터의 시간을 멈춘다’, 전원 공급 없이도 모든 정보가 복원, 작동되는 비휘발성 컴퓨터 최초 개발
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 컴퓨터의 시간을 멈추는 하드웨어/소프트웨어 기술, `경량화된 비휘발성 컴퓨팅 시스템(Lightweight Persistence Centric System, 이하 라이트PC)'을 세계 최초로 개발했다고 25일 밝혔다. 연구진의 컴퓨터에서는 시간이 멈춰진 순간의 모든 정보(실행 상태 및 데이터)는 전원 공급 여부와 관계없이 유지되며, 유지되는 모든 정보는 언제든 사용자가 원할 때 바로 복원, 작동될 수 있다.
기존의 컴퓨터는 휘발성 메모리인 D램을 메인 메모리로 사용하기 때문에 전원이 사라지면 메모리가 저장하고 있는 데이터들을 잃어버린다. 이러한 D램보다 적은 전력 소모와 큰 용량을 제공하는 비휘발성 메모리(인텔의 옵테인 메모리)는 영구적으로 데이터를 기억할 수 있는 특징이 있다. 하지만, 복잡한 내부 구조 설계로 인한 느린 성능 때문에 온전히 메인 메모리로 사용되지 못하고, D램과 함께 사용해 비휘발성 메모리에 저장되는 일부 데이터만을 선택적으로 유지하는 형태로 사용된다. 또한 이상적인 환경 아래 비휘발성 메모리의 성능이 향상돼 메인 메모리로 단독 사용하더라도, 갑작스러운 전원 공급차단의 상황에서 컴퓨터의 모든 정보를 유지할 수는 없다. 비휘발성 메모리 내부에 존재하는 휘발성 구성요소와 프로세서 자체가 가지고 있는 레지스터나 캐시 메모리(휘발성) 같은 임시 저장 공간의 데이터는 전원 공급 없이 지속적 보존이 불가능하기 때문이다.
이러한 문제 때문에 기존의 컴퓨터에서 실행 상태와 데이터를 유지하기 위해서는, D램을 포함, 프로세서가 가지고 있는 휘발성 상태의 데이터들을 비휘발성 메모리나 저장장치인 SSD 등으로 옮기는 체크포인팅 기법등이 데이터 센터나 고성능 컴퓨터에서 사용되고 있다. 하지만 체크포인팅 방식은 주기적 데이터 이동에 추가적인 시간과 전력을 소모하며, 정전 후 전원이 인가되면 시스템 전체를 재부팅하는 데이터 복구 과정을 겪어야 하는 치명적인 단점이 존재한다.
우리 대학 정명수 교수 연구팀이 개발한 라이트PC는 이러한 과정 없이 컴퓨터의 모든 프로그램 실행 상태와 데이터들을 전원 없이 비휘발성으로 유지할 수 있는 프로세서와 메모리 컨트롤러, 그리고 운영체제 기술들을 개발해냈다. 이를 위해 연구팀은 기존 메모리나 스토리지 장치 없이 지속성 메모리만을 활용하여 시스템을 구성해, 시스템의 대부분 상태를 비휘발성으로 유지하게 했으며, 전원이 끊긴 직후 전원 공급 장치의 신호에 따라 프로세서의 남아 있는 비지속성 상태들을 비휘발성으로 변환하는 장치를 통해 정전 시에도 컴퓨터의 시간을 멈출 수 있게 만들었다.
이를 위해서 연구팀이 개발한 라이트PC 기술은 프로세서의 하드웨어 데이터 경로상의 휘발성 구성요소를 최소화하고, 복잡한 내부 구조를 최대한 단순화한 뒤, 데이터 처리의 병렬성을 극대화해 사용자가 일반적인 응용실행에서 D램만 사용하는 고성능 시스템과 큰 성능 차이를 느끼지 못하도록 성능을 개선했다. 또한, 컴퓨터의 시간을 멈추는 동안 일관성 유지를 위해 프로그램 실행이 비결정적으로 진행되지 않도록 임의의 상태/데이터의 변경을 막고 다양한 형태의 지속성 기능이 추가된 운영체제를 구축했다. 일관성이 유지되기 때문에 다시 전원이 인가되면 컴퓨터는 부팅 과정 없이 멈춘 시간부터 다시 실행될 수 있다.
