본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%83%9D%EB%AA%85%EA%B3%BC%ED%95%99%EA%B8%B0%EC%88%A0%EB%8C%80%ED%95%99
최신순
조회순
비알콜성 지방간 진행 영상화 기술 개발
우리 대학 의과학대학원 김필한 교수 연구팀이 3차원 생체현미경 기술을 통해 비알콜성 지방간에서 간세포 내 *지방구 형성과 미세혈관계를 동시에 고해상도의 영상으로 촬영하는 데 성공했다고 14일 밝혔다. ☞ 지방구(Lipid droplet): 지방 방울이라고도 하며, 간세포의 세포질에 구 형태로 축적된 지방을 뜻한다. 김 교수 연구팀은 이에 앞서 살아있는 비알콜성 지방간 동물모델에서 질환이 진행될수록 간세포 내의 지방구가 축적되며 크기가 증가하는 과정에서 개개의 지방구를 3차원으로 정밀하게 분석할 수 있는 생체현미경 기술을 개발, 이번 연구에 활용했다. 비알콜성 지방간은 서구화된 식습관 및 비만율 증가로 국내에서 급속히 증가하고 있는데 단순 지방간부터 만성 지방간염 및 간경변증(간경화)에 이르는 넓은 범위의 간 질환을 포함한다. 정상인에게서도 최대 24%, 비만인에서는 최대 74%까지 높은 유병률이 보고되고 있어 심각한 간 질환으로 진행되지 않도록 적극적인 관리가 요구된다. 그동안 비알콜성 지방간 질환 연구들은 대부분이 절제된 간 조직을 사용한 조직병리학적 분석을 통해 이뤄졌다. 하지만 이 같은 방식으로는 질환이 장기간에 걸쳐 진행되는 동안 간 내부의 간세포와 주변 미세환경에서 일어나는 다양한 분자세포 수준의 변화를 3차원으로 정밀하게 분석하고 그 원리를 밝히는 것이 어려웠다. 글로벌 차원의 집중적인 연구개발 투자에도 불구하고 비알콜성 지방간 질환의 새로운 치료제의 개발이 지연되고 주된 이유다. 김필한 교수 연구팀은 독자적으로 개발한 초고속 레이저 공초점·이광자 생체현미경을 사용해 살아있는 비알콜성 지방간 질환 동물모델에서 질환 진행에 따른 간세포 내 지방구의 형성 및 축적과 주변 미세 간 혈관계를 동시에 고해상도를 지닌 3차원 영상으로 촬영하는 데 성공했다. 연구팀이 개발한 생체현미경 시스템은 시속 380Km 이상의 초고속으로 회전하는 다각 거울을 이용해 살아있는 생체 내부 간 조직의 움직임을 실시간으로 추적하고 보정이 가능해 크기가 마이크로미터(μm·100만분의 1미터) 이하인 극히 작은 지방구까지 고해상도로 영상화가 가능하다. 연구팀은 또 비알콜성 간 질환에서 질환 진행으로 간세포 내 지방구의 축적률이 증가하고 개개의 지방구 크기가 증가하는 현상을 영상화하는 데 성공했다. 이와 함께 지방구의 크기 증가가 간세포 핵의 위치변화를 일으키고 결국 간세포 모양의 변화를 일으키는 현상을 고해상도 영상화를 통해 확인했다. 김 연구팀이 독자적으로 개발한 최첨단 고해상도 3차원 생체현미경 기술은 살아있는 생체 내부 간의 미세환경을 이루는 다양한 구성성분(세포, 혈관, 지질, 콜라겐 외 생체분자)들을 동시에 실시간으로 영상촬영이 가능해 비알콜성 지방간 질환을 비롯한 다양한 간 질환 연구와 치료제 개발과정에 다양하게 활용될 것으로 기대된다. 특히 이 3차원 생체현미경 기술은 우리 대학 교원창업기업인 아이빔테크놀로지(IVIM Technology, Inc)를 통해 상용화돼 올 인원 생체현미경 모델명인 'IVM-CM'과 'IVM-MS'로 2019년 10월부터 출시되고 있는데 기초 의·생명 연구의 차세대 첨단 영상장비로서 미래 글로벌 바이오헬스 시장의 핵심 장비로 벌써부터 주목받고 있다. ※ MCD diet는 지방간을 유도하기 위한 특수 사료를 의미하며 생쥐에게 섭취시키면 빠르게 지방간이 생긴다. 김 교수는 "비알콜성 지방간을 포함한 다양한 질환의 3차원 생체현미경을 이용한 실시간 고해상도 영상기술은 질환의 진행에 따른 세포 수준의 다양한 변화의 정밀한 관찰이 가능하다ˮ라며 "3차원 생체현미경은 미래 바이오헬스 산업에서 여러 인간 질환의 진단 및 치료제 개발에 획기적인 도움을 줄 것ˮ이라고 말했다. 나노과학기술대학원 문지은 박사과정 학생이 제1 저자로 참여한 연구팀 논문은 미국광학회가 발간하는 국제 학술지 '바이오메디컬 옵틱스 익스프레스(Biomedical Optics Express)' 誌 8월 19일 字에 실리는 한편 편집장 선정(Editor's pick) 우수 논문으로 주목받았다. (논문명 : Intravital longitudinal imaging of hepatic lipid droplet accumulation in a murine model for nonalcoholic fatty liver disease) 한편 이번 연구는 과학기술정보통신부의 이공분야기초연구사업의 지원을 받아 이뤄졌다.
