-
강승균 교수, 신경치료 후 몸에서 자연 분해되는 전자약 개발
〈 강 승 균 교수 〉
우리 대학 바이오및뇌공학과 강승균 교수 연구팀이 美 노스웨스턴 대학 구자현 박사와의 공동 연구를 통해 절단된 말초신경을 전기치료하고 역할이 끝나면 몸에서 스스로 분해돼 사라지는 전자약을 개발했다.
몸에 녹는 수술용 실이 대중화된 것처럼 생분해성 무선 전자약을 통해 앞으로는 병원을 찾지 않고도 집에서 물리치료를 받듯 전기치료를 받는 시대를 맞이할 수 있을 것으로 기대된다.
이번 연구결과는 국제 학술지 ‘네이처 메디슨(Nature Medicine)’ 10월 8일자 온라인 판에 게재됐다. (논문명 : 비약리학적 신경재생 치료를 위한 생분해성 무선전자 시스템, Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy)
말초신경 손상은 국내에서 연간 1만 건 이상 발생할 정도로 빈도가 높은 외상 중 하나이다. 신경의 재생 속도가 얼마나 신속하게 이뤄지느냐가 근육 회복율 및 후유증을 결정하는 중요 요소이며 재생속도가 현저히 저하되면 슈반세포의 소멸로 신경재생이 불가능해지거나 탈 신경 지연에 의한 영구 근육장애를 유발한다.
따라서 신경재생을 가속하기 위한 노력이 지속돼 왔고 전기적 자극을 통해 신경재생을 촉진시키는 전자약의 효능이 주목을 받고 있다.
전자약이란 전기 신호를 통해 체내의 장기, 조직, 신경 등을 자극해 세포의 활성도를 높여 재생속도 향상과 생체반응이 활발히 이뤄지도록 치료하는 기술이다. 전자약을 통해 손상된 신경을 전기자극하면 신경 세포가 활성화되며 축색돌기의 분화가 가속돼 신경재생이 빨라져 치료효과를 극대화할 수 있다.
이러한 전자약의 효과적인 성능에도 불구하고 치료 수술의 복잡성과 이로 인한 2차 손상의 위험성이 커 신경 치료에 직접적으로 활용하지 못했다.
전기 신호를 전달하기 위해서는 전선으로 머리카락 두께의 신경을 감싸야 하는데 치료 후에 신경을 감쌌던 전선을 다시 제거하는 과정이 매우 어렵고 자칫하면 제거 과정에서 2차 신경손상으로 이어질 수 있다. 또한 장기적인 전기 치료가 필요한 경우에는 매번 수술을 반복해야하는 한계가 있었다.
연구팀은 문제 해결을 위해 초박막형 실리콘과 유연성을 갖춘 생분해성 고분자를 이용해 300마이크로 수준 두께의 매우 얇고 유연성을 갖추고 있을 뿐 아니라 체내에서 수개월 내에 분해되는 전자약을 개발했다.
개발한 전자약은 체내에서 무선으로 작동되고 사용이 종료된 후 몸속에서 녹아 흡수되기 때문에 별도의 제거수술이 필요하지 않다. 따라서 추가 수술 없이도 반복적인 전기치료를 할 수 있으며 제거를 위한 수술도 필요하지 않아 2차 위험성과 번거로움을 근본적으로 해결할 수 있는 기술이다.
연구팀은 생분해성 무선 전자약 기술이 말초신경의 치료와 더불어 외상성 뇌손상 및 척추손상 등 중추신경의 재활과 부정맥 치료 등을 위한 단기 심장 박동기에도 응용 가능할 것으로 예상했다.
강 교수는 “최초로 생분해성 뇌압측정기를 개발해 2016년 네이처 紙에 논문을 게재한 뒤 약 2년 만에 치료기술로서의 의료소자를 성공적으로 제시했다”며 “생분해성 전자소자의 시장에서 우리나라가 중추적인 역할을 수행할 수 있을 것이다”고 말했다.
이번 연구는 한국연구재단 신진연구자지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 생분해성 무선 전자소자의 생분해성 데모 예시
그림2. 다리신경 모델에 적용된 생분해성 무선 전자약의 삽입 모형도
그림3. 생분해성 전자약의 신경치료 시나리오 모식도
2018.10.22
조회수 10384
-
이현주 교수, 생체 친화적 전도성 실크 접착제 개발
〈 (왼쪽부터)서지원 박사, 이현주 교수, 김효중 박사과정 〉
우리 대학 전기및전자공학부 이현주 교수 연구팀이 생체 친화적 실크 고분자를 이용해 생체적합 전도성 접착제를 개발하고 이를 통해 인간 피부에 잘 부착되는 경피형 전자소자를 개발했다.
이번에 개발된 실크 전도성 접착제 필름은 생체친화적 실크 고분자에 금속이온을 도입해 접착성을 갖도록 만든 기술로 접착성이 높은 경피형 전자소자의 구현이 가능해 장기간 모니터링 및 약물 투여가 필요한 환자에게 적용할 수 있을 것으로 기대된다.
서지원 박사, 김효중 박사과정이 주도하고 생명화학공학과 최시영 교수, 김기한 박사가 참여한 이번 연구는 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 9월 5일자 표지논문에 게재됐다. (논문명 : 피부부착형 전자소자를 위한 생체적합 및 고접착성을 지닌 칼슘이 도입된 실크 접착제, Calcium-modified silk as a biocompatible and strong adhesive for epidermal electronics)
최근 생체친화성 실크 고분자는 구조의 변형 및 생분해성이 가능해 유연기판 및 희생층으로 적용하는 사례가 늘어나고 있다. 연구팀은 지난 2년 간의 연구로 칼슘금속이온에 의한 실크 고분자의 접착 특성을 발견했다.
