-
새 인공 형광 단백질 나노 조립체 개발
정 용 원 교수
우리 대학 화학과 정용원 교수 연구팀이 새로운 모양과 다양한 크기의 인공적 형광 단백질 나노 조립체를 개발했다.
이 단백질 나노 조립체 연구로 단백질 기반 신약 및 백신 개발 등 새로운 나노구조체 분야에 활발한 적용이 가능할 것으로 기대된다.
이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 14일자 온라인 판에 게재됐다.
우리 몸의 필수 구성요소인 단백질은 나노미터 크기의 특성과 더불어 무한한 기능과 구조를 갖고 있다는 점에서 새로운 물질 및 구조체 개발에 매우 적합한 것으로 알려져 있다.
특히 단백질 다수가 조립된 다중 조립체는 새로운 성질과 모양, 크기를 가지며 생체친화적인 나노 구조체이기 때문에 많은 관심을 받고 있다. 단백질 다중 조립체는 다수의 단백질이 동시에 작용하기 때문에 결합력을 극대화 해 신약, 백신 기능 향상 연구에 중요한 방법론을 제시할 것으로 기대되기 때문이다.
이 조립체의 상업적, 연구적 이용을 위해선 조립된 단백질의 수가 정확히 조절되고, 다양한 크기의 조립체를 제작할 수 있어야 한다. 하지만 현재의 기술로는 조립체의 크기에 따라 정밀히 분리하는 것이 쉽지 않다.
연구팀은 문제 해결을 위해 인공적 형광 단백질 조립체를 세포 내 합성을 통해 다양한 크기로 제작했다. 또한 조립체 표면 개량을 통해 거대 생체분자의 안정성을 향상시켰고, 다양한 크기의 조립체를 분리할 수 있는 방법을 최초로 개발했다.
이 방법을 이용해 다각형 및 선형 배열을 갖는 형광 단백질 조립체 또한 제작해 관찰했다. 이 과정에서 나노크기 공간에서의 결합 단백질의 개수를 증가시켰고, 기존 단일 단백질보다 비약적으로 향상된 결합력을 확인했다.
정 교수는 “이번 단백질 조립체 제작 기술은 다양한 모양과 크기, 기능성을 갖는 새 조립체 제작의 기반이 될 것이다”며 “비약적으로 향상된 기능을 가진 단백질 신약, 백신, 혹은 결합 리셉터 연구에 핵심적 역할을 할 것”이라 말했다.
정용원 교수 지도 아래 김영은 박사과정 학생이 1저자로 참여한 이번 연구는 우리 대학 김호민 교수 연구팀이 참여했으며, 한국연구재단이 추진하는 글로벌프론티어사업(바이오나노 헬스가드 연구단) 및 기초연구실지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 형광단백질 조립체 모식도 및 전자현미경 사진
2015.05.26
조회수 14257
-
빅데이터를 통해 고전음악 창작의 원리 밝혀
박 주 용 교수
우리 대학 문화기술대학원(CT) 박주용 교수 연구팀이 빅데이터를 이용해 서양 고전음악의 창작, 협력, 확산의 원리를 밝히는 데 성공했다.
문화기술대학원 박도흠 학생(박사과정)이 1 저자로 참여하고 미국 텍사스대 연구팀과 공동으로 진행한 이번 연구는 해외 저널인 EPJ 데이터 사이언스 4월 29일자 하이라이트 논문에 선정됐다.
연구팀은 ArkivMusic과 올 뮤직 가이드(All Music Guide)라는 세계 최대 음반 정보 사이트를 첨단 데이터와 모델링 방법을 사용해 분석했다.
연구팀은 고전음악 작곡가들의 시대와 스타일이 어떤 패턴을 이루는지 탐구해, 수 백 년의 차이가 있는 음악가들 사이에서도 긴밀한 네트워크가 존재함을 발견했다. 특히 소비자들의 음악적 취향이 고전음악 성장에 어떤 영향을 끼쳤는지 규명했다.
연구진은 미래의 고전음악 시장은 유명 작곡가들에게 집중되는 동시에 끊임없이 유입되는 새로운 음악가들로 인해 다양성이 유지되는 양면성을 갖게 될 것이라고 예측했다. 또한 이런 방식의 연구가 음악 뿐 아니라 미술과 문학 연구까지 확장될 것으로 예상했다.