2020.09.14
조회수 26369
이흥규 교수 연구팀, 수지상세포 자식작용의 역할 규명
우리 연구진에 의해 세포 항상성을 유지해주는 '자식작용'*의 또 다른 기능이 보고됐다. 의과학대학원 이흥규 교수 연구팀이 T세포*의 항바이러스 활성이 유도되는 과정에서 수지상세포 자식작용이 기여함을 규명했다고 밝혔다. * 자식작용(自食作用, autophagy) : 세포 내 노폐물 및 손상된 세포 소기관을 제거하여 세포의 항상성을 유지하는 과정이다. 자식작용을 처음 발견한 오스미 요시노리(Ohsumi Yoshinori) 교수가 2016년 노벨 생리의학상을 수상하는 등 세계적으로 활발한 연구가 진행되고 있으며, 최근에는 다양한 병원균을 이기는 면역 반응에서도 중요한 기능을 한다고 보고됐다. * T세포 : 흉선에서 유래하는 림프구로, 세포의 면역에서 주된 역할을 한다. 수지상세포는 병원균이나 암 항원을 인지해 T세포*의 면역반응을 유도하는 세포이다. 바이러스 항원을 수지상세포가 흡수하고, 자신의 표면에 항원을 제시하여 T세포에 전달해주는 기능을 한다. 연구팀은 수지상세포의 자식작용을 통한 세포대사 조절이 T세포 활성화에서 핵심 역할을 한다는 것을 밝히고 항바이러스 효과를 높일 수 있는 원리를 제시했다. 실험결과, 자식작용을 일으키는 Atg5 유전자가 결손될 때 수지상세포의 해당작용이 증가하고, 이를 통해 T세포 활성화 기능이 높아지고 항바이러스 면역반응이 증가했다. Atg5가 결손되면 수지상세포의 해당작용이 증가하는데, 이로 인해 MHC 클래스 I 분자가 과발현되고 항원 제시를 통한 T 세포 활성화가 증가한다. 이로 인해 호흡기세포융합바이러스(RSV) 감염 시 항바이러스 면역반응이 더 활성화되어 바이러스가 더 빨리 제거되었다. 이흥규 교수는 "이번 연구를 통해 자식작용이 T세포의 항바이러스 면역반응에 관여하는 기능을 새롭게 규명했다”라고 연구의 의의를 설명하며, “향후 자식작용과 세포 대사를 표적으로하는 항바이러스 치료제 개발의 단초가 되길 기대한다”라고 밝혔다. 이번 연구 성과는 과학기술정보통신부·한국연구재단 바이오‧의료기술개발사업의 지원으로 수행되었다. 저명한 국제학술지 ‘오토파지(Autophagy)’ 8월 28일 자에 온라인 게재됐다. 수지상세포는 바이러스를 받아들여 이들을 분해해 MHC class I에 항원을 제시하고 CD8+ T세포를 활성화해 항바이러스 면역반응을 유도함. Atg5 유전자 결손 시 해당작용 의존적인 항원 제시 및 사이토카인 분비가 과활성화되어 MHC class I을 통한 CD8+ T세포의 활성이 증가됨. 수지상세포에서 Atg5 유전자 결손 시 CD8+ T 세포의 활성화가 증가되어 바이러스 제거를 촉진시킴. 가. Atg5 유전자 결손 시 정상과 다른 특이한 특징을 갖는 수지상세포가 폐에 유입됨. 나. 수지상 세포 특이적으로 Atg5 결손 시, 항원제시, 해당작용과 대사와 관련된 유전자들이 증가됨. 다. 수지상 세포 특이적으로 Atg5 결손 시, 수지상세포의 해당작용이 증가함. 라. 바이러스 감염 시 항원제시에 중요한 MHC 클래스 I의 발현이 증가함. 반면, 해당작용 억제제(2-DG) 처리 시 발현이 감소함. 즉, MHC 클래스 I의 발현에 해당작용이 중요한 역할을 함. 마. 수지상세포 특이적 Atg5 유전자 결손 시 CD8+ T 세포의 활성화가 증가함. 바. 수지상세포 특이적 Atg5 유전자 결손 시 바이러스의 제거가 더 빠르게 일어남.
2020.09.11
조회수 24807
코로나19 감염 중증도 결정하는 인자 발견
코로나19로 위중, 중증 상태인 중환자가 6일 0시 기준 163명을 기록했다. 지난달 19일 12명이었던 위중, 중증 환자는 20여일 만에 13배 넘게 늘어났다. 이러한 심각한 상황에서 우리 연구진이 코로나19 중증 환자와 경증 환자를 쉽게 판별할 수 있는 바이오 마커(표시물)를 발견해 중증 코로나19에 대한 치료제 개발에 기대감을 높였다. 우리 대학 의과학대학원 이흥규 교수 연구팀이 *'호중구'와 *'당질코르티코이드'의 연관성을 밝혀 코로나19의 중증도를 결정짓는 인자를 발견했다고 7일 밝혔다. ☞ 호중구(neutrophil) : 혈액의 전체 백혈구 중 50~70%를 차지하는 선천 면역세포로, 세균이나 곰팡이 감염 등에 대응하는 면역세포이다. ☞ 당질코르티코이드(glucocorticoid) : 글루코코르티코이드라고도 하며 콩팥 근처 부신의 부신 겉질에서 생성되는 호르몬으로, 다양한 신체 기능 조절에 관여한다. 특히, 면역반응을 억제하는 호르몬으로도 알려져 있다. WHO에 의해 세계적 대유행(팬데믹)으로 지정된 코로나바이러스감염증(COVID-19)은 사람마다 증상이 판이하다. 따라서, 환자의 중증도를 예상 및 판별하기 위해서는 확실한 바이오 마커의 활용이 중요하며, 이들을 선별적으로 치료할 수 있는 표적 치료제가 매우 중요하다. 중증 코로나19 환자들은 급성 호흡곤란 증후군의 증상을 보이고 특히 폐 조직의 심한 손상이 관찰된다. 이에 대응해 호중구 등 다양한 면역세포들이 바이러스 감염으로부터 숙주를 보호하기 위해 면역반응을 보이지만 사이토카인 폭풍(과잉 염증반응)처럼 과도한 면역반응으로 오히려 장기를 손상시킬 수도 있다. 이 교수 연구팀은 유전자 발현 옴니버스(GEO)에 공개된 코로나19 감염 경증 및 중증 환자의 기관지 폐포 세척액에 존재하는 단일세포 유전 정보를 분석했다. 그 결과, 그동안 곰팡이나 세균 감염에서만 중요성이 알려졌고 바이러스 감염 시에는 상대적으로 중요성이 알려지지 않았던 호중구의 과활성화로 인해 중증 코로나19가 발생함을 밝혔다. 특히 연구팀은 대식세포 등의 골수 유래 면역세포 내에서 발현하는 CXCL8과 같은 *케모카인에 의해 호중구 유입이 증가함을 밝혔다. 연구팀은 골수에서 유래한 면역세포 내의 당질코르티코이드 수용체 발현에 따라 CXCL8의 생성이 조절받으며, 이것이 결과적으로 호중구의 유입 및 활성도와 연관됨을 밝혔다. ☞ 케모카인(chemokine): 백혈구유주작용, 활성화작용을 하는 염기성헤파린 결합성 저분자 단백질 이 교수는 "이번 연구 결과는 코로나19의 중증도를 결정하는 바이오 마커를 발굴한 것 뿐만 아니라, 덱사메타손 등의 당질코르티코이드 억제제를 활용해 중증도를 개선할 치료제 개발에 단초를 제공할 수 있을 것으로 기대한다"고 밝혔다. 의과학대학원 박장현 석박사통합과정 대학원생이 제1 저자로 참여한 이번 연구는 국제면역학회연합에서 발간하는 면역학 전문 학술지인 '프론티어스 인 이뮤놀로지(Frontiers in Immunology)' 8월 28일 字 온라인판에 게재됐다. (논문명: Re-analysis of Single Cell Transcriptome Reveals That the NR3C1-CXCL8-Neutrophil Axis Determines the Severity of COVID-19) 한편 이번 연구는 과학기술정보통신부의 코리아 바이오 그랜드 챌린지사업, 신약타겟발굴 및 검증사업 및 KAIST 코로나 대응 과학기술 뉴딜사업을 받아 수행됐다.
