본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A0%95%EC%9A%B0%EC%B2%A0
최신순
조회순
차세대 연료전지용 초고성능 ‘만능 전극’ 개발
연료전지란 청정에너지원인 수소를 이용해 고효율로 전력을 생산하는 장치로, 다가오는 수소 사회에서 중요한 역할을 하는 기술로 여겨진다. 차세대 연료전지에 모두 적용 가능하고 기존에 비해 700시간 구동에도 끄떡없는 우수한 전극 소재가 개발되어 화제다. 우리 대학 신소재공학과 정우철, 기계공학과 이강택 교수와 홍익대학교 김준혁 교수 공동 연구팀이 산소 이온 및 프로톤 전도성 고체산화물 연료전지에 모두 적용 가능한 전극 소재 개발에 성공했다고 9일 밝혔다. 세라믹 연료전지는 전해질로 이동하는 이온의 종류에 따라 산소 이온 전도성 고체산화물 연료전지(SOFC)와 프로토닉 세라믹 연료전지(PCFC) 2가지로 나뉜다. 또한, 두 형태에 대해 모두 전력과 수소 간의 변환이 가능하므로 총 네 가지 소자로 구분될 수 있다. 해당 소자들은 수소전기차, 수소 충전소, 발전 시스템 등에 활용할 수 있는 탄소중립 사회를 위한 차세대 핵심 기술로 떠오르고 있다. 하지만, 이러한 소자들은 구동 온도가 낮아짐에 따라 가장 느린 전극 반응의 속도가 저하돼 소자의 효율이 크게 떨어지는 고질적인 문제점이 있었다. 이를 해결하기 위해 다양한 연구가 진행되고 있지만, 보고된 대부분의 전극 소재는 촉매 활성도가 떨어질뿐더러 소재의 활용이 특정 소자에 집중되어 있어 전력 변환 및 수소 생산이 가역적으로 필요한 고체산화물 연료전지에 적용되기에 한계가 있었다. 연구팀은 문제해결을 위해 그동안 주목받지 못했던 페로브스카이트 산화물 소재에 높은 원자가 이온(Ta5+)을 도핑해 매우 불안정한 결정구조를 안정화하는 데 성공했고, 이를 통해 촉매 활성도가 100배 이상 향상됨을 확인했다. 연구팀이 개발한 전극 소재는 산소이온 전도성 고체산화물 연료전지(SOFC)와 프로토닉 세라믹 연료전지의 전력 생산 및 수소 생산 총 4가지 소자에 모두 적용됐다. 또한 해당 소자들의 효율이 현재까지 보고된 소자 중 가장 우수하고 기존 100시간 운전에도 열화되던 소재에 비해 장기간(700시간) 구동에도 안정적으로 구동해, 개발된 전극 소재의 우수성이 입증됐다. 우리 대학 김동연, 안세종 박사과정 학생, 홍익대학교 김준혁 교수가 공동 제 1 저자로 참여한 이번 연구 결과는 재료·화학 분야의 세계적 권위지인 영국 왕립학회 ‘에너지 & 인바이런멘탈 사이언스, Energy & Environmental Science’(IF:32.5) 7월 12일 字 온라인판에 게재됐다. (논문명: An Universal Oxygen-Electrode for Reversible Solid Oxide Electrochemical Cells at Reduced Temperatures) 정우철 교수는 “문제점을 해결하기 위해서 완전히 새로운 소재를 개발해야 한다는 틀을 깨고 기존에 주목받지 못했던 소재의 결정구조를 잘 제어하면 고성능 연료전지를 개발할 수 있다는 아이디어를 제시한 의미있는 결과다”고 말했다. 또한 이강택 교수는 “하나의 소자에만 응용되었던 기존 소재들에 비해 총 4가지 소자에 모두 적용될 수 있는 유연성을 가지고 있어 추후 연료전지, 물 분해 수소 생산 장치 등 친환경 에너지기술 상용화에 크게 기여할 것으로 기대된다”라고 말했다. 한편 이번 연구는 과학기술정보통신부 원천기술개발사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2023.08.09