연구팀은 이를 이용해 인간의 피부에 고 접착으로 붙어 장기간 모니터링 및 재사용이 가능한 경피형 전자소자를 개발하기 위한 연구를 해 왔다. 연구팀은 기존 실크 고분자의 한계와 제한을 극복하기 위해 칼슘이온을 도입을 통해 생체 적합하고 고접착력을 갖는 실크 접착제를 개발했다.
실크 고분자에 도입된 칼슘이온은 물을 흡수하는 능력과 고분자를 결합해주는 능력을 갖고 있어 단단한 실크 고분자에 점탄성특성을 부여해준다. 강한 점탄성특성을 갖는 실크 고분자는 인체 피부 및 다양한 고분자 기판의 계면에서 물리적으로 결합해 강한 접착특성을 갖는다.
고접착 특성과 더불어 실크 고분자의 칼슘이온은 실크 접착제가 이온전도성을 갖게 도와주며, 원래의 실크 고분자가 갖고 있는 생분해특성에 의해 특정 조건에서 쉽게 접착력이 사라지는 특성을 보인다.
연구팀은 이 특성을 통해 실크접착제를 경피형 전자소자와 인체피부사이에 삽입해 고접착을 가지는 유연성 캐패시터 터치센서를 제작하고 장기간 부착이 가능하고 쉽게 탈부착 및 재사용 할 수 있는 터치센서를 개발했다.
또한 인체 장기의 조직 중 신축성이 강한 방광 조직에 고 접착성을 가지는 변형센서를 집적해 방광 조직의 변형률에 따른 저항변화를 이용한 변형정도를 확인했다.
연구팀의 기술은 생체적합성과 접착력이 높아 체내 이식용 전자소자에도 활용돼 장기간 모니터링 및 치료에 응용 가능할 것으로 기대된다.
이 교수는 “생체친화적인 실크고분자를 이용해 재사용이 가능하며 쉽게 생분해가 되는 고접착 접착제를 개발했다는 점에서 실크 물질에 대한 새로운 가능성을 제시했다”며 “바이오공학 분야에서 경피형 및 체내이식형 전자소자에 적용할 수 있고 장기간 모니터링 및 약물전달 시스템을 구현할 수 있을 것이다”고 말했다.
이번 연구는 보건복지부 한국보건산업진흥원의 보건의료기술연구개발사업 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 펑셔널 머티리얼즈 표지
2018.09.17
조회수 10927
-
유승협 교수, 무기LED 상응하는 고효율 OLED 구현
〈 유승협 교수, 송진욱 박사과정 〉
우리 대학 전기및전자공학부 유승협 교수 연구팀이 무기 LED에 상응하는 높은 효율의 유기발광다이오드(OLED)를 구현하는 데 성공했다.
이번 연구는 서울대학교 재료공학부 김장주 교수, 경상대 화학과 김윤희 교수 연구팀과의 협력을 통해 이뤄진 것으로 이 기술을 통해 OLED 조명의 대중화 및 시장 성장에 이바지할 수 있을 것으로 기대된다.
송진욱 박사과정이 1저자로 참여한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 10일자 온라인 판에 게재됐다.
OLED는 수많은 모바일 기기와 고품질 TV 등의 디스플레이 기술에 광원으로 활용되고 있는 소자로, 두께가 얇고 유연 소자 제작이 가능하다는 장점을 갖고 있다. 최근에는 조명, 차량용 광원에도 OLED를 활용하기 위한 노력이 계속되고 있다.
이러한 응용에는 광원의 효율이 매우 중요하다. 최근 지속적인 연구 개발에 의해 OLED의 효율이 꾸준히 상승했고 일부는 기존 고효율 무기 LED 수준에 준하는 결과들이 보고되고 있다.
그러나 이러한 고효율 OLED의 연구 결과들은 OLED가 갖는 면광원(面光源)의 장점을 해치는 반구형 렌즈가 쓰이거나 소자 내부에 빛을 추출하는 나노 구조가 도입돼 안정적인 동작을 방해하는 등의 문제로 상용화에 한계가 있었다.
연구팀은 OLED의 광 추출용으로 개발됐던 여러 방법 중 실용화 가능성이 가장 큰 기술인 나노입자 기반의 광 산란층을 소자 외부에 도입하는 방법에 주목했다.
특히 광 산란을 이용한 기존 OLED 광 추출 향상 연구가 반복적인 실험을 통해 경험적인 방식으로 이뤄졌던 것과는 다르게 연구팀은 종합적이고 분석적 방법론을 정립해 최대 효율을 이끌어낼 수 있는 구조를 이론적으로 예측했다.
OLED에 광 추출 구조를 적용해 가능한 최대의 효율에 도달하기 위해선 광 추출 구조와 OLED 구조를 각각이 아닌 전체로 보고 최적화를 이뤄야 한다.
연구팀은 산란 현상을 수학적으로 기술하는 이론을 OLED 발광 특성 예측 모델과 최초로 결합해 여러 구조를 가지는 수많은 소자들의 특성을 짧은 시간에 예측했고, 이를 기반으로 최대 효율을 갖는 최적 구조를 이론적으로 예측하는 데 성공했다.
연구진은 이론적으로 예측된 최적의 광 산란 필름을 실험적으로 구현하고 이를 고효율 유기 발광소재를 이용한 소자 구조에 접목해 56%의 외부 양자 효율 및 221lm/W의 전력 효율을 이끌어내는데 성공했다. 이는 큰 렌즈나 내부 광 추출구조 없이 구현된 OLED 단위 소자 효율로는 최고의 결과이다.
유승협 교수는 “다양한 OLED 광 추출 효율 향상 기술이 개발됐지만 실용화 가능성은 높지 않은 경우가 많았다. 이번 연구는 상용화 가능성에서 가장 의미가 큰 기술을 활용하면서 고효율 LED의 효율에 상응하는 OLED 구현 방법을 체계적으로 제시했다는데 의의가 있다”며 “낮은 전력소모가 특히 중요한 조명용 광원이나 웨어러블 기기의 센서용 광원에 OLED가 활용되는 데 기여할 것이다”고 말했다.