2020.09.07
조회수 25903
1mm 크기 예쁜꼬마선충에서 노화 늦추는 단백질 찾았다
우리 대학 연구진이 '예쁜꼬마선충'(C. elegans)에서 수명 연장을 돕는 단백질을 찾아냈다. 우리 대학 생명과학과 이승재 교수와 포항공대 김경태 교수 연구팀이 예쁜꼬마선충에서 세포 내 에너지 조절 센서인 'AMPK'를 활성화해 노화를 지연시키는 단백질 'VRK-1'을 발견했다. 예쁜꼬마선충은 몸길이 1㎜ 정도의 선충류다. 배양이 쉽고 사람과 유전 정보 특성이 닮아 실험동물로 널리 활용된다. 한편 에너지 센서라 불리는 AMPK는 공복이나 운동 등으로 에너지 수준이 낮아질 때 활성화돼 세포가 항상성을 유지하도록 돕는다. 예쁜꼬마선충과 생쥐, 초파리 등에서 AMPK가 식이를 제한해 수명 연장을 돕는 역할을 한다는 연구는 그동안 활발히 진행되어 왔지만, AMPK를 자극하는 상위 조절 인자는 알려지지 않았다. 연구팀은 VRK1이 활성화될 때 2만여개의 예쁜꼬마선충 유전자가 단백질로 발현되는 패턴이 AMPK가 활성화될 때의 패턴과 비슷하다는 사실을 발견했다. VRK1은 AMPK를 인산화시키고, 인산화된 AMPK는 미토콘드리아가 세포에 에너지를 공급하는 데 필수적인 과정인 '전자 전달계'의 기능을 억제함으로써 노화를 늦춘다는 것도 확인했다. 실제 VRK1의 자극에 반응하지 않는 AMPK 돌연변이 예쁜꼬마선충에서는 수명 연장 효과가 나타나지 않았다. 생명과학과 이승재 교수는 "이번 연구 결과는 AMPK 이상으로 인한 대사질환 치료와 항노화 약물 개발에 기여할 것"이라고 말했다. 한편, 이번 연구 결과는 국제 학술지 '사이언스 어드밴시스'(Science Advances) 7월 2일 자에 실렸다.
2020.07.16
조회수 25274
중증 코로나19 환자의 사이토카인 폭풍 원인 찾았다
우리 대학 의과학대학원 신의철 교수와 생명과학과 정인경 교수 연구팀이 서울아산병원 김성한 교수·연세대 세브란스병원 최준용·안진영 교수, 충북대병원 정혜원 교수와의 공동연구를 통해 중증 코로나19 환자에서 나타나는 과잉 염증반응을 일으키는 원인을 발견했다. 과잉 염증반응이란 흔히 '사이토카인 폭풍'이라고도 불리는 증상인데 면역 물질인 사이토카인(cytokine)이 과다하게 분비돼 이 물질이 정상 세포를 공격하는 현상이다. ☞ 사이토카인(cytokine): 면역세포로부터 분비되는 단백질 면역조절제로서 자가분비형 신호전달(autocrine signaling), 측분비 신호전달(paracrine signaling), 내분비 신호전달(endocrine signaling) 과정에서 특정 수용체와 결합하여 면역반응에 관여한다. 세포의 증식, 분화, 세포사멸 또는 상처 치료 등에 관여하는 다양한 종류의 사이토카인이 존재하며, 특히 면역과 염증에 관여하는 것이 많다. 세포를 의미하는 접두어인 ‘cyto’와 그리스어로 ‘움직이다’를 의미하는 ‘kinein’으로부터 cytokine이 명명됐다. ☞ 사이토카인 폭풍(cytokine storm): 인체에 바이러스가 침투하였을 때 면역 물질인 사이토카인이 과다하게 분비되어 정상 세포를 공격하는 현상 빠르게 확산하고 있는 코로나19 바이러스는 전 세계적으로 이미 1,300만 명 이상이 감염됐고 이 중 50만 명 이상이 사망했다. 코로나19 바이러스에 감염된 환자들은 경증 질환만을 앓고 자연적으로 회복되는 경우가 많으나, 어떤 환자들은 중증 질환으로 발전해 심한 경우 사망하기도 한다. 흔히 사이토카인 폭풍 때문에 중증 코로나19가 유발된다는 사실이 널리 알려져 있다. 하지만 어떤 이유에서 과잉 염증반응이 일어나는지 구체적인 원인은 아직도 알려지지 않아 중증 코로나19 환자의 치료에 많은 어려움을 겪고 있다. 우리 대학 의과학대학원 이정석 연구원 및 생명과학과 박성완 연구원이 주도한 이번 연구에서 공동연구팀은 중증 및 경증 코로나19 환자로부터 혈액을 얻은 후 면역세포들을 분리하고 단일 세포 유전자발현 분석이라는 최신 연구기법을 적용해 그 특성을 상세히 분석했다. 그 결과, 중증 또는 경증을 막론하고 코로나19 환자의 면역세포에서 염증성 사이토카인의 일종인 종양괴사인자(TNF)와 인터류킨-1(IL-1)이 공통으로 나타나는 현상을 발견했다. 연구팀은 특히 중증과 경증 환자를 비교 분석한 결과, 인터페론이라는 사이토카인 반응이 중증 환자에게서만 특징적으로 강하게 나타남을 확인했다. ☞ 인터페론(interferon): 사이토카인(cytokine)의 일종으로 숙주 세포가 바이러스, 세균, 기생균 등 다양한 병원체에 감염되거나 혹은 암세포 존재 하에서 합성되고 분비되는 당단백질이다. 일반적으로 바이러스에 감염된 세포에서 분비되는 제 1형 인터페론이 많이 알려져 있으며 주변 세포들이 항바이러스 방어 효과를 나타낼 수 있도록 돕는다. 지금까지 인터페론은 항바이러스 작용을 하는 착한(?) 사이토카인으로 알려져 있으나, 공동연구팀은 인터페론 반응이 코로나19 환자에서는 오히려 과도한 염증반응을 촉발하는 원인이 될 수 있다는 사실을 다양한 방법을 통해 이를 증명했다. 삼성미래기술육성재단과 서경배과학재단의 지원을 받아 수행한 공동연구팀의 이번 연구결과는 면역학 분야 국제 학술지인 사이언스 면역학(Science Immunology)誌 7월 10일 字에 게재됐다(논문명: Immunophenotyping of COVID-19 and Influenza Highlights the Role of Type I Interferons in Development of Severe COVID-19). 