연구팀은 라이트PC의 실효성을 검증하기 위해 자체 제작한 시스템 보드에 시제작한 지속성 메모리를 장착해 비휘발성 컴퓨터를 구축하고, 정전 시 컴퓨터의 시간을 멈추게 하는 운영체제 프로토타입을 제작해 비휘발성 컴퓨터 위에서 실행했다. 엔터프라이즈향 응용 프로그램이 실행되는 도중 무작위 시간에 전원을 제거한 뒤, 다시 인가했을 때 전원이 사라지기 직전의 상태로 모든 프로그램 실행과 데이터가 일관성 있게 복구되는 것을 연구팀은 확인했다. 이와 더불어 라이트PC는 기존 컴퓨터 대비 최대 8배 큰 메모리와 4.3배 빠른 응용실행 및 73%의 전력 소모 절감을 보였다.
정명수 교수는 "이번에 개발된 비휘발성 컴퓨터는 대용량 메모리 제공과 동시에 높은 신뢰성 및 서비스의 안전성을 제공할 수 있어 데이터 센터나 고성능 컴퓨팅의 저전력 운영으로 인한 탄소중립에너지 효율화에 극대화를 이룰 수 있을 것으로 예상된다. 또한 관련된 연구 핵심기술은 차량, 핸드폰 모바일, 사물인터넷 장치등의 베터리 사용량을 최소화하고 초연결사회를 이루는 등 다양하게 활용될 수 있을 것으로 기대한다ˮ라고 말했다.
한편 이번 연구는 미국 뉴욕시에서 오는 6월에 열릴 컴퓨터 구조 분야 최우수 학술대회인 `이스카(International Symposium on Computer Architecture, ISCA), 2022'에 라이트PC라는 논문명(LightPC: Hardware and Software Co-Desingn for Energy-Efficient Full System Persistence)으로 발표될 예정이다.
해당 연구는 차세대 메모리 개발 및 공급업체 멤레이, 과학기술정보통신부와 한국연구재단이 추진하는 우수신진(중견연계)사업, 그리고 정보통신기획평가원의 연구 지원을 받아 진행됐다. 비휘발성 컴퓨터의 실제 동작 및 자세한 내용은 연구실 웹사이트(http://camelab.org) 및 유튜브(https://youtu.be/mlF7W_RmYRk)에서 확인할 수 있다.
2022.04.25
조회수 7385
-
정명수 교수, 테라바이트(TB) 메모리 시대 열어
*비휘발성 메모리(이하 NVDIMM)와 *초저지연 SSD(반도체 저장장치)가 하나의 메모리로 통합돼, 소수의 글로벌 기업만이 주도하고 있는 미래 *영구 메모리(Persistent Memory)보다 성능과 용량이 대폭 향상된 메모리 기술이 우리 연구진에 의해 개발됐다.
☞ 비휘발성 메모리(NVDIMM; Non-Volatile DIMM): 기존 D램(DRAM)에 플래시 메모리와 슈퍼 커패시터를 추가해 정전 때에도 데이터를 유지할 수 있는 메모리.
☞ 초저지연 SSD(Ultra Low Latency SSD): 기존 SSD를 개선해, 매우 낮은 지연시간을 갖는 SSD.
☞ 영구 메모리(Persistent Memory): 데이터의 보존성을 가지는 메모리.
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 운영체제 연구실)이 비휘발성 메모리와 초저지연 SSD를 하나의 메모리 공간으로 통합하는 메모리-오버-스토리지(Memory-over-Storage, 이하 MoS) 기술 개발에 성공했다고 16일 밝혔다.
정 교수팀이 새롭게 개발한 이 기술은 기존 스토리지 기술을 재사용하는 데 인텔 옵테인 대비, 메모리 슬롯당 4배 이상인 테라바이트(TB=1,024GB) 수준의 저장 용량을 제공하면서도 휘발성 메모리(D램)과 유사한 사용자 수준의 데이터 처리 속도를 낼 수 있다.