이번 연구는 한국연구재단의 중견연구자지원사업 및 나노소재원천기술개발사업, 한국전자통신연구원(ETRI)의 초저가플렉서블 Lightning Surface 기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 외부 산란층과 결합된 OLED 구조 모식도
2018.08.21
조회수 15538
-
최원호 교수, 플라즈마 내 전자의 가열 원리 규명
〈 최원호 교수, 박상후 연구교수〉
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 약하게 이온화된 플라즈마(weakly ionized plasma)에서 전자가 가열되는 구조와 제어 원리를 규명하는데 성공했다.
플라즈마 내의 모든 반응이 전자로부터 시작된다는 점으로 볼 때 전자의 가열 원리를 규명함으로써 플라즈마를 더욱 자유롭고 다양하게 활용할 수 있을 것으로 예상된다.
이는 대기압 플라즈마 내에 존재하는 자유 전자에 대한 기초 연구 자료로 기존 플라즈마의 활용 및 응용 가능성을 높이는 등 플라즈마 물리학 및 응용기술 발전에 크게 기여할 것으로 기대된다.
박상후 연구교수가 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’5월 14일자와 7월 5일자 온라인 판에 연달아 게재됐다. (논문명 : Electron information in single- and dual-frequency capacitive discharges at atmospheric pressure, 단일 및 이중 주파수 대기압 플라즈마의 전자 정보 / Electron heating in rf capacitive discharges at atmospheric-to-subatmospheric pressures, 대기압과 대기압보다 낮은 압력에서 라디오 주파수 플라즈마 내의 전자 가열)
물질의 세 가지 상태인 고체, 액체, 기체와 더불어 ‘물질의 네 번째 상태’라 불리는 플라즈마는 표준 온도 및 압력(25 ℃, 1 기압)의 상태에서는 자연적으로 존재하지 않으나 인위적으로 기체에 에너지를 가하면 플라즈마 상태가 된다.
학계 및 산업계는 활용 목적과 조건에 맞춰 다양한 형태의 플라즈마 발생원을 개발해 사용하고 있다. 특히 대기압 플라즈마는 응용 가능 분야가 다양하고 활용도가 높아 학술적, 산업적 활용성 측면에서 많은 관심을 받고 있다.
일반적으로 플라즈마 내의 다양한 화학적, 물리적 반응은 전자로부터 시작되기 때문에 전자의 밀도와 온도의 시공간적 변화는 아주 중요한 정보이다. 플라즈마 및 가속기 물리학 분야에서 자유 전자의 가열 여부는 과학자들의 관심을 지속적으로 받은 연구 주제이다.
그러나 대기압 조건에서는 자유 전자와 중성기체의 충돌이 빈번하기 때문에 이온화된 플라즈마 내 자유 전자의 밀도와 온도를 측정하는 데에는 한계가 있어 자유 전자의 가열 구조 및 원리를 실험적으로 규명할 수 없었다.
또한 전자 가열의 제어 방법 및 주요 요인에 대한 정보가 부족해 플라즈마의 반응성과 활용성 개선이 제한적이었다.
연구팀은 문제 해결을 위해 전자-중성입자 제동복사(electron-neutral bremsstrahlung)란 기술을 이용해 플라즈마 내 자유 전자의 밀도, 온도를 정확히 진단하고 이를 2차원으로 영상화하는 기술을 개발했다.
연구팀은 개발한 진단 기술을 이용해 대기압 플라즈마에서 수 나노초(10억분의 1초) 단위로 자유 전자의 온도(에너지)를 측정해 전자가 에너지를 얻는 가열 과정의 시공간적 분포 및 근본 원리를 밝히는 데 성공했다.
0.25~1기압 압력구간에서의 전자 온도의 시공간적 분포의 변화를 실험적으로 최초로 확인해 대기압 및 대기압보다 낮은 압력에서 전자가 에너지를 얻는 가열의 기본 원리를 규명했다.
최 교수는 “이 연구 결과는 자유 전자와 중성입자의 충돌이 매우 빈번한 조건에서 발생하는 플라즈마에서의 전자 가열 원리를 학문적으로 이해하는 데 유용할 것이다”며 “이를 통해 경제적, 산업적 활용 가능한 대기압 플라즈마 발생원을 개발하고 다양하게 활용하는데 큰 역할을 하길 기대한다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 측정된 파장의 제동복사 및 전자 온도의 시공간적 변화
그림2. 단일 및 이중 주파수로 구동하는 플라즈마에서 측정된 제동복사 및 전자 온도의 시공간적 변화
2018.07.26
조회수 13672
-
박정영, 정유성 교수, 합금 촉매의 화학반응 실시간 관찰 성공
〈 박 정 영, 정 유 성 교수〉
우리 대학 EEWS 대학원 박정영, 정유성 교수 연구팀이 합금 촉매 표면에서 벌어지는 화학 반응 과정을 실시간으로 관찰해 합금 촉매의 반응성 향상과 직결된 반응 원리를 규명했다.
연구팀의 관찰 결과는 차세대 고성능 촉매 설계에 활용할 수 있는 반응성 향상 원리의 기반이 될 것으로 기대된다.
GIST 물리․광과학과 문봉진 교수 연구팀과 공동으로 수행한 이번 연구 결과는 종합 과학 분야 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 7월 13일자 온라인 판에 게재됐다. (논문명 : Adsorbate-driven reactive interfacial Pt-NiO1-x nanostructure formation on the Pt3Ni(111) alloy surface, 백금-니켈 합금 표면위의 촉매 활성도가 높은 금속-산화물 경계 나노구조물 형성의 실시간 관찰)
합금 촉매는 단일 금속 또는 금속 산화물 촉매에 비해 뛰어난 성능을 보여 연료전지반응이나 탄소계열 공업화학반응 등에 이용되고 있다. 하지만 합금 촉매 반응의 결과에 대한 근본적인 원리는 자세히 밝혀지지 않아 촉매 연구 과정에서 발생하는 예상치 못한 결과를 설명하기 어려웠다.