연구팀은 중증 코로나19 환자의 과잉 염증반응 완화를 위해 현재에는 스테로이드제와 같은 비특이적 항염증 약물이 사용하고 있는데 이번 연구 성과를 계기로 인터페론을 표적으로 하는 새로운 치료방법도 고려할 수 있음을 보여준다며 중증 코로나19 환자 치료에 새로운 패러다임을 제시한 획기적인 연구라고 이 연구에 대한 의미를 부여했다. 관련 학계와 의료계에서도 코로나19의 재확산 등 팬데믹이 지속되는 현 상황에서 KAIST와 대학병원 연구팀이 긴밀한 협력을 통해 코로나19의 면역학적 원리를 밝히고 새로운 치료전략을 제시한 이번 연구를 중개 연구(translational research)의 주요 성과로 높게 평가했다. 공동연구팀은 현재 중증 코로나19 환자의 과잉 염증반응을 완화해 환자 생존율을 높일 수 있는 약물을 시험관 내에서 효율적으로 검색하고 발굴하는 방법을 개발하는 후속연구를 진행중에 있다. 이번 연구를 주도한 이정석 연구원은 내과 전문의로서 의과학대학원 박사과정에 재학 중인데 "중증 코로나19 환자의 의료적 문제를 해결하기 위해 정인경 교수 연구팀과 함께 이번 연구를 긴박하게 시작했는데 서울아산병원과 연세대 세브란스병원·충북대병원의 적극적인 지원에 힘입어 불과 3개월 만에 마칠 수 있게 됐다ˮ고 말했다. 정인경 교수는 "코로나19와 같은 신규 질환의 특성을 신속하게 규명하는데 있어 최신 단일세포 전사체 빅데이터 분석법이 매우 효과적ˮ이었음을 밝혔다. 신의철 교수도 "이번 연구는 코로나19 환자의 면역세포에서 어떤 일이 벌어지는지 상세히 연구함으로써 향후 치료전략을 설계할 수 있는 토대를 마련했다는 점에서 매우 중요하고 의미가 있는 연구ˮ라고 평가했다. 신의철 교수와 정인경 교수는 이와 함께 "중증 코로나19 환자의 생존율을 높일 수 있도록 새로운 면역기전 연구 및 환자 맞춤 항염증 약물 사용에 관한 연구를 지속적으로 수행할 것ˮ이라고 강조했다.
2020.07.14
조회수 27639
항암 백신 및 면역치료를 최적화한 신기술 개발
우리 연구진이 새로운 항암 나노 백신을 개발하고 또 이를 이용해 면역치료를 최적화한 기술 개발을 통해 효과적인 암 예방 및 암 치료가 가능케 함으로써 암 정복에 한 걸음 더 다가서는 계기를 마련했다. 우리 대학 생명과학과 전상용 교수 연구팀이 효과적인 항암 면역치료를 위한 나노입자 백신 개발에 성공했다고 16일 밝혔다. 전 교수 연구팀은 면역 반응을 유도하는 아미노산 중합체인 종양 펩타이드 항원과 면역보조제의 동시전달이 가능한 나노입자 기반 항암 백신을 개발했다. 전 교수 연구팀은 또 세포성 면역을 담당하는 림프구의 일종인 T 세포(면역 세포) 기반 `특이적 면역(specific immunity, 선천 면역과는 다른 고도로 발전된 방어체계)' 반응을 얻는 성과를 거뒀다. 결과적으로 전 교수팀은 특히 새로 개발한 나노입자 기반 항암 백신을 기존 항암 면역 치료제로 주목받고 있는 면역 관용 억제제를 병용하여 투여 순서와 시기를 적절히 조절, 사용하면 효능은 물론 치료 효과를 크게 증대시킬 수 있음을 확인했다. 생명과학과 김유진 박사과정, 강석모 박사가 공동 제1 저자로 참여한 이번 연구는 화학 분야 국제 학술지 `앙게반테 케미(Angewandte chemie, 독일화학회지)' 5월 19일 字 온라인판에 게재됐다. (논문명 : Sequential and timely combination of cancer nanovaccine with immune checkpoint blockade effectively inhibits tumor growth and relapse) 항암 백신은 종양 항원 특이적 면역 반응을 유도할 수 있다는 장점에도 불구하고, 면역 회피가 유도돼 우리 몸에서 백신에 대한 저항성이 발생할 수 있다는 한계가 있다. 최근 항암 치료제로 주목받고 있는 면역 관용 억제제의 경우 면역 억제를 되돌려 항암 효과를 유도할 수는 있으나, 적절한 면역 반응이 존재하지 않는 경우 효과가 극히 제한적인 것으로 알려져 있다. 연구팀은 이 같은 한계를 극복하기 위해 항암 백신과 면역 관용 억제제의 병용요법 진행을 통해 병용요법의 치료 효능을 증대시킬 수 있는 전략을 활용했다. 특히 항암 백신의 효능 증가를 위해 나노입자 전달 플랫폼을 새롭게 개발했다. 결과적으로 새로 개발한 나노입자 백신이 기존 대비 항원과 T 세포 기반 특이적 면역 반응을 더욱 증가시킬 뿐만 아니라 종양 동물모델에서 효과적인 암 예방 및 치료 효과를 거두는 성과를 확인했다. 연구팀은 또 항암 나노 백신의 치료 효과를 더욱 증대시키기 위해 면역 관용 억제제인 `PD-1 항체(활성화된 T 세포의 표면에 있는 단백질)'와 병용해 진행했는데 병용 순서에 따라 치료 효능이 달라질 수 있음을 발견했다. 이 밖에 나노 백신과 PD-1 항체의 병용 치료를 순차적으로 시기를 조절하면 종양 성장과 종양 재발을 효과적으로 억제한다는 사실도 함께 입증했다. 전상용 교수는 "효과적인 항암 면역치료를 목적으로 나노입자 백신을 개발했다ˮ면서 "이와 함께 기존 항암 백신 및 면역 관용 억제제가 가지는 한계를 극복할 수 있는 새로운 병용요법 전략을 개발했는데 이를 통해 향후 다양한 항암 면역치료법에 적용해 치료 효능을 더욱 증대시킬 수 있을 것으로 기대한다ˮ고 말했다. 한편, 이번 연구는 한국연구재단의 리더연구사업 및 바이오 의료기술 개발사업의 지원을 받아 수행됐다.
