-
뇌신경전달 단백질의 구조와 작동원리 규명
- 생체막 융합 단백질의 구조변화 실시간 측정 -- 퇴행성 뇌질환 연구에 실마리 제공 -
우리 학교 물리학과 윤태영 교수 연구팀이 자기력 나노집게를 이용해 뇌신경세포사이의 신경물질전달에 가장 중추적인 역할을 하는 스네어(SNARE) 단백질의 숨겨진 구조와 작동원리를 단분자 수준에서 밝히는데 성공했다.
스네어 단백질의 세포막 융합기능은 알츠하이머병 같은 퇴행성 뇌질환이나 신경질환과 밀접하게 연관되어 있어 이 같은 질병의 예방과 치료법 개발에 새로운 실마리가 될 것으로 기대된다.
뇌의 신경전달은 신경세포 말단 시냅스에서 신경전달물질을 저장하는 포낭 주머니가 세포막에 융합되면서 일어난다. 이 과정에서 스네어 단백질은 신경전달물질 분출에 가장 핵심적인 역할을 하는 세포막 융합 단백질이다.
지금까지 학계에서는 스네어 단백질이 신경물질을 주고받는 과정을 조절할 것이라고 추정해 왔지만 그 구조와 기능을 명확하게 밝혀내지 못했다.
연구팀은 자기력 나노집게를 이용해 피코 뉴턴(pN, 1조분의 1뉴턴) 수준의 힘으로 단백질 하나를 정교하게 당겼다 놓으면서 나노 미터수준의 물리적 변화를 실시간으로 측정하는 실험기법을 개발했다.
이를 통해 스네어 단백질에 숨겨진 중간구조가 존재하며, 이 구조에 대한 정밀한 측정결과 중간상태가 어떤 구조를 갖는지 정확하게 예측했다.
이와 함께 생체막 사이에 있는 스네어 단백질의 중간구조가 생체막이 서로 밀어내는 힘을 견디고 유지하면서 신경물질을 주고받는 과정을 조절하는 역할을 할 수 있음을 밝혔다.
윤태영 교수는 “생체단백질이 갖는 숨겨진 구조와 작동원리를 힘을 정교하게 조절하는 실험만으로 직접 관찰하는 것과 동일한 획기적 연구 결과를 일궈냈다”며 “이 기술은 생물학의 연구대상을 물리학적인 방법 연구하는데 매우 중요한 기술로 향후 학제적 융합연구에 매우 중요한 기반이 될 것”이라고 말했다.
한편, 이번 연구는 KAIST 물리학과 윤태영 교수와 김기범 연구교수의 주도 아래 KIST 의공학연구소 신연균 교수와 공동연구로 진행됐고, KAIST 물리학과 조용훈 교수, 민두영 박사과정, KIAS 계산과학부 현창봉 교수가 참여했으며, 이번 세계적 과학학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 4월 16일자에 게재됐다.
(a) 뇌의 신경전달은 신경세포 말단 시냅스에서 신경전달물질을 저장하는 포낭 주머니가 세포막에 융합되면서 일어난다. 이 과정에서 스네어 단백질은 신경전달물질 분출에 핵심적인 역할을 한다.
(b) 자기력 나노집게를 이용하여 단분자 수준에서 단백질 구조 변화를 실시간으로 측정방법의 개략도. 피코 뉴톤(pN) 수준의 힘으로 단백질 하나를 정교하게 당겼다 놓으면서 나노 미터수준의 물리적 변화를 실시간으로 측정하여 생체막 융합 단백질의 숨겨진 중간구조와 작동원리를 단분자 수준에서 관찰한다.
2013.05.09
조회수 15915
-
꿈의 소재
- 초고성능의 차세대 전자소자 등에의 그래핀 응용가능성 높여 -
그간 개념상으로만 알려졌던 그래핀의 미세한 주름 구조와 도메인 구조, 그 구조들의 생성원리 및 열처리 공정을 통한 주름구조 제어 가능성이 우리 학교 연구진에 의해 최초로 규명되었다.
우리 학교 EEWS대학원 박정영 교수와 건국대 박배호 교수팀이 주도한 이번 연구 결과는 세계 3대 과학저널(네이처, 사이언스, 셀) 중 하나인 ‘사이언스(Science)’誌에 8월 중 게재될 예정이며, 이에 앞서 ‘사이언스 온라인 속보(Science Express)’에 7월 1일자(한국시간)로 소개되었다.
연구진은 기계적 박리법을 이용해 제작한 그래핀 박막을 원자힘 현미경을 이용하여 측정한 결과 물리적으로 똑같은 특성을 지닌 단일층 그래핀 내에서 마찰력이 현저히 다른 구역(비등방성 마찰력 도메인)이 존재하는 것을 발견하였다.
또한 연구진은 마찰력의 차이가 발생하는 원인을 밝히는 과정에서 그래핀에 잔주름의 방향이 다른 구역(domain, 도메인)이 존재함을 밝혔고, 적절한 열처리 공정을 이용하면 이런 구역구분이 없어지며 전체가 일정한 마찰력을 보이도록 재구성할 수 있음을 보였다.
연구진은 “본 연구는 주름구역의 존재를 최초로 확인하였다는 점과 주름구조의 제어 가능성을 보임으로써 휘어지는 전자소자 등에의 응용가능성을 한 단계 확장시켰다는데 의의가 있고, 향후 활발한 후속연구를 기대한다”라고 밝혔다.
본 연구의 특이한 점으로는 그래핀과 관련된 국내 최고의 전문가들인 서강대 정현식 교수팀, 성균관대 이창구 교수, KIAS 손영우 교수팀 등이 공동 연구에 참여했다는 점이다.
SiO2 기판위에 박리법으로 증착된 그래핀의 원자힘 현미경 이미지(좌), 마찰력 도메인 이미지(중앙), 마찰 도메인에서 예측한 잔주름 분포(우).
2011.07.01
조회수 15104