연구팀은 문제 해결을 위해 기존의 표면 직접 관찰 기기의 한계점을 크게 개선한 ‘상압 주사 터널링 전자 현미경’과 ‘상압 X-선 광전자분광기’를 활용해 백금-니켈 합금 촉매 표면의 역동적인 변화 과정을 관찰했다.
이를 통해 실제 반응 환경에서 백금-니켈 합금 촉매의 반응성 향상 이유가 금속-산화물 계면 나노구조의 표면 형성으로부터 시작됨을 밝혀냈다.
또한 일산화탄소 산화반응 과정에서 백금 혹은 니켈 산화물 단일 촉매에 비해 금속-산화물 계면 나노구조가 갖는 비교적 낮은 활성화 에너지는 촉매 반응 원리 상 반응성 향상에 보다 유리한 화학 반응 경로를 제시할 수 있음을 확인했다.
이 결과는 밀도범함수 이론을 바탕으로 한 양자역학 모델링 계산 결과를 통해 입증됐다.
박정영 교수는 “초고진공 환경을 기반으로 한 기존의 표면 과학이 풀지 못한 실제 반응 환경에서의 합금 촉매 반응 과정을 직접 관찰한 첫 연구사례이다”며 “합금 촉매의 계면이 촉매 향상도를 높일 수 있고, 현재 진행 중인 촉매전자학 연구와도 밀접한 관계를 가지고 있다. 다양한 종류의 실제 반응 환경에 근접한 촉매 표면 반응을 연구할 계획이다.”고 말했다.
이론적 원리 규명 연구를 주도한 정유성 교수는 “직접 관찰과 양자 계산을 통해 합금 촉매의 주된 활성 자리가 계면임을 규명한 연구로, 다양한 합금 촉매의 설계 및 최적화에 중요한 단서가 될 것이다”고 말했다.
상압 표면 분석을 주도한 GIST 문봉진 교수는“이 연구는 외부의 분자들과 쉴 새 없이 반응하면서 움직이는 마치 살아서 숨쉬고 있는 원자의 움직임과 반응성을 동시에 측정한 완벽한 표면물리연구이다”고 말했다.
이번 연구는 기초과학연구원 및 한국연구재단, GIST 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 주사 터널링 전자 현미경을 이용한 실시간 표면 관찰 이미지
그림2. 시간에 따른 표면 직접 관찰 이미지
2018.07.16
조회수 12857
-
박정영, 정유성 교수, 합금 나노촉매 성능 향상 원리 밝혀
〈 박 정 영 교수, 정 유 성 교수〉
우리 대학 EEWS 대학원 및 화학과 박정영 교수 연구팀이 정유성 교수 연구팀과의 공동 연구를 통해 합금 나노 촉매 표면에 형성된 금속-산화물 계면이 촉매 성능을 향상시키는 중요한 요소임을 밝혔다.
이번 연구결과는 종합 과학 분야 국제 학술지 ‘네이처 커뮤니케이션즈’(Nature Communications) 6월 8일자 온라인 판에 게재됐다.
합금 나노입자는 높은 효율의 촉매 활성도를 가져 석유화학 공정뿐만 아니라 수소 연료 전지, 물 분해 등 친환경 촉매로 주목받고 있다. 합금 나노입자는 화학적 조성에 따라 촉매 표면의 전자 구조 및 결합 에너지를 제어할 수 있어 활용성이 크다.
이런 우수한 특성에도 불구하고 실제 촉매 환경에서는 반응물과 조건에 따라 나노 입자 표면 구조가 쉽게 달라져 합금 나노 촉매의 반응 원리 규명에 어려움이 있었다.
촉매 반응의 원리를 결정하는 핵심 요소는 핫전자이다. 화학반응이 일어날 때 촉매 표면에 순간적으로(펨토초, 1천조분의 1초) 발생하고 사라지지만 촉매 반응의 활성도를 파악할 수 있는 척도와 같다. 촉매 활성도가 증가하면 핫전자 양도 늘어나기 때문이다. 실시간으로 핫전자를 직접 검출할 수 있는 방법이 마땅히 없던 중 2015년 박정영 부연구단장 연구진이 핫전자를 관찰할 수 있는 핫전자 촉매센서를 개발했다. 이후 박 부연구단장은 핫전자 촉매센서를 중심으로 활발한 연구를 통해 다양한 결과를 내고 있다.
이번 연구에서는 백금과 코발트가 합금된 나노입자를 핫전자 촉매센서에 접목하는 방식으로 연구를 설계했다. 백금-코발트 합금 나노입자는 화학산업 및 에너지·환경 분야에 중요한 촉매 구성요소다. 백금-코발트 합금 나노입자처럼 복잡한 구조를 가진 나노 촉매 구조에 핫전자 촉매센서를 적용해 실시간으로 핫전자를 관찰하는 것이 이번 실험의 큰 관건이었다.
먼저 연구진은 여러 비율로 백금과 코발트를 합성해 합금 나노 촉매들을 제작하고 핫전자 촉매센서를 적용했다. 그 결과 75% 백금과 25% 코발트 비율로 합금 나노입자를 합성할 경우, 가장 많은 핫전자가 발생하고 촉매 성능이 높다는 것을 확인했다. 이후 핫전자 발생량과 촉매 성능의 상관관계를 보다 명확히 밝히고자 실시간 투과전자현미경(TEM, Transmission Electron Microscopy)으로 실험 과정을 관찰했다.
수소산화 반응에 합금 나노촉매를 적용하자 한 층의 코발트 산화물이 백금-코발트 합금 나노 입자 표면 위에 형성되면서 금속-산화물(백금-코발트 산화물)계면이 만들어졌다. 금속-산화물 계면에서 전하 이동이 늘어나면서 핫전자 검출 효율이 증가한 것이다. 다시 말해 금속-산화물 계면이 합금 나노 촉매의 활성을 높이는 데 결정적임을 실제로 입증한 것이다.