2020.06.16
조회수 21232
우리 대학 졸업생 김광수 미 하버드 의대 교수, 맞춤형 줄기세포로 파킨슨병 임상 치료에 세계 최초로 성공
우리 대학 생명과학과 석·박사 졸업생(1983년)이면서 미국 하버드 의대 교수로 재직 중인 재미 한인 과학자가 지난 5월, 세계 최초로 파킨슨병을 앓고 있는 환자 본인의 피부세포를 도파민 신경세포로 변형해 뇌에 이식하는 방법으로 환자 맞춤형 줄기세포 임상 치료에 성공해 화제가 되고 있다. 세계 최고의 권위를 자랑하는 의학 분야 저널인 뉴잉글랜드 의학 저널(New England Journal of Medicine, 이하 NEJM, IF=70) 誌는 환자의 피부세포를 변형, 신경전달물질 도파민을 생성케 한 후 이를 파킨슨병 환자의 뇌 깊숙이 주입 시킨 결과, 면역체계의 거부반응 없이 구두끈을 다시 묶을 수 있을 뿐만 아니라 수영과 자전거를 탈 정도로 운동능력을 회복했다고 지난달 14일 소개했다. 이 파킨슨병 환자의 임상 치료 성공 소식은 뉴욕타임스, 로이터, 뉴스위크, 사이언스데일리, USNEWS 등 전 세계 유명 일간지를 통해 일제히 보도돼 큰 주목을 받았다. 화제의 주인공은 美 하버드 의대 맥린병원(McLean Hospital, Harvard Medical School) 분자신경생물학 실험실 소장 김광수 교수다. 우리 대학 대학원 석·박사 졸업생인 김광수 교수는 신경과학과 줄기세포 분야의 세계적인 석학이며, 현재 모교인 우리 대학에서 해외초빙 석좌교수와 총장 자문위원을 맡고 있다. 파킨슨병은 치매, 뇌졸중과 더불어 3대 만성 퇴행성 뇌 신경계 질환으로 꼽히는데 국내에만 11만 명에 달하는 환자가 있으며 그 수는 매년 꾸준히 증가하고 있다. 영화배우 마이클 제이 폭스, 前 세계 헤비급 챔피언 무하마드 알리와 264대 교황 요한 바오로 2세(재위 1978~2005년) 등 유명 인사들이 투병했으며 전 세계적으로 600만~1천만 명의 환자가 있다. 이 병의 발병 원인은 뇌에서 신경 전달 물질 도파민을 분비하는 신경세포가 사멸하기 때문이며 근육의 떨림, 느린 움직임, 신체의 경직, 보행 및 언어 장애 등의 증상을 가진다. 김광수 교수 연구팀은 세계 최초로 환자의 피부세포를 도파민 신경세포로 만드는 `역분화 줄기세포' 기술로 파킨슨병 환자를 임상 치료하는 데 성공했다. 2012년 노벨 생리의학상 수상자인 일본의 신야 야마나카(Shinya Yamanaka) 교수가 `유도만능 줄기세포(induced pluripotent stem cells, 이하 iPS)' 제조 기술을 개발했지만, 이 기술이 뇌 질환 환자치료에 적용돼 성공한 사례는 아직 없다. 전 세계적으로 단 한 명의 환자(황반변성증)가 자신의 iPS를 이용해 세포치료를 받은 적이 있긴 하지만(2017년 New England Journal of Medicine에 발표), 이 경우 병의 호전은 일어나지 않았다. 따라서 iPS를 사용해 피킨슨병 환자 맞춤형 치료를 시도한 것도, 성공한 사례도 김광수 교수 연구팀이 세계에서 맨 처음으로 꼽힌다. 파킨슨병의 맞춤형 줄기세포 치료를 위해서는 환자의 체세포를 안정적으로 줄기세포로 전환한 뒤 이를 다시 도파민 세포로 분화시킨 후 뇌에 이식해야 한다. 이 모든 과정은 고효율로 진행돼야 하며 유해성이나 부작용이 없어야만 가능하다. 이런 난관을 극복하기 위해 김광수 교수는 맞춤형 줄기세포 치료를 위한 연구에 오랫동안 집중해 왔다. 김광수 교수 연구팀은 지난 2009년과 2011년에 각각 바이러스를 사용하지 않고 환자의 세포로부터 유도만능 줄기세포를 제작하는 기술을 최초로 개발해 파킨슨병 동물 모델에 적용할 수 있음을 보고한 바 있다(Cell Stem Cell 2009a; Journal of Clinical Investigation, 2011). 연구팀은 또 도파민 신경의 분화 메커니즘을 밝혀 줄기세포를 효율적으로 분화하는 원리를 제시했다(Cell Sem Cell, 2009b). 이와 함께 2017년에는 역분화 과정에서 발생하는 대사 변화의 메커니즘 규명을 통해 임상 적용이 가능한 새로운 역분화 기술을 개발했다(Nature Cell Biology, 2017). 또 그간 개발한 기술을 기반으로 제조된 도파민 신경세포를 파킨슨 동물 모델에 이식했을 때 암세포 등의 부작용 없이 파킨슨 증상이 현저하게 호전되는 것을 입증하는데 성공했다(Journal of Clinical Investigation, 2020). 김 교수는 20여 년간 연구해온 기술을 활용해 까다롭기로 유명한 미국 식품의약국(FDA)의 최종 승인을 받고 FDA 요청에 의해 지난 2017년과 2018년 2차례에 걸쳐 69세 파킨슨병 환자에게 도파민 신경세포를 면역체계의 거부반응 없이 작용토록 세계 최초로 이식 수술을 진행했다. 이후 2년 동안 PET, MRI 영상 등 후속 테스트를 마친 후, 올 5월 임상 치료에 성공했음을 발표했다. 이식 수술을 받은 환자는 조지 로페즈(George Lopez) 氏로 의사이자 사업가이며 발명가다. 그는 맞춤형 줄기세포의 신속한 연구와 파킨슨병 정복을 위해 애써 달라며 김광수 교수 연구팀을 꾸준히 지원해 오고 있는 것으로 알려졌다. 뉴잉글랜드 의학 저널(New England Journal of Medicine(IF=70))이 맞춤형 줄기세포로 파킨슨병 임상 치료에 성공했다고 밝혀 화제가 된 로페즈 氏의 뇌 이식 수술을 직접 집도한 의사인 매사추세츠 제너럴 병원(Massachusetts General Hospital) 제프리 슈바이처 박사는 "매우 고무적인 임상 치료결과ˮ라고 말했다. 김광수 교수는 "향후 안정성과 효능성 입증을 위해 더 많은 환자를 대상으로 임상실험이 필요하며 FDA의 승인을 위해 필요한 절차를 밟고 있다ˮ고 말했다. 김 교수는 이어 "10여 년 정도 후속 연구를 계속 성공적으로 수행하면 맞춤형 세포치료가 파킨슨병 치료를 위한 또 하나의 보편적인 치료 방법으로 자리 잡게 될 것ˮ이라고 기대했다.