박 교수는 “새로운 방식으로 문화의 원리를 밝히는 최신 연구의 일환이다”며 “문화에 과학적 방법론을 입힌 융합연구능력의 좋은 예시가 될 것”이라고 말했다.
붙임 : 연구 개요, 그림 설명
□ 연구 개요
* 빅데이터 출처: 아카이브뮤직(ArkivMusic)과 올 뮤직 가이드(All Music Guide)라는 빅데이터 소스를 사용했다. 아카이브뮤직은 서양 클래식 음반(CD)에 관한 세계 최대 정보를 제공하고 올 뮤직 가이드는 음악가들의 인적 정보를 제공하는 사이트이다. 여기서 약 64,000장의 클래식 음반과 그 음반에 음악이 수록된 14,000명의 작곡가 데이터를 사용했고, 이는 현재 ‘문화’의 빅데이터 연구로서는 세계 최대급 규모이다.
* 연구방법론: 서양 클래식 음악과 같은 문화의 중요한 특징 중의 하나는 그 창작자(작곡가 등)가 개인으로 동떨어져 존재하는 것이 아니라 다른 창작자들과 영향을 주고받으며 새로운 스타일이 등장하고 발전 한다는 것이다. 그러므로 창작자들이 맺고 있는 소통 및 연관성의 관계를 이해하는 것은 문화 창조의 원리, 역사와 미래를 이해하는 데 있어 매우 중요하다고 할 수 있다. 이를 위해 “CD--작곡가들의 빅데이터”로부터 작곡자들이 이루고 네트워크를 연구하였다. (그림 1) 즉, CD에 함께 등재된 작곡가들이 연결돼있는 것이다. 그림 1은 이 네트워크의 핵심적인 일부를 표현한 것으로 하단의 요한 세바스찬 바흐는 모차르트와, 차이코프스키는 드뷔시와 함께 CD에 등장한 적이 있음을 알게 해준다. 이러한 네트워크로부터 유의미한 패턴을 찾아 네트워크의 발전 원리와 미래를 연구하는 것을 네트워크 과학이라고 하는데, 현재 SNS와 사회과학, 인터넷 등의 연구에 사용되고 있다. ‘복잡계 네트워크 과학’ 이라고도 한다.
* 연구결과:
이 네트워크는 중세/르네상스(1500년대 이전) 작곡자로부터 2000년대 현존하는 작곡자까지 500년이 넘는 서양 클래식 음악의 역사를 담고 있으면서도, 작곡자와 작곡자간의 평균 거리는 3.5명에 불과한 좁은 세상을 이루고 있다. 직접 연결되지 않는 작곡가들끼리도 평균적으로 3-4명만 건너뛰면 연결이 돼 서로 가깝게 연관되어 있다는 것을 알 수 있다.
이 네트워크 안에서 각 작곡가들이 차지하는 비중은 작곡가에 따라 매우 상이하다는 것도 중요한 특징이다. 예를 들어, 요한 세바스찬 바흐는 (J. S. Bach) 이 1,551명의 각기 다른 작곡가와 연결돼있고, 모차르트는 (W. A. Mozart) 1086명의 다른 작곡가와 연결돼있는데 이는 작곡가 전체 평균 숫자인 15명의 수십, 수 백 배에 달한다. 바흐와 베토벤 같은 유명 작곡가들이 전체 작곡가 네트워크에서 얼마나 큰 비중을 차지하는지 수치적으로 명확히 보여줌으로써 영향력을 구체적으로 이해할 수 있는 것이다. (그림 1에서 작곡자들의 크기로 표현)
이 네트워크에서 연결되어있다는 것은 음반 레이블에서 CD를 발매할 때 함께 묶어서 냈다는 뜻이므로 스타일, 주제, 기법 등에 기반한 음악적 유사성을 뜻하는 것으로 볼 수 있다. 컴퓨터 알고리즘을 이용해 순전히 네트워크 구조로부터 서로 긴밀하게 연결된 작곡가들의 집단을 유추한 뒤 기존 클래식 음악사 연구에서 사용되는 사조 구분과 교차 검증을 햇다. (그림 2). 여기에서는 CD 빅데이터에 기반한 네트워크가 서양 클래식 음악의 발전사를 잘 보여주고 있다는 것을 알 수 있는데, 낭만파(1800년대)와 현대파(1900년대)를 잇는 프랑스의 작곡가 드뷔시(Debussy)의 중간적인 위치, 현대파의 유럽 및 남미파(드뷔시, 라벨, 피아졸라)-미국파(레너드 번스틴, 애론 코플랜드) 분리 등을 관찰할 수가 있다.