이번 연구는 실험 뿐 아니라 이론적으로도 계면과 촉매 성능 간 상관관계를 입증했다. 정유성 교수 연구진은 밀도범함수이론(Density Functional Theory) 기반의 양자계산을 통해 백금-코발트 산화물 계면에서 낮은 활성화 에너지로 일어나는 반응 원리를 이론적으로 뒷받침해 핫전자 발생 및 촉매 성능에 대한 근원적인 해석을 제안했다.
정 교수는 “이번 결과는 촉매 연구자들이 금속-산화물 계면의 중요성을 다시 주목하게 되는 계기가 될 것이다”고 말했다.
박 교수는 “이번 연구로 합금 나노촉매의 반응 중 자연스럽게 형성되는 두 물질 사이의 계면이 촉매 반응성과 핫전자의 생성을 증폭시킨다는 점을 규명했다”며 “실제 촉매반응이 일어나는 상압과 고온 환경에서 얻어진 결과를 토대로 향후 고효율의 차세대 촉매물질을 개발하는데 연구 결과를 응용할 수 있다”고 전망했다.
□ 그림 설명
그림1. 나노 촉매계면에서의 핫전자 움직임 실시간 관찰
그림2. 핫전자 촉매센서를 이용한 합금 나노입자에서의 핫전자 움직임 관찰
2018.07.06
조회수 11549
-
박범순 교수, 유전체 편집의 글로벌 관측소 설립 제안
〈 박 범 순 교수 〉
우리 대학 과학기술정책대학원 박범순 교수 연구팀의 유전체 편집 관련 ‘글로벌 관측소(Global Observatory)’ 설립 제안 논문이 국제학술지 셀의 자매지인 ‘트렌드 인 바이오테크놀로지(Trends in Biotechnology)’ 6월자 온라인 판에 게재됐다.
유전자가위 기술의 발전으로 인간 생식세포의 손쉬운 편집이 가능해지고 인류의 미래에 직접적인 영향을 줄 수 있다는 점에서 새로운 국제적 협치의 장에 대한 필요성이 커지고 있다.
이에 2015년 12월 영국 왕립학회, 중국 과학한림원, 미국 과학한림원의 공둥 주관으로 열린 ‘인간유전체 편집에 대한 국제 회의’에서 유전체 편집기술의 안전성과 효능의 검증, 기술의 적절성에 대한 폭넓은 사회적 합의 확보, 관련 규제 관리 마련 등에 대해 논의한 바 있다.
그러나 여전히 폭넓은 합의가 무엇을 의미하는지, 이를 어떻게 확보할 지에 대한 합의점은 명확하지 않았다.
박 교수 논문은 이 문제를 세 가지로 정리해 제시했다. ▲ 유전체 편집기술에 대한 국제적 논의에는 지정학적 의미에서 많은 국가의 관점이 적절히 고려돼야 하고 ▲ 기술의 적용이 사회를 지탱하는 규범과 법적 권리 및 의무와 깊이 연관돼 있기 때문에 기술의 미래에 대한 질문은 기술적, 윤리적 영역으로 쉽게 구분할 수 없고 ▲ 무엇이 중요한 이슈이고, 우선적으로 무엇을 다뤄야 하는가, 합의를 어떻게 이룰 것인가에 대한 논의가 이뤄져야 한다고 말했다.
이어 글로벌 관측소의 설립 목적과 목표가 소개됐다. 이 관측소는 인간 유전체편집기술에 대해 보다 포괄적이며 ‘코스모폴리탄 윤리’에 기반한 새로운 형태의 숙의의 장으로 제안됐다. 가장 주된 기능으로는 글로벌 인류 공동체 내의 다양한 관점들을 가시화하고 이를 통해 숙의과정에서 보다 확장된 질문들이 다루어질 수 있도록 하는 것이다.
글로벌 관측소는 ▲유전체편집에 대한 글로벌 수준의 윤리적, 정책적 반응들을 수집하고 가시화하는 작업 ▲‘합의’에 대한 개념적 발전, 긴장관계들, 그리고 합의가 필요한 영역들에 대한 실질적 분석을 제공하고 ▲기존의 논의에서 무시되었던 중요한 질문들, 목소리를 높일 수 없었던 행위자들에게 초점을 맞춰 주기적인 논의가 이루어지는 포럼으로서 역할을 수행하게 될 것이라고 설명했다.
박범순 교수는 “크리스퍼(CRISPR) 유전자 가위로 대표되는 유전체편집기술이 가져올 사회적, 법적, 윤리적, 종교적, 철학적 이슈를 각국의 경험을 바탕으로 논의하고 정보를 공유하기 위한 대화의 장을 마련하자는 취지에서 글로벌 관측소 설립을 제안했다”고 말했다.
2018.07.02
조회수 10132
-
정연식 교수, 2차원 반도체 공중 부양시켜 고성능 소자 제작
우리 대학 신소재공학과 정연식 교수 연구팀이 차세대 2차원 반도체를 빈 공간이 90%가 넘는 나노크기 돔 구조체 위에 올려 고성능 전자소자를 구현하는 데 성공했다.
연구팀은 이 기술을 활용해 2차원 반도체의 전자이동 능력이 기존 기술에 비해 2배 이상, 빛 감지 성능은 10배 이상 향상시켰다.
박사과정 임순민 연구원이 제1 저자로 수행한 이번 연구는 미국화학회가 발간하는 국제학술지 ‘나노 레터스(Nano Letters)’ 온라인 판 4월 3일에 게재됐다.
2차원 반도체 소재는 기존 실리콘 반도체의 물리적인 성능 한계를 극복할 수 있는 대안으로 떠오르고 있다.