2020.06.04
조회수 19718
모유 수유가 출산 후 산모의 당뇨병을 예방하는 효과 규명에 성공
우리 대학 의과학대학원 김하일 교수와 분당서울대학교병원 내분비대사내과 장학철 교수 공동연구팀이 모유 수유가 산모의 췌장에 존재하는 베타세포를 건강하게 만듦으로써 출산 후 당뇨병 발생을 억제하는 효과를 규명하는데 성공했다. KAIST 의과학대학원 졸업생 문준호 박사(서울대학교병원)와 김형석 박사(충남대학교 의과대학)가 공동 1저자로 참여한 이번 연구 성과는 국제학술지‘사이언스 중개의학 (Science Translational Medicine, IF: 17.16)’ 4월 29일자 온라인 판에 게재됐다. (논문명 : Lactation improves pancreatic β cell mass and function through serotonin production) 임신성 당뇨병 및 출산 후 산모의 당뇨병 발병은 여성 평균 출산 연령이 높아짐에 따라 점차 증가하는 추세다. 전체 산모의 10% 이상이 임신성 당뇨병에 걸리고, 그중 절반 이상은 출산 후 당뇨병으로 연결된다. 또한, 임신과 출산을 경험한 여성은 그렇지 않은 여성에 비해 당뇨병 발병률이 더 높다. 당뇨병은 통상 심혈관 및 뇌혈관, 신경, 망막 질환 등의 다양한 합병증을 유발하기 때문에 여성의 건강과 삶의 질을 크게 떨어뜨린다는 게 학계의 정설이다. 모유 수유는 그동안 산모와 아기의 신체적, 정신적 건강에 다양한 이로운 효과가 있고 특히 당뇨병을 예방하는 효과가 있는 것으로 알려졌지만 그 기전에 대해서 정확하게 파악하지 못하는 단점을 안고 있었다. 모유 수유 중인 산모의 뇌하수체는 모유의 생산을 촉진하는 호르몬인 프로락틴을 활발히 분비한다. 프로락틴은 혈당 조절에 관여하는 호르몬인 인슐린을 분비하는 췌장의 베타세포를 자극한다. 이때 합성되는 신경 전달 물질인 세로토닌은 베타세포의 증식을 유발해 베타세포의 양을 증가시키고 베타세포 내부의 활성 산소를 제거하여 산모의 베타세포를 보다 건강한 상태로 만든다. 따라서 모유 수유는 산모의 베타세포를 다양한 대사적 스트레스에 유연하게 반응할 수 있게 만들어 준다. 연구팀은 174명의 임신성 당뇨병 산모들을 출산 후 3년 이상 추적, 관찰한 데이터를 분석한 결과, 수유를 했던 산모들이 수유를 시행하지 않았던 산모에 비해 베타세포의 기능이 개선되고 혈당 수치가 20mg/dL 정도 낮아지는 현상을 확인했다. 공동연구팀을 이끈 KAIST 김하일 교수는“모유 수유에 의한 베타세포의 기능 향상이 임신과 출산을 경험한 여성의 당뇨병 발병 예방에 큰 도움이 된다”면서 “모유 수유가 지닌 효과는 장기간 지속돼 수유가 끝난 후에라도 장기적으로는 당뇨병 예방 효과를 가진다”고 덧붙였다. 이번 연구는 한국연구재단, 국가과학기술연구회, 보건장학회 등의 지원을 받아 수행됐다.
2020.05.04
조회수 11326
머리에 빛을 비춰 신경세포 재생과 공간기억 향상
뇌질환 상태에서 신경재생으로 일시적인 기억향상이 일어나는 기전이 밝혀졌다. 우리 대학 생명과학과 허원도 교수 연구팀은 머리에 빛을 비춰 뇌신경세포 내 Fas 수용체의 활성을 조절함으로써 신경재생과 공간기억 능력이 향상됨을 보였다. Fas 수용체는 허혈성 뇌질환, 염증성 뇌질환, 퇴행성 신경질환 등 다양한 대뇌질환에 걸린 경우 발현이 유도되는 단백질이다. 일반적으로는 세포를 죽음에 이르게 하지만, 신경계의 다양한 세포들에서는 세포증식 관련 신호전달 경로를 활성화시켜 세포를 재생시킨다. 특히, 뇌질환에 걸린 경우 대뇌 해마의 신경재생에 Fas 수용체가 관련되어 있다는 사실이 알려져 왔으나, 연구방법의 한계로 세부적인 기전에 대해서는 아직 자세히 알려진 바가 없다. 또한, 질환이 있는 뇌에서 해마가 관장하는 공간기억이 Fas 단백질에 의해 어떻게 영향받는지에 대해서도 논란이 되어 왔다. 연구팀은 광수용체 단백질의 유전자에 Fas 수용체 단백질의 유전자를 결합시킴으로써 청색광을 쬐어주면 Fas 단백질의 활성이 유도되는 옵토파스(OptoFAS) 기술을 개발했다. 살아있는 생쥐 대뇌에 다양한 시간동안 빛을 쬐어주면서 시공간적으로 Fas 수용체 단백질의 활성을 조절함으로써 대뇌 해마에서 여러 신호전달 경로들이 순차적으로 활성화되고, 그 결과로 신경재생과 공간기억 능력이 향상된다는 것을 확인했다. 옵토파스(OptoFAS) 기술은 빛을 이용하여 세포의 기능을 조절하는 광유전학(Optogenetics) 기술이다. 배양시킨 세포나 살아있는 생쥐 머리에 청색광을 쬐어주면 광수용체 단백질 여러 개가 결합되며, 이 단백질 복합체가 하위 신호전달경로들을 활성화시킨다. 생체 내에 광섬유를 삽입하여 원하는 시간에 빛을 뇌 조직 내로 전달하는 방식으로 선택적으로 단백질을 활성화시킬 수 있다. 연구팀은 빛을 이용해 대뇌 해마의 치아이랑에 존재하는 미성숙신경세포에서 옵토파스를 활성화시키고, 빛을 쬐어주는 시간에 따라 미성숙신경세포와 신경줄기세포에서 각각 서로 다른 하위 신호전달경로가 활성화됨을 관찰했다. 또한 이 현상에 특정 뇌유래 신경성장인자가 관여함을 밝혀내었다. 반복적으로 충분한 시간동안 빛을 쬐어주면 해마 치아이랑의 신경줄기세포가 증식하는 성체 신경재생이 관찰되었으며, 실험 대상 쥐에서는 일시적으로 공간기억 능력이 향상됨을 밝혔다. 옵토파스 기술을 이용하면 약물을 처리하거나 유전자변형 쥐를 사용하였을 때 발생하는 여러 부작용이 없이 빛 자극만으로 쥐의 생리현상에 지장을 주지 않으면서 뇌신경세포에서 Fas 단백질의 활성을 실시간으로 조절할 수 있다. 질환이 있는 뇌에서 Fas 단백질이 활성화되어 질병에 맞서 대뇌의 기능을 보호하는 여러 가지 역할을 한다는 사실을 생각해볼 때, 향후 세포 수준을 물론 개체 수준까지 뇌질환 상태에서의 신경행동적인 변화를 규명하는 연구에 활용될 것으로 기대한다. 허원도 교수는 “옵토파스(OptoFAS) 기술을 이용하면 빛만으로 살아있는 개체의 신경세포 내에서 단백질의 활성과 신호전달 경로를 쉽게 조절할 수 있다”며 “이 기술이 뇌인지 과학 연구를 비롯해 향후 대뇌질환 치료제 개발 등에 다양하게 적용되길 바란다”고 말했다. 이번 연구결과는 국제 학술지 사이언스 어드밴시즈(Science Advances, IF 12.80)에 4월 23일 오전 3시(한국시간) 온라인 게재됐다.
