-
기존 인공지능 기술을 뛰어넘는 양자 인공지능 알고리즘 개발
우리 대학 전기및전자공학부 및 AI 양자컴퓨팅 IT 인력양성연구센터장 이준구 교수 연구팀이 독일 및 남아공 연구팀과의 협력 연구를 통해 비선형 양자 기계학습 인공지능 알고리즘을 개발했다고 7일 밝혔다.
양자 인공지능은 양자컴퓨터의 발전과 함께 현재의 인공지능을 앞설 것으로 크게 기대되고 있으나 연산 방법이 전혀 달라 새로운 양자 알고리즘의 개발이 절실하다. 특히 양자컴퓨터는 본질적으로 일차방정식을 잘 푸는 선형적 성질을 가지고 있어 복잡한 데이터를 다루는 비선형적 기계학습에 어려움이 존재했다. 하지만 이번 연구를 통해 비선형 커널이 고안되어 복잡한 데이터에 대한 양자 기계학습이 가능하게 됐다. 특히 이준구 교수팀이 개발한 양자 지도학습 알고리즘은 학습에 있어 매우 적은 계산량으로 연산이 가능하다. 따라서 대규모 계산량이 필요한 현재의 인공지능 기술을 추월할 가능성을 제시한 것으로 평가를 받고 있다.
이준구 교수팀은 학습데이터와 테스트데이터를 양자 정보로 생성한 후 양자 정보의 병렬연산을 가능하게 하는 양자포킹 기술과 간단한 양자 측정기술을 조합해 양자 데이터 간의 유사성을 효율적으로 계산하는 비선형 커널 기반의 지도학습을 구현하는 양자 알고리즘 체계를 만들었다. 이후 IBM 클라우드 서비스를 통해 실제 양자컴퓨터에서 양자 지도학습을 실제 시연하는 데 성공했다.
KAIST 박경덕 연구교수가 공동 제1 저자로 참여한 이번 연구결과는 국제 학술지 네이처 자매지인 `npj Quantum Information' 誌 2020년 5월 6권에 게재됐다. (논문명: Quantum classifier with tailored quantum kernel).
기계학습에 있어 중요한 문제 중 하나는 주어진 데이터의 특징(feature)을 구분해 분류하는 것이다. 간단한 예로 동물 이미지 학습데이터에서 입, 귀 등의 특징을 바탕으로 분류하기 위한 결정 경계(decision boundary)를 학습하고 새로운 이미지가 입력되었을 때 개 또는 고양이로 분류하는 작업을 생각해볼 수 있다. 데이터의 특징들이 잘 나타나는 경우에는 선형적 결정 경계만으로 분류할 수 있다. 그러나 입과 귀 모양의 특징으로만 개와 고양이를 분류하기 쉽지 않다면 새로운 결정 경계를 찾기 위해 특징에 관한 정보 공간의 차원을 확장해야 하는데 이러한 과정에서 비선형 커널 기술이 필요하다.
양자컴퓨팅은 고전 컴퓨팅과는 달리 큐비트(quantum bit, 양자컴퓨팅 정보처리의 기본 단위)의 개수에 따라 정보 공간의 차원이 기하급수적으로 증가하기 때문에 이론적으로 고차원 정보처리에 있어 기하급수적으로 뛰어난 성능을 낼 수 있다.
연구팀은 이러한 양자컴퓨팅의 장점을 활용해 데이터 특징 대비 기하급수적인 계산 효율성을 달성하는 양자 기계학습 알고리즘을 개발했다. 이 교수 연구팀이 개발한 이 알고리즘은 저차원 입력 공간에 존재하는 데이터들을 큐비트로 표현되는 고차원 데이터 특징 공간(feature space)으로 옮긴 후, 양자화된 모든 학습데이터와 테스트데이터 간의 커널 함수를 양자 중첩을 활용해 동시에 계산하고 테스트데이터의 분류를 효율적으로 결정한다. 이때 사용되는 양자 회로의 계산 복잡도는 학습 데이터양에 대해서는 선형적으로 증가하나, 데이터 특징 개수에 대해서는 불과 로그(log)함수로 매우 천천히 증가하는 장점이 있다.
연구팀은 이와 함께 양자 회로의 체계적 설계를 통해 다양한 양자 커널 구현이 가능함을 이론적으로 증명했다. 커널 기반 기계학습에서는 주어진 입력 데이터에 따라 최적 커널이 달라질 수 있으므로, 다양한 양자 커널을 효율적으로 구현할 수 있게 된 점은 양자 커널 기반 기계학습의 실제 응용에 있어 매우 중요한 성과다.
연구팀은 IBM이 클라우드 서비스로 제공하는 다섯 개의 큐비트로 구성된 초전도 기반 양자 컴퓨터에서 이번에 개발에 성공한 양자 기계학습 알고리즘을 실험적으로 구현해 양자 커널 기반 기계학습의 성능을 실제 시연을 통해 이를 입증하는 데 성공했다.