하지만 원자층 수준의 얇은 두께 때문에 주변 영향에 매우 민감하다는 특성이 있다. 특히 2차원 반도체가 올려진 기판으로부터의 불규칙한 영향에 의해 성능과 신뢰성이 확보되지 못하고 있다.
이러한 문제점을 해결하기 위해 해외 연구팀들이 기판의 영향을 원천적으로 차단할 수 있는 방법을 연구하고 있다. 그 중 2차원 반도체를 공중에 매달린 구조로 설계하는 기술이 보고된 바가 있지만 반도체 층 하단을 받쳐주는 구조물이 존재하지 않아 기계적 내구성이 크게 떨어지는 단점이 있다.
정 교수 연구팀은 2차원 반도체 하단에 산화규소 재질의 초미세 돔형 구조물을 촘촘히 형성하는 아이디어로 문제를 해결했다.
기판 위에 올라가 있는 돔형 구조물은 초미세 나노크기이기 때문에 빈 공간이 90%가 넘는다. 그러한 돔 형태의 구조물 위에 2차원 반도체를 올리면 마치 기판 위에 반도체가 공중 부양하는 것과 유사한 효과를 보이게 된다. 이를 통해 기계적으로 안정적이면서 접촉 면적 및 기판의 영향을 최소화할 수 있다.
이러한 둥근 돔 구조 형상 덕분에 2차원 반도체와 기판 사이의 접촉면적을 최소화할 수 있어 반도체의 물리적 성능이 대폭 향상된다.
일반적으로 초미세 돔형 구조물을 제작하기 위해서는 패턴을 일일이 새겨주는 고가의 장비가 필요하다. 그러나 정 교수 연구팀은 분자가 스스로 움직여 나노구조물을 형성하는 자기조립 현상을 이용해 저비용으로 미세한 돔 구조 배열을 구현하는 데 성공했다. 또한 기존 반도체 공정과도 높은 호환성을 보임을 확인했다.
정연식 교수는 "이번 연구가 다양한 2차원 반도체 소재 이외에도 금속성 2차원 소재인 그래핀의 특성 향상에 동일하게 적용될 수 있다“며 ”활용범위가 커 차세대 유연디스플레이의 구동 트랜지스터용 고속 채널 소재 그리고 광 검출기의 핵심 소재인 광 활성층으로 활용될 수 있다"고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 미래소재디스커버리사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 돔 구조체 이용한 2차원 반도체 제작 이미지
2018.04.24
조회수 14905
-
오일권 교수, 그래핀 기반의 소프트 액추에이터 개발
〈 타바시안 라솔 박사과정, 오 일 권 교수 〉
우리 대학 기계공학과 오일권 교수 연구팀이 두 개의 서로 상반된 그래핀 구조체를 전극으로 사용해 소프트 액추에이터(작동장치)의 성능을 높이는데 성공하였다.
연구팀이 이번 연구를 통해 제작한 액추에이터는 웨어러블 전자기기, 소프트 로봇 등의 분야에서 사용 가능할 것으로 기대된다.
타바시안 라솔(Tabassian Rassoul) 박사과정이 1저자로 참여한 이번 연구는 온라인 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 1월 31일자에 게재됐으며 표지논문에 선정됐다.
차세대 전자기기에 능동형 소프트 액추에이터를 적용하기 위해서는 액추에이터의 전극이 유연성, 높은 전기 전도성 및 전기 화학적 활성, 내구성 등을 갖는 동시에 높은 효율성을 가져야 한다.
하지만 기존의 소프트 액추에이터는 백금 또는 금 등의 고가 귀금속이 사용됐기 때문에 실제 적용이 어려웠다.
연구팀은 문제 해결을 위해 기능적인 길항성(두 요인이 동시에 작용해 서로의 효과를 상쇄시키는 성질)을 갖는 각기 다른 두 종류의 그래핀 전극을 동시에 사용했다.
연구팀은 전기전도성은 매우 좋지만 전기화학적 활성이 낮은 그래핀 그물망의 단점을 보완하기 위해 질소가 증착된 구겨진 그래핀 입자들을 추가로 적용했다. 그물망 그래핀 메쉬(mesh)와 질소가 증착된 구겨진 그래핀을 결합해 전기화학적으로 기능적 길항성을 갖는 하이브리드 전극을 제작해 소프트 액추에이터에 적용했다.
연구팀이 합성한 그래핀 메쉬 구조는 그래핀 튜브들이 서로 엮인 그물망 형태의 구조를 갖는다. 특히 그물망 구조의 물결 모양 패턴 덕분에 다른 유형의 그래핀 구조보다 우수한 신축성을 갖는다.
또한 화학기상증착법(Chemical vapor deposition, CVD) 방법으로 합성하기 때문에 높은 전기 전도도를 갖는 고품질 그래핀 그물망을 제작할 수 있다.
이 하이브리드 전극에서 그래핀 그물망은 신속하고 균일한 전하 분포 촉진, 질소가 증착된 구겨진 그래핀은 전하를 효율적으로 저장하는 서로 상반된 역할을 각각 수행한다. 이를 통해 재료의 비용적 단점을 보완함과 동시에 전극의 성능 요건을 충족했다.
연구팀은 이번 연구를 통해 제작된 액추에이터는 햅틱 피드백 시스템, 웨어러블 핼스케어 전자기기, 능동촉각 시스템, VR 및 AR용 능동형 디스플레이, 소프트 로봇 등의 분야에서 사용 가능할 것으로 기대된다.
오 교수는 “이번 연구결과를 통해 소프트 액추에이터의 성능향상 원리를 이해하는 기반 연구가 될 것이다”며 “차세대 유연 전자산업에서의 소프트 액추에이터 기술 활용이 가속화되는 계기가 될 것으로 기대한다”고 말했다.