2020.04.27
조회수 12595
두뇌 인지 기능 조절하는 신경 펩타이드 발견
우리 대학 생명과학과 이승희 교수 연구팀이 두뇌에 존재하는 신경 펩타이드 중 하나인 소마토스타틴(somatostatin)이 두뇌 인지 기능을 높일 수 있음을 밝혔다. 이 교수 연구팀은 특정 가바(뇌세포 대사 기능을 억제 신경 안정 작용을 하는 신경 전달 억제 물질) 분비 신경 세포에서 분비되는 펩타이드 중 하나인 소마토스태틴이 시각 피질의 정보 처리 과정을 조절하고 높일 수 있음을 규명했다. 이번 연구 성과는 치매 등의 뇌 질환에서 인지 능력 회복을 위한 치료제 개발의 계기가 될 것으로 기대된다. 생명과학과 송유향 박사, 황양선 석사, 바이오및뇌공학과 김관수 박사과정, 서울대학교 의과학대학 이형로 박사과정이 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘사이언스 어드밴시스 (Science Advances)’ 4월 22일 자 온라인판에 게재됐다(논문명 : Somatostatin enhances visual processing and perception by modulating excitatory inputs to the parvalbumin-positive interneurons in V1). 2019년 기준 국내 65세 이상 노인 중 10명 중 1명은 치매 질환을 갖고 있다. 치매는 기억력 손실, 인지 기능 및 운동기능 저하 등의 일상생활 장애를 유발해 그 심각성은 나날이 두드러지고 있다. 이승희 교수 연구팀은 치매의 한 종류인 알츠하이머 질환 환자의 뇌척수액에서 소마토스타틴의 발현율이 현저히 감소했다는 점에 주목해 소마토스타틴에 의한 인지 능력 회복 가능성을 밝히는 연구를 수행했다. 소마토스타틴은 인간을 포함한 포유류의 중추신경계에서 존재한다. 특히 정상적인 포유류의 대뇌 피질에서 소마토스타틴을 발현하는 신경 세포인 가바(GABA, γ-aminobutyric acid)를 신경전달물질로 분비해 흥분성 신경 세포의 활성을 억제함으로써 정보 처리 정도를 조율한다. 그러나 기존 연구는 가바의 효과에만 국한돼, 동시에 분비될 수 있는 신경 펩타이드인 소마토스타틴의 고유한 효과 관련 연구는 부족한 상황이다. 연구팀은 자유롭게 움직이는 실험용 생쥐에서 시각정보 인지 및 식별 능력을 측정할 수 있는 실험 장비를 개발 및 도입했다. 이를 통해 생쥐의 시각피질 또는 뇌척수액에 소마토스타틴을 직접 주입한 후 이를 관찰해 생쥐의 시각정보 인지 능력이 현저히 증가함을 발견했다. 나아가 소마토스타틴의 처리에 따른 생체 내 또는 뇌 절편에서의 신경 세포 간 신경전달 효율의 변화를 측정하고, 해당 신경망을 연속 볼록면 주사전자현미경(SBEM)으로 관찰해 소마토스타틴에 의한 시각인지 기능의 향상이 이루어지는 생체 내 신경 생리적 원리를 규명했다. 이러한 연구 성과는 향후 인간을 비롯한 포유류의 두뇌 인지 기능을 조절 가능할 수 있을 뿐 아니라 퇴행성 뇌 질환 등에서 나타나는 인지 기능 장애 치료에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 이승희 교수는 “이번 연구는 두뇌 기능을 높이고, 뇌 질환을 치료할 수 있는 새로운 약물 개발로 이어질 수 있을 것으로 기대한다”라고 말했다. 이번 연구는 한국연구재단 중견연구자 지원사업의 지원을 받아 수행됐다.