조회수 4943
촉매 반응 활성도의 정량적 분석이 가능한 측정 플랫폼 개발
우리 대학 신소재공학과 정우철 교수, 기계공학과 이강택 교수와 충남대학교 김현유 교수 공동 연구팀이 촉매 반응점 탐색 및 각 지점의 활성을 정량적으로 측정할 수 있는 금속 나노입자 기반 분석 플랫폼 개발에 성공했다고 28일 밝혔다. 촉매란 반응 과정에서 소모되거나 변하지 않으면서 반응 속도를 빠르게 만드는 물질을 말하며, 반응에 참여하지만 소모되지 않기 때문에 소량만 있어도 반응 속도에 지속적으로 영향을 미칠 수 있는 물질이다. 반응을 빠르게 하는 촉매 반응은 더 적은 활성화 에너지를 필요로 하기 때문에 다양한 산업에 활용되고 있다. 백금 등을 이용해 화석 연료의 연소로 인해 발생하는 배기가스의 해로운 부산물을 분해하는 반응을 예로 들 수 있다. 연구팀은 균일한 크기의 금속 나노입자 합성 기술과 3차원 전자 단층촬영 기법을 활용해 촉매 핵심 반응점인 금속-가스-산화물 및 금속-가스상 접합 계면의 수를 정량적으로 분석했으며, 이 같은 결과를 측정된 촉매 반응성과 연계시키는 방식으로 촉매 반응 활성도의 정량적 분석이 가능한 측정 플랫폼을 설계했다. 이러한 기술은 특정 반응에 활용이 제한되지 않기 때문에 향후 여러 촉매 반응 분야에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 신소재공학과 이시원, 하현우 박사후연구원, 기계공학과 배경택 박사과정생 공동 제1 저자로 참여한 이번 연구는 재료화학분야 국제 학술지 `켐(Chem, IF=22.804)'에 12월 23일 자 온라인판에 게재됐다. (논문명 : A measure of active interfaces in supported catalysts for high-temperature reactions). 금속 나노입자 촉매는 매우 적은 양으로 우수한 촉매 활성을 보일 수 있다는 가능성으로 에너지·환경 등 여러 분야에서 큰 관심을 받고 있다. 하지만 나노입자로 구성된 촉매 소재는 높은 작동온도에서 서로 응집되는 특성이 있으며 이는 결과적으로 촉매 활성을 저해하는 한계로 작용한다. 그뿐만 아니라, 실제 반응 작동 환경에서 금속 입자 촉매의 구체적인 반응 활성 지점이 어디인지, 각 지점에서의 반응활성도는 얼마나 되는지 그 양을 정량적으로 비교·분석할 수 있는 기술이 없어 해당 분야 발전에 한계가 있었다. 연구팀은 문제 해결을 위해 균일한 크기로 금속 나노입자 촉매를 합성해 입자의 구조를 제어하는 데 성공했으며, 이를 산화물 막으로 감싸는 코팅기술을 적용해 고온에서 나노입자가 응집되는 현상을 해결했다. 여기에 3차원 전자 단층촬영 기법, 스케일링 관계식, 그리고 밀도범 함수 이론을 적용하고 이를 다양한 조건에서 측정한 반응성과 연계시킴으로써 구체적인 반응 지점 및 활성을 규명했다. 연구팀은 이번 연구에서 대표적 귀금속 촉매인 백금과 고온 촉매 반응인 메탄산화반응을 활용했으나, 이번 기술은 향후 소재 종류 및 반응 종류에 상관없이 다양한 분야에 폭넓게 응용 및 적용될 수 있다. 정우철 교수는 "이번 연구를 통해서 주어진 반응에 대한 금속 나노입자 촉매의 반응 특성을 정량적으로 분석할 수 있는 고신뢰성 측정 플랫폼을 구축했다ˮ며, "이는 앞으로 우수한 복합촉매 소재 선별 등 촉매설계 종합 솔루션을 제공하는 데 활용될 것으로 기대한다ˮ 라고 말했다. 우리 대학 물리학과 양용수 교수, GIST 김봉수 교수 연구팀에서도 공동으로 참여한 이번 연구는 한국연구재단 나노·소재원천기술개발사업의 지원을 받아 수행됐다.