이번 연구는 한국연구재단 리더연구자지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 논문 커버 이미지
그림2. 기능적 길항성을 갖는 그래핀 구조 전극 사진 및 소프트 액추에이터 개요
2018.02.07
조회수 12773
-
이건재 교수, 유연 수직형 마이크로 LED 개발
〈 이 건 재 교수 〉
우리 대학 신소재공학과 이건재 교수팀과 생명과학과 김대수 교수팀이 유연한 수직형 마이크로 LED 기술을 개발했으며, 이를 동물의 뇌에 삽입하여 빛으로 행동을 제어하는 데 성공하였다고 밝혔다.
마이크로 LED는 기존 LED 칩 크기를 크게 축소시켜 적, 녹, 청색의 발광소재로 사용하는 기술로서, 저전력과 빠른 응답속도, 뛰어난 유연성을 가져 차세대 디스플레이로 각광받고 있다.
현재 산업계에서는 200마이크로미터(μm) 이상의 크기를 갖는 두꺼운 미니 LED 칩을 소형화해 개별 전사하는 방식을 채택하고 있어 대량 생산이 어렵고 생산단가가 높으며, 소요 시간이 오래 걸리는 등의 한계를 갖고 있다.
이번 연구에서 이 교수 연구팀은 수직 LED용 양산 장비를 자체적으로 설계하여 5마이크로미터의 두께, 80마이크로미터 이하의 크기를 갖는 2500여 개의 박막 LED를 이방성 도전 필름을 활용하여 한 번에 플라스틱 기판으로 전사함과 동시에 상호 연결된 유연한 수직형 마이크로 LED를 구현하였다.
이러한 수직형 마이크로 LED는 기존 수평형 마이크로 LED와 비교해 3배 이상 향상된 광 효율을 갖으며, 박막 LED의 발열로 인한 수명, 낮은 해상도 및 신뢰성 문제를 해결할 수 있다.
이 교수는 2009년부터 마이크로 LED 연구를 진행해 왔으며, 20여 개의 국내외 원천 특허를 등록하였을 뿐만 아니라, 지난 4년 간 교신저자로서 총 임팩트 팩터 600에 달하는 40여 편의 논문을 발표하였다.
한편, 뇌과학 분야에서는 빛을 이용한 인간 뇌의 신경회로를 밝히는 광유전학이 주목받고 있다. 이번에 개발한 기술은 뇌의 모든 신경세포를 자극하는 전기자극과 달리 흥분 및 억제 신경세포만을 선택적으로 자극할 수 있기 때문에 정밀한 뇌 분석, 고해상도의 뇌 지도 제작 및 신경세포 제어가 가능하다.
이번 연구에서는 30 밀리와트/제곱밀리미터(mW/mm2) 이상의 강한 빛을 내는 유연 마이크로 LED를 쥐의 뇌에 삽입하여 대뇌 표면으로부터 깊은 곳에 위치한 운동 신경세포를 활성화시켜 쥐의 행동을 제어하였을 뿐만 아니라, 발열이 적어 뇌조직의 손상 없는 생체 삽입형 유연 전자 시스템을 구현하였다.
이건재 교수는 “이번에 개발된 수직 마이크로 LED 및 전사 패키징 기술은 저전력을 필요로 하는 스마트워치, 모바일 디스플레이, 웨어러블 조명 등에 바로 활용될 수 있을 것이며, 인간이 아직 풀지 못한 뇌과학 및 광치료, 바이오센서 분야에서도 큰 기여를 할 수 있을 것이다”라고 이번 연구의 의의를 밝혔다.
이번 연구는 스마트 IT융합시스템 연구단의 지원을 받아 수행되었으며, 세계적 과학 학술지인 ‘나노 에너지(Nano Energy)’에 2월 1일자로 게재되었다.
□ 관련 영상
□ 그림 설명
그림1. 이번 기술을 이용해 제작한 마이크로 LED
그림2. 유연한 수직형 마이크로 LED의 구조
그림3. 유연한 수직형 마이크로 LED를 활용한 광유전학적 쥐의 행동 제어 실험 개략도
그림4. 이방성 도전 필름을 활용한 전사 및 패키징 기술 개략도
2018.01.29
조회수 17232
-
김정원 교수, 초저잡음 마이크로파 주파수 합성기 개발
우리 대학 기계항공공학부 김정원 교수 연구팀이 광섬유 광학 기술을 이용해 X-밴드 레이더에 활용할 수 있는 초저잡음 마이크로파 주파수 합성기를 개발했다.
이번 기술은 레이더 뿐 아니라 통신, 센서, 정밀계측 등 다양한 분야에서 활용 가능하고 기술이전을 통한 국산화도 가능할 것으로 기대된다.
권도현 박사과정이 1저자로 참여한 이번 연구 성과는 ‘포토닉스 리서치(Photonics Research)’ 2018년도 1월호에 게재됐다.
레이더는 자율주행 자동차, 기상관측, 천문연구, 항공관제, 군용탐지 등 민간 및 군용 분야에서 다양하게 활용된다.
고성능 레이더 내에서의 속도 탐지 및 이미지 분해능 개선, 통신 및 신호처리 능력 향상을 위해서는 레이더 송신신호의 위상잡음(phase noise)을 낮추는 것이 필수적이다. 또한 우수한 주파수 스위칭과 변조 성능 역시 레이더 신호원의 중요한 요구 조건이다.
하지만 위상잡음이 낮은 마이크로파 주파수 합성기는 고가일 뿐더러 수출승인(EL) 품목으로 자국 밖 수출이 금지되거나 특별 허가를 받아야 하는 경우가 많다.
김 교수 연구팀은 고가의 재료나 실험실 밖 환경에서 사용이 어려운 기술 없이도 부품의 신뢰성과 가격경쟁력이 확보된 광섬유광학 기술과 상용 디지털신디사이저(DDS) 부품만을 이용했다. 이를 통해 매우 우수한 위상잡음 수준을 가지며 주파수 스위칭 및 다양한 변조가 가능한 마이크로파 주파수 합성기를 개발했다.