2020.04.23
조회수 14386
미생물의 새로운 C1 가스 흡수 대사회로 규명
생명과학과 조병관 교수 연구팀이 미생물이 C1 가스(이산화탄소, 일산화탄소 등 단일 탄소로 이뤄진 가스)를 활용하는 새로운 대사 회로 메커니즘을 규명했다. 연구팀이 규명한 새 대사회로는 현재까지 알려진 관련 대사회로 중 가장 우수한 효율을 갖고 있어 향후 C1 가스를 고부가가치 생화학물질로 전환하는 산업적 응용에 활용 가능할 것으로 기대된다. 조병관 교수와 UNIST 김동혁 교수 공동 연구팀이 수행하고 KAIST 송요셉 박사가 1 저자로 참여한 이번 연구결과는 국제 학술지 미국국립과학원회보(PNAS) 3월 13일 자 온라인판에 게재됐다.(논문명 : Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei) 현재까지 자연계에 알려진 C1 가스를 유기물로 전환하는 대사회로는 총 6개이며, 대표적인 예로 식물의 광합성을 들 수 있다. 그중 미생물인 아세토젠 내에서 발견되는 우드-융달 대사회로는 C1 가스의 흡수 대사회로 중 가장 효율적인 회로로 알려져 있다. 특히 아세토젠은 다양한 환경에서 서식할 수 있어 1년에 1천억kg의 아세틸산(아세토젠의 생산물)을 생산하며 지구 탄소 순환에 큰 영향을 끼친다. 그러나 아세토젠 미생물은 대장균과 같은 산업 미생물과 비교했을 때 생장 속도가 10배 이상 느리다. 이는 C1 가스를 유용한 생화학물질로 변환하기 위한 산업적 미생물로 이용되기에 한계점으로 작용한다. 이에 C1 가스 고정을 더욱 효율적으로 할 수 있는 새로운 대사경로 연구가 활발히 이뤄지고 있다. 연구팀은 문제 해결을 위해 아세토젠 미생물 중 하나인 클로스트리디움 드라케이(Clostridium drakei)가 이산화탄소 흡수 시 다른 미생물에 비해 빠른 성장 속도를 나타내는 점에 주목해, C1 가스 전환효율을 높일 실마리를 찾아낼 수 있을 것으로 예측했다. 연구팀은 차세대시퀀싱 기술을 이용한 게놈서열 및 유전자 분석을 통해 디지털 가상 세포를 구축하고 C1 가스의 흡수 대사경로 효율을 예측했다. 이 결과 현재까지 보고되지 않은 새로운 7번째 대사회로의 존재를 발견했다. 우드-융달 대사 회로와 글리신 생합성 대사회로가 결합돼 C1 가스 고정과 동시에 세포 생장에 필요한 에너지를 획득하는 새로운 형태의 대사회로의 존재를 규명했다. 연구팀은 대사 회로를 구성하는 유전자의 발현량, 동위원소를 이용한 대사경로 흐름 추적, 유전자가위 기술 등을 통해 클로스트리디움 드라케이 미생물이 실제로 새로운 대사 회로를 사용해 C1 가스를 흡수하는 것을 증명했다. 더불어 관련 유전자들을 세포 생장 속도가 느린 다른 아세토젠 미생물에 도입한 결과 빠른 속도로 C1 가스를 사용하여 생장함을 확인했다. 조 교수는 “연구팀이 발굴한 신규 C1 가스 고정 대사 회로를 이용해 아세토젠 미생물의 느린 생장 속도로 인한 고부가가치 생화학물질 생합성 한계를 극복할 수 있기를 기대한다”라고 말했다. 이번 연구결과는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 사업 및 지능형바이오시스템 설계 및 합성 연구단(글로벌프론티어사업)의 지원과 KAIST 초세대 협력연구실 사업(바이오디자인 연구실)의 지원을 받아 수행됐다.
2020.03.26
조회수 16079
빛으로 RNA 이동과 단백질 합성 조절한다
빛으로 세포 내 특정 RNA 이동과 단백질 합성을 조절할 수 있는 기술이 개발됐다. 생명과학과 허원도 교수 연구팀이 빛을 이용해 유전정보를 전달하는 전령RNA와 단백질을 생성하는 리보솜의 결합을 제어해 단백질 합성을 조절하는데 성공했다. 이번 연구성과는 네이처 셀 바이올로지(Nature Cell Biology, IF 17.728)에 2월 18일 오전 1시(한국시간)자 온라인 판에 실렸으며, Nature Reviews Genetics에 하이라이트 논문으로 소개됐다. DNA의 유전정보는 RNA를 거쳐 단백질로 전달된다. 이때 중간에서 유전정보를 전달하는 RNA를 ‘전령RNA’라고 한다. 단백질 생성공장인 리보솜이 전령RNA의 유전정보를 읽어 단백질을 합성한다. 단백질 합성에 있어 전령RNA는 DNA 유전정보의 중간 전달자, 리보솜은 생성공장, 단백질은 완성품인 셈이다. 이전에는 화학물질을 처리해 전령RNA를 조절하는 방법으로 모든 전령RNA를 한꺼번에 조절하기 때문에 특정 종류의 전령RNA만을 세밀하게 조절하기 어려웠다. 이번 연구에서는 살아있는 세포에 청색광을 비춰줌으로써 세포 내 특정 전령RNA 이동 및 단백질 합성을 시공간 특이적으로 조절하는 mRNA-LARIAT 광유전학 기술을 개발했다. 연구팀은 이전 연구로 개발한 라리아트 올가미(LARIAT, Light-Activated Reversible Inhibition by Assembled Trap) 기술과 RNA 이미징 기술을 융합해 mRNA-LARIAT 기술을 개발했다. mRNA-LARIAT 광유전학 기술을 이용하면 빛의 유무에 따라 라리아트 올가미에 전령RNA를 가두거나 분리하고, 이를 실시간으로 관찰하는 것이 가능하다. 연구팀은 헬라 세포에 청색광을 비춰주면 라리아트 올가미에 전령RNA가 가둬지면서 리보솜과 격리되고 단백질 합성이 감소함을 관찰했다. 이어 청색광을 차단하면 라리아트 올가미로부터 전령RNA가 빠져나오면서 리보솜과 단백질 합성을 다시 시작함을 확인했다. 이는 mRNA-LARIAT 광유전학 기술로 빛의 유무에 따라 매우 빠르고 가역적으로 단백질 합성을 조절할 수 있음을 의미한다. 대부분 단백질은 전령RNA와 리보솜에 의해 합성된 후, 각 단백질이 작용하는 위치로 이동한다. 하지만 전령RNA가 라리아트 올가미에 가둬지면 전령RNA가 향후 단백질이 작용하는 위치까지 이동이 멈추고 단백질 합성이 차단된다. 전령RNA는 단백질보다 비교적 작은 분자로, 세포 내 이동이 더 효율적이고 빠르다. 이처럼 mRNA-LARIAT 광유전학 기술로 전령RNA 이동 및 단백질 합성을 빛으로 조절하면 살아있는 세포에서의 RNA의 위치 및 합성되는 신생 단백질의 기능을 효율적으로 연구할 수 있게 되었다. 연구팀은 베타액틴(β-actin) 단백질 합성에 관여하는 전령RNA에 mRNA-LARIAT 기술을 적용했다. 베타액틴 단백질 합성에 관여하는 전령RNA에 청색광을 비추니 세포 골격 구성 및 이동 기능이 제대로 이뤄지지 않음을 관찰했다. 또한 베타액틴 단백질 합성 효율이 최대 90%까지 감소됨을 확인했다. 허원도 교수는 “mRNA-LARIAT 광유전학 기술을 활용하면 암세포, 신경세포 등 다양한 세포 내 전령RNA 이동 및 단백질 합성을 빛으로 조절할 수 있다”라며 “앞으로 암세포 전이, 신경질환 등 전령 RNA 관련 질병 연구에 응용 가능할 것이다”라고 말했다.
2020.02.21
조회수 17343
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 17