CD의 발매일자에 따른 네트워크의 과거 발전 모습을 분석함으로써 미래의 추세 또한 예측 가능하다. 미래의 네트워크는 유명 작곡가들에게 상대적으로 더욱 더 집중되는 모습을 가질 것으로 예상된다. 그러나 기술의 발전에 따른 CD 발매의 용이성에 힘입어 작곡가의 숫자 또한 꾸준히 늘어나는 것으로 관찰돼, 소수에 집중되는 측면과 다양성의 양면을 지닐 것으로 예상된다.
* 의의: 창작자가 서로 깊게 연관되어있는 문화의 발전 원리는 그 분야의 구성원 전체를 동시에 보는 것이 필요하므로, 이와 같은 빅데이터의 연구로 풀어내기에 매우 적합하다. 또한 다른 문화 분야 (회화, 문학 등) 로의 확장도 가능해 문화 분야 간 연관성 혹은 문화 전체의 발전의 원리를 연구할 수도 있을 것이다.
□ 그림 설명
그림 1. CD-작곡가들의 빅데이터
그림 2. 빅데이터와 사조구분 방법으로 교차 검증한 모식도
2015.05.06
조회수 15097
-
빛 이용 나선형 구조체 방향조절 기술 개발
김 상 율 교수
우리 대학 화학과 김상율 교수, 서명은 교수 연구팀이 빛의 파동을 이용해 특정한 방향으로 꼬인 나선형 나노 구조체를 형성하는 데 성공했다.
연구 결과는 국제 학술지 네이처 커뮤니케이션(Nature Communications) 23일자 온라인 판에 게재됐다.
키랄성이란 오른손과 왼손처럼 모양은 같지만 서로 거울에 비친 형태를 가지는 물질을 말한다. 키랄성 물질은 돌리고 방향을 바꾸어도 서로 겹칠 수 없는 구조적 특성을 갖는다. 자연에 존재하는 DNA나 단백질 등을 구성하는 분자들은 이 중 한쪽 형태로만 이루어져 있다.
다량의 특정 키랄성 물질이 자연계에 존재하는 이유는 명백히 밝혀지지 않았다. 한 가지 가설은 유기 물질이 처음 생성될 시점에 우주로부터 나선을 따라 진동하는 빛의 파동인 원편광이 쬐어져, 원편광의 나선 방향이 유기 물질에 전달되어 한쪽 키랄성을 갖는 분자가 보다 많이 만들어 지게 됐다는 것이다.
연구팀은 이 가설에 입각해 원편광의 키랄성이 비키랄성 분자에 전달 및 증폭이 가능한지 알아보기 위해 빛에 반응하는 비키랄성 분자를 이용했다.
그리고 비키랄성 분자에 오른원편광, 왼원편광을 따로 노출시켜 분자들이 원편광의 방향에 따라 다른 방향의 나선을 그리며 쌓이는 것을 확인했다. 기존의 방법으로 나선형 구조체를 만들 때 반드시 키랄성 분자가 필요했던 것을 뒤집는 결과가 나온 것이다.
이처럼 단순히 특정 방향의 원편광을 비추는 것만으로 원하는 방향의 나선형 구조체를 만들 수 있고, 다시 반대 방향의 원편광을 비추면 나선의 방향을 뒤집는 것 또한 가능하다는 것을 증명했다.
뿐만 아니라 광중합을 이용해 나선형 구조체를 굳히는 방법을 개발해 구조체의 제작부터 방향을 고정시키는 전 과정을 빛을 이용해 제어하는 데 성공했다.
김상율 교수는 “원평광의 방향에 따라 비키랄성 분자의 자기조립 경로가 좌우되고, 자기조립을 통해 키랄성이 증폭되므로 결국 원편광의 방향이 나선 방향을 결정할 수 있다는 것이다”며 “키랄성의 기원에 대해 흥미로운 가능성을 제시하고 있다”고 말했다.