이 주파수 합성기는 광섬유 레이저 기술을 이용해 펄스(pulse) 형태의 빛을 생성한다. 이 때 빛 펄스 간의 시간 간격을 매우 일정하게 만들어 1초 동안 1 펨토초(1천조분의 1초)라는 아주 작은 시간의 오차를 갖는 빛 펄스들을 생성했다.
그리고 이 빛 펄스들을 전기 신호로 변환하는데 이 때 펄스 간 시간 간격에 의해 정해지는 반복률(repetition-rate)의 정수배에 해당하는 임의의 사인파(sinusoidal) 형태의 전기 신호를 생성할 수 있다.
이번 연구에서는 여러 가능한 주파수 대역들 중에서 최근 이슈가 된 사드(THAAD) 레이더를 비롯한 고성능 레이더와 우주 통신 분야에서 그 중요성이 커지는 X-밴드(8-12 GHz) 마이크로파 주파수 대역에서 동작하는 주파수 합성기를 구현했다.
이번 기술은 기존의 최고 성능 오븐제어 수정발진기(OCXO) 기반 주파수 합성기들의 위상잡음보다 월등하게 우수한 성능을 보였다. 또한 전자전(electronic warfare) 및 레이더 시스템에서 중요하게 여겨지는 빠른 주파수 변환 속도와 다양한 주파수 변조 기능 역시 가능함을 선보였다.
이 시스템의 또 다른 장점은 기존 마이크로파 주파수 합성기와 달리 매우 낮은 잡음의 광신호 또한 함께 생성할 수 있다는 것이다. 이러한 저잡음 광신호를 이용하면 레이더 수신기에서 이전에는 없던 새로운 신호 분석 기능도 제공할 수 있다.
김 교수는 “이 연구에서는 X-밴드 신호원을 선보였지만 같은 원리를 활용해서 보다 고주파 대역의 초저잡음 신호도 생성할 수 있다”며 “드론처럼 소형, 저속 물체들에 대한 민감한 탐지에도 활용 가능할 것이다”고 말했다.
이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 광섬유광학 기반 X-밴드 레이더 신호원의 개념도
그림2. 10-GHz에서의 위상잡음 측정 결과와 기존의 최고성능 주파수 합성기들과의 성능 비교
2018.01.18
조회수 15249
-
양민양 교수, 고성능 필름형 차세대 전지 개발
〈 이 재 학 박사과정, 양 민 양 교수 〉
우리 대학 기계공학과 양민양 교수 연구팀이 고성능의 필름형 차세대 전지(슈퍼커패시터)를 저렴하고 간단한 방법으로 제작하는 데 성공했다.
연구팀은 기존의 복잡한 제작과정과 낮은 성능 등의 단점을 갖는 필름형 슈퍼커패시터를 대체할 수 있는 기술을 개발했다. 이는 새로운 고성능 소자구조를 단일공정으로 제작할 수 있는 핵심 재료 및 소자 제조 원천기술이다.
이재학 박사과정이 1저자로 참여한 이번 연구 결과는 재료, 화학분야의 국제 학술지 영국왕립화학회의 ‘저널 오브 머티리얼즈 케미스트리 에이(Journal of Materials Chemistry A)’ 12월 21일자 표지논문에 선정됐다.
슈퍼커패시터는 기존의 리튬이온배터리와 비교해 월등하게 빠른 충전 속도와 반영구적 수명을 가져 차세대 에너지 저장소자로 각광받고 있다.
무엇보다 유연한 기판에 제조되는 필름형 슈퍼커패시터는 웨어러블 및 유연 전자소자의 회로에 직접 연결돼 전원 역할을 할 수 있기 때문에 차세대 유연 전자소자의 핵심 전력소자이다.
기존에는 유연한 필름 위에 높은 표면적의 금속 전극을 형성하기 위해 포토리소그래피, 진공증착 등의 반도체 공정을 이용했다. 또한 금속전극의 표면적 향상을 위해 추가적으로 고가의 설비와 2단계의 유독한 화학 공정이 필요했다.
연구팀은 보다 빠르고 저렴하며 간단한 방법인 레이저 성장 소결 공정 기술을 개발했다. 이는 나노미터 단위의 기공을 갖는 초다공성 은(銀) 전극을 제조하는 기술로 슈퍼커패시터의 전극으로 적용하는 데 성공했다.
레이저만을 이용해 은 미세 패턴을 형성하는 동시에 내부에 다공성 나노구조를 생성해 10단계 이상 소요되던 세부 제조 과정을 1단계로 간소화했다.
연구팀은 기존 금속 나노 용액과 비교해 매우 저렴한 무입자 유기금속이온 화합물 용액을 사용해 핵생성, 열성장, 다결정 금속 막 형성으로 이어지는 특수한 성장 소결 원리를 규명했다.
연구팀은 일반적인 단일물질 대칭구조의 슈퍼커패시터 전극과 달리 이종(異種)의 금속산화물(이산화망간과 산화철)을 각각 양극과 음극으로 비대칭 적용해 구동 전압을 크게 향상시켰다.
이를 통해 전력 보유량을 극대화해 고용량 에너지 저장소자를 개발했고, 4초 내 초고속 충전이 가능하고 5천 번 이상의 내구성 테스트에서 안정적으로 작동하는 것을 확인했다.
양 교수는 “이번 연구 결과는 향후 웨어러블 및 유연 전자기기 기판에 포함돼 전력을 공급할 수 있는 에너지 저장소자로 사용 가능하다”며 “전원까지 포함하는 진정한 의미의 완전한 유연 전자기기의 현실화에 더 가까워졌다”고 말했다.
□ 그림 설명
그림1. 논문 표지 이미지
그림2. 제조된 필름형 슈퍼커패시터와 그 성능
그림3. 레이저 성장 소결 메카니즘
그림4. 레이저 조사조건에 따른 은 전극 형상 변화
2018.01.11
조회수 14946