2021.12.28
조회수 8706
정우철, 김상욱 교수, 수소 연료전지 성능 높일 수 있는 나노촉매기술 개발
〈 정우철, 김현유(충남대), 김상욱 교수 연구팀 〉 우리 대학 신소재공학과 정우철, 김상욱 교수와 충남대학교 김현유 교수 공동 연구팀이 금속 나노 소재를 이용해 수소에너지 기술의 핵심인 연료전지의 성능을 대폭 높일 수 있는 새 나노촉매기술을 개발했다. 이 기술을 통해 연료전지 외에도 물 분해 수소생산 등 다양한 환경친화적 에너지기술에 폭넓게 적용할 수 있을 것으로 기대된다. 최윤석, 차승근 박사, 그리고 충남대 하현우 박사과정 학생이 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 나노테크놀로지 (Nature Nanotechnology)’ 2월 18일 자 온라인판에 게재됐고, 3월호 표지로 선정됐다. (논문명: Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes). 10나노미터 이하 크기의 금속 나노입자는 극도로 적은 양으로 높은 촉매 활성을 보일 수 있다는 가능성 때문에 최근 에너지 및 환경기술 분야에서 큰 관심을 받고 있다. 그러나 이러한 신소재들은 가격이 매우 비싸고 높은 온도에서 입자들끼리 뭉치면서 촉매 활성이 저하되는 고질적인 문제점이 남아 있었다. 600도 이상의 높은 온도를 활용해 초고효율 발전 방식으로 주목받는 고체산화물 연료전지도 활용성 측면은 회의적인 시각이 존재했다. 또한 각 금속 입자의 촉매 효율 향상 수치에 대한 정확한 연구결과가 없어 해당 분야 발전에 한계가 있었다. 연구팀은 문제 해결을 위해 세계적으로 인정받는 블록공중합체 자기조립을 이용한 금속 나노패턴기술을 통해 산화물 연료전지 전극 표면에 10나노미터 크기의 균일한 금속 나노입자들을 균일하게 합성하는 데 성공했고, 이를 통해 하나의 입자가 갖는 촉매 특성을 고온에서 정확히 분석해 연료전지의 성능을 극대화하는 기술을 개발했다. 연구팀은 대표적 귀금속 촉매인 백금의 경우 300나노그램(약 0.015원 가치)의 적은 양으로도 연료전지의 성능을 21배까지 높일 수 있음을 확인했다. 나아가 백금 외에 많이 활용되는 촉매인 팔라듐, 금, 코발트 등의 금속 촉매 특성을 정량적으로 파악 및 비교했고 이론적 규명을 통해 촉매 성능이 향상되는 정확한 원리를 밝혔다. 정우철 교수는 “단순히 값비싼 촉매의 양을 늘리는 비효율적인 방법을 사용하던 기존 틀을 깨고 매우 적은 양의 나노입자를 이용해 고성능 연료전지를 개발할 수 있다는 명확한 아이디어를 제시한 의미 있는 결과이다”고 말했다. 또한 “해당 기술은 금속촉매가 사용되는 다양한 산업 분야에 적용할 수 있는 높은 유연성을 가지고 있어 추후 연료전지, 물 분해 수소생산 장치 등 친환경 에너지기술 상용화에 크게 기여할 것으로 기대한다”라고 말했다. 이번 연구는 한국연구재단 나노소재원천기술사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 금속나노입자의 고온 전기화학적 촉매 특성 정밀 평가를 위한 전극 구조의 모식도 그림2. 10 nm 크기의 여러 금속나노입자 (백금, 팔라듐, 코발트, 금)의 고온 전기화학적 촉매 특성 정밀 비교 평가 결과
2019.02.25
조회수 14973
정우철 교수, 5분 코팅만으로 연료전지 전극반응성 1천배 향상 기술 개발
〈 정 우 철 교수, 서 한 길 박사과정 〉 우리 대학 신소재공학과 정우철 교수 연구팀이 5분 이내의 산화물 코팅만으로 연료전지의 수명과 성능을 획기적으로 향상시킬 수 있는 전극 코팅 기술을 개발했다. 서한길 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 7월 5일자 표지 논문(Inside Front Cover)에 게재됐다. (논문명 : Exceptionally Enhanced Electrode Activity of (Pr,Ce)O2-δ-Based Cathodes for Thin-Film Solid Oxide Fuel Cells, 박막 고체산화물연료전지용 (Pr,Ce)O2-δ 기반 공기극의 향상된 전극 활성) 연료전지는 대기오염 물질을 배출하지 않는 친환경 발전장치로 특히 고체산화물 연료전지는 다른 연료전지에 비해 발전효율이 높고 값비싼 수소 이외에 다양한 연료를 직접 사용할 수 있다는 장점을 가져 세계적으로 큰 주목을 받고 있다. 하지만 고체산화물 연료전지를 구동하기 위해서는 700℃ 이상의 높은 작동온도가 필요하며 이는 소재 및 시스템 비용의 증가, 장시간 구동 시 성능 저하 등의 문제를 일으켜 연료전지의 상용화에 걸림돌이 되고 있다. 