기존 NVDIMM은 운영체제의 도움 없이 CPU가 직접 비휘발성 메모리에 접근할 수 있다는 장점이 있다. 반면 NVDIMM은 D램을 그대로 활용하고 배터리 크기를 무한히 키울 수 없기 때문에 대용량 데이터를 처리할 수 없다는 게 문제다. 이를 해결하기 위한 대안으로는 인텔의 옵테인 메모리 (Intel Optane DC PMM)와 메모리 드라이브 기술(Intel Memory Drive Technology) 등이 있다. 그러나 이러한 기술들은 비휘발성 메모리에 접근할 때마다 운영체제의 도움이 필요해 NVDIMM에 비해 50% 수준으로 읽기/쓰기 속도가 떨어진다.
정 교수팀이 제안한 MoS 기술은 초저지연 SSD를 주 메모리로 활용하고, NVDIMM을 *캐시메모리로 활용한다. 이 결과, SSD 대용량의 저장 공간을 사용자에게 메모리로 사용하게 해줌과 동시에 NVDIMM 단독 사용 시와 유사한 성능을 얻게 함으로써 미래 영구 메모리 기술들이 가지는 한계점을 전면 개선했다.
☞ 캐시: 자주 사용되는 데이터에 빨리 접근할 수 있도록 느린 메모리에 저장된 데이터를 빠른 메모리에 복사해 두는 기법.
MoS 기술은 메인보드나 CPU 내부에 있는 *메모리 컨트롤러 허브(이하 MCH)에 적용돼 사용자의 모든 메모리 요청을 처리한다. 사용자 요청은 일반적으로 NVDIMM 캐시 메모리에서 처리되지만 NVDIMM에 저장되지 않은 데이터의 경우 초저지연 SSD에서 데이터를 읽어와야 한다. 기존 기술들은 운영체제가 이러한 SSD 읽기를 처리하는 반면, 개발된 MoS 기술은 MCH 내부에서 하드웨어가 SSD 입출력을 직접 처리함으로써 초저지연 SSD에 접근 시 발생하는 운영체제(OS)의 입출력 오버헤드(추가로 요구되는 시간)를 완화하는 한편 SSD의 큰 용량을 일반 메모리처럼 사용할 수 있게 해준다.
☞ 메모리 컨트롤러 허브: 일반적으로 노스 브릿지(North Bridge)로 알려져 있으며, CPU가 메모리(DRAM)나 그래픽 처리장치(GPU)와 같은 고대역폭 장치에 접근할 수 있도록 도와주는 하드웨어.
정 교수가 이번에 개발한 MoS 기술은 소프트웨어 기반 메모리 드라이브나 옵테인 영구 메모리 기술 대비 45% 절감된 에너지 소모량으로 110%의 데이터 읽기/쓰기 속도 향상을 달성했다. 결과적으로 대용량의 메모리가 필요하고 정전으로 인한 시스템 장애에 민감한 데이터 센터, 슈퍼컴퓨터 등에 사용되는 기존 메모리/미래 영구 메모리를 대체할 수 있을 것으로 기대된다.
정명수 교수는 "미래 영구 메모리 기술은 일부 해외 유수 기업이 주도하고 있지만, 이번 연구성과를 기반으로 국내 기술과 기존 스토리 및 메모리 기술을 통해 관련 시장에서 우위를 선점할 수 있는 가능성을 열었다는 점에서 의미가 있다"고 강조했다.
이번 연구는 올해 6월에 열릴 컴퓨터 구조 분야 최우수 학술대회인 '이스카(ISCA, International Symposium on Computer Architecture), 2021'에 관련 논문(논문명: Revamping Storage Class Memory With Hardware Automated Memory-Over-Storage Solution)으로 발표될 예정이다. 또 해당 연구에 대한 자세한 내용은 연구실 웹사이트(http://camelab.org)에서 확인할 수 있다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 우수신진(중견연계) 사업, KAIST 정착연구사업 등의 지원을 받아 수행됐다.
2021.03.16
조회수 101790