이 연구에 참여한 박경덕 연구교수는 "연구팀이 개발한 커널 기반 양자 기계학습 알고리즘은 수년 안에 상용화될 것으로 예측되는 수백 큐비트의 NISQ(Noisy Intermediate-Scale Quantum) 컴퓨팅의 시대가 되면 기존의 고전 커널 기반 지도학습을 뛰어넘을 것ˮ이라면서 "복잡한 비선형 데이터의 패턴 인식 등을 위한 양자 기계학습 알고리즘으로 활발히 사용될 것ˮ이라고 말했다.
한편 이번 연구는 각각 한국연구재단의 창의 도전 연구기반 지원 사업과 한국연구재단의 한-아프리카 협력기반 조성 사업, 정보통신기획평가원의 정보통신기술인력 양성사업(ITRC)의 지원을 받아 수행됐다.
관련 논문: https://www.nature.com/articles/s41534-020-0272-6
2020.07.07
조회수 20738
-
생명화학공학과 대학원생들, 시스템 대사공학 전략 발표
〈 양동수 박사과정, 박다현 석사과정, 최경록 박사과정, 조재성 박사과정, 장우대 박사과정 〉
우리 대학 생명화학공학과 대학원생 다섯 명이 대사공학과 시스템 생물학, 합성 생물학의 결합 시스템 등 대사공학 전반의 전략에 대한 논문을 발표했다.
생명화학공학과는 최근 박사학위를 마친 최경록 연구원과 장우대, 양동수, 조재성 박사과정, 박다현 석사과정이 친환경 화학물질 생산을 위해 필수적인 미생물 공장을 개발하는 전략을 총정리했다.
이 연구의 결과는 셀(Cell)지가 발행하는 생명공학 분야 권위 리뷰 저널인 ‘생명공학의 동향(Trends in Biotechnology)’ 8월호 표지논문 및 주 논문 (Feature review)에 게재됐다. (논문명 : Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering)
시스템 대사공학은 기존의 석유화학산업을 대체할 바이오산업의 핵심이 되는 미생물 균주를 보다 효과적으로 개발하기 위해 KAIST 생명화학공학과의 이상엽 특훈교수가 창시한 연구 분야다.
전통적 대사공학에 시스템 생물학, 합성 생물학 및 진화 공학 기법을 접목한 시스템 대사공학은 직관적 전략이나 무작위 돌연변이 유발에 의존하는 기존의 대사공학과 비교해 적은 비용과 인력, 짧은 시간 내에 산업에서 이용 가능한 고성능 균주 개발을 가능하게 만든다.
연구 기획 단계에서부터 실제 공장에서 균주의 발효 공정 및 발효를 통해 생산된 물질의 분리/정제 공정까지 고려함으로써 산업 균주 개발 도중 불필요한 시행착오를 최소화할 수 있다.
본 논문에서는 시스템 대사공학 전략을 연구의 흐름에 따라 ▲프로젝트 디자인 ▲균주 선정 ▲대사회로 재구성 ▲표적 화합물에 대한 내성 향상 ▲대사 흐름 최적화 ▲산업 수준으로의 생산 규모 확대 등 일곱 단계로 나누고, 각 단계에서 활용할 수 있는 최신 도구 및 전략들을 총망라했다.
더불어 바이오 기반 화합물 생산의 최신 동향과 함께 고성능 생산 균주를 보다 효과적으로 개발하기 위해 시스템 대사공학이 나아가야 할 방향도 함께 제시했다.
주저자인 최경록 연구원은 “기후 변화가 커지며 기존의 석유화학 산업을 친환경 바이오산업으로 대체하는 것이 불가피하다”라며 “시스템 대사공학은 산업에서 활용 가능한 고성능 생산 균주의 개발을 촉진해 바이오산업 시대의 도래를 앞당길 것이다”라고 말했다.
지도교수인 이상엽 특훈교수는 “그간 우리 연구실과 전 세계에서 수행한 수많은 대사공학연구를 우리가 제시한 시스템 대사공학 전략으로 통합해 체계적으로 분석 및 정리하고 앞으로의 전략을 제시했다는 점에서 큰 의미가 있다”라며 “권위 있는 학술지에 주 논문이자 표지논문으로 게재된 훌륭한 연구를 수행한 학생들이 자랑스럽다”라고 말했다.
이상엽 특훈교수 연구팀은 실제로 시스템 대사공학 전략을 이용해 천연물, 아미노산, 생분해성 플라스틱, 환경친화적 플라스틱 원료, 바이오 연료 등을 생산하는 고성능 균주들을 다수 개발한 바 있다.
이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’ 및 한화케미칼이 지원하는 KAIST-한화 미래 기술 연구소의 지원을 받아 수행됐다.
2019.07.24
조회수 19728