최근에는 박막 공정을 도입해 전해질의 두께를 수백 나노미터 크기로 줄임으로써 작동온도를 600℃ 이하로 크게 낮추고 가격 경쟁력을 확보하려는 박막형 고체산화물연료전지가 새로운 해결책으로 제시되고 있지만, 낮은 작동온도에서 급격히 떨어지는 전극 성능의 한계를 극복하지 못하고 있다. 연구팀은 공기극으로 사용되는 백금 박막의 산소환원반응 활성점을 극대화하고, 백금 전극이 고온에서 응집되는 현상을 막기 위해 산화물 코팅 기술을 개발했다. 연구팀은 전자와 산소이온 모두에 대한 높은 전도성과 산소환원 반응에 대한 뛰어난 촉매 특성을 가진 ‘프라세오디뮴이 도핑된 세리아((Pr,Ce)O2-δ)라는 새로운 코팅 소재를 전기화학도금을 통해 백금 표면에 코팅하는 데 성공했다. 이를 통해 기존 백금 박막 전극에 비해 1천 배 이상의 성능을 향상시켰다. 추가적으로 연구팀은 백금을 전혀 사용하지 않고 (Pr,Ce)O2-δ의 나노구조화를 제어하는 것만으로도 고성능의 박막형 고체산화물연료전지 공기극을 구현하는데 성공했다. 정 교수는“이번 연구에서 사용된 전극 코팅 기술은 쉽고 대량생산이 가능한 전기화학도금을 활용했기 때문에 그 기술적 가치가 매우 뛰어나다”며 “향후 박막형 고체산화물연료전지의 백금 전극을 대체할 수 있어 가격 저감을 통한 시장경쟁력 제고가 기대된다.”고 말했다. 이번 연구는 한국에너지기술평가원과 한국전력공사의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 에너지 머티리얼즈 표지(Inside Front Cover) 그림2. 코팅된 (Pr,Ce)O2-δ 나노구조체 유무에 따른 전극성능 변화
2018.07.09
조회수 15162
정우철 교수, 소량 금속으로 연료전지 수명 극대화기술 개발
〈 정우철 교수(오른쪽)와 연구진 〉 우리 대학 신소재공학과 정우철 교수 연구팀이 서울시립대학교 한정우 교수와의 공동 연구를 통해 소량의 금속으로 연료전지의 수명을 향상시킬 수 있는 새로운 전극소재 기술을 개발했다. 구본재 박사과정과 서울시립대 권형욱 박사과정이 공동 1저자로 참여한 이번 연구는 에너지, 환경 분야 국제 학술지 ‘에너지&인바이러멘탈 사이언스(Energy&Environmental Science)’ 2018년도 1호 표지논문에 선정됐다. 연료전지는 친환경이면서 신재생에너지원으로 주목받고 있는 에너지변환기술이다. 특히 세라믹 소재로 구성된 고체산화물 연료전지는 수소 이외에도 바이오매스, LNG, LPG 등 다양한 종류의 연료를 직접 전기에너지로 바꿀 수 있는 장점을 갖는다. 이를 통해 발전소, 전기자동차, 가정용 예비전원 등 분야에 폭넓게 사용될 것으로 전망되고 있다. 고체산화물 연료전지의 성능을 좌우하는 핵심 요소는 산소의 환원 반응이 일어나는 공기극으로 현재 페로브스카이트(ABO3) 구조의 산화물들이 주로 사용된다. 그러나 페로브스카이트 산화물들은 작동 초기 성능이 뛰어나지만 시간이 지날수록 성능이 저하돼 장기간 사용이 어렵다는 한계를 갖는다. 특히 공기극의 작동 조건인 고온 산화 상태에서 산화물 표면에 스트론튬(Sr) 등의 2차상이 축적되는 표면 편석 현상이 발생함으로써 전극의 성능을 낮추는 것으로 알려졌다. 아직까지 이러한 현상의 구체적인 원리와 이를 억제할 수 있는 효과적인 해결책이 나오지 않았다. 정 교수 연구팀은 페로브스카이트 산화물이 변형될 때 면 내 압축 변형이 일어나 스트론튬의 편석을 발생시키는 것을 계산화학적 및 실험적 결과를 통해 확인했다. 연구팀은 페로브스카이트 산화물 내부의 부분적인 변형 분포가 스트론튬 표면 편석의 주요 원인임을 규명했다. 이를 바탕으로 정 교수 연구팀은 크기가 다른 금속을 산화물 내에 장착함으로써 공기극 소재 내부의 격자변형 정도를 제어하고 스트론튬 편석을 효과적으로 억제하는데 성공했다. 정 교수는 “이 기술은 추가적인 공정 없이 소재를 합성하는 과정에서 소량의 금속입자를 넣는 것만으로 구현된다”며 “향후 고내구성 페로브스카이트 산화물 전극을 개발하는 데 유용하게 활용될 것으로 기대된다”고 말했다. 이 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 본 연구의 Energy & Environmental Science 논문지의 커버 이미지 그림2. 전극의 격자변형 정도와 Sr 편석, 전극반응의 상관관계 그림3. 개발한 기술을 적용하여 안정화된 고체산화물 연료전지 공기극의 표면
2017.12.26
조회수 17245
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1