연구팀은 키랄성 센서를 만들거나 키랄성 분자를 분리하는 등의 응용 분야에 개발된 나선형 나노 구조체가 유용하게 사용될 것으로 전망했다.
한국연구재단 중견연구자 지원사업과 선도연구센터 육성사업의 지원을 받아 진행된 이번 연구는 김상율 교수와 서명은 교수가 교신 저자로, 김지성 학생이 제1저자로 참여했다.
□ 그림 설명
그림1. 빛에 의해 형성된 나노 구조체의 주사전자현미경 사진
그림2. 전체 실험과정 모식도
2015.04.30
조회수 11431
-
고효율의 단일광자원 소자 핵심기술 개발
조 용 훈 교수
우리 대학 물리학과 조용훈 교수 연구팀이 양자정보기술에 기여할 수 있는 고효율의 단일광자원(양자광원) 의 방출 효율과 공정 수율을 높일 수 있는 기술을 개발했다.
이번 연구 결과는 자연과학분야 학술지인 미국국립과학원회보(PNAS: Proceedings of the National Academy of Sciences) 4월 13일자 온라인 판에 게재됐다.
빛은 보통 파동의 성질을 갖는 동시에 입자의 성질도 가지고 있는데, 이 입자를 광자라고 한다. 단일광자원 혹은 양자광원은 광자가 뭉쳐서 나오는 고전적인 광원과는 달리 한 번에 한 개의 광자만 방출하는 소자이다. 반도체 양자점을 이용한 단일광자 방출 소자는 안정성 및 전기구동 가능성이 높아 상용화에 적합한 소자로 각광받고 있다.
하지만 빛의 파장은 양자점보다 수십~수백 배 정도 크기 때문에 상호 작용하기 어려워서 단일광자의 방출 효율이 매우 작다는 한계점이 있다. 따라서 고효율 단일광자원를 만들기 위해서는 양자점과 빛을 집속시키는 구조(광공진기)를 공간적으로 정확히 결합시키는 것이 필수적이다.
하지만 양자점은 불규칙하게 분포되어 있고 위치를 정확히 확인할 수 없어 우연성에 의존한 결합을 기대할 수밖에 없었다. 따라서 긴 공정시간에도 불구하고 소수의 단일광자소자를 제작하는 수준에 머물러 있었다.
연구팀은 문제 해결을 위해 피라미드 모양의 나노 구조체를 활용했다. 반도체 나노피라미드 구조에서는 양자점이 피라미드의 꼭지점에 자발적으로 형성된다. 그리고 그 위에 금속 필름을 얇게 증착하면 빛 역시 뾰족한 금속 끝에 모이는 성질 때문에 양자점과 동일한 위치에 집속되는 것이다.
특히 금속에서는 빛이 본래 가진 파장보다 작게 뭉칠 수 있다. 즉, 빛이 가진 파장보다 더 소형화를 시킬 수 있기 때문에 양자점과의 크기 차이로 인한 문제를 극복할 수 있게 되는데, 이 방법으로 단일광자 방출 효율이 기존의 방식보다 20배 정도 증가되었다.
단일광자 방출소자는 양자광컴퓨터 및 양자암호기술 구현의 가장 기본적인 구성 요소이다. 이번 연구를 통해 기존의 까다로운 과정들 없이 단순한 방식으로 효율과 수율을 모두 높일 수 있으므로, 단일광자방출원 혹은 양자광원 관련 기술의 상용화 가능성이 높아질 것으로 기대된다.
조 교수는 “이 기술은 높은 공정 수율을 갖고 있기 때문에 상용 양자광원 소자 제작 한계를 해결하고, 양자정보통신 분야 구현에 중요 기술이 될 것”이라고 말했다.
조용훈 교수의 지도를 받아 공수현(1저자)·김제형(2저자) 박사가 수행한 이번 연구는 우리 대학 신종화·이용희 교수, 프랑스 CNRS의 레시당 박사, 미국 UC 버클리의 샹장 교수가 참여했으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다.
그림 1. 단일 광자가 높은 효율로 방출되는 모습의 개념도
2015.04.23
조회수 15418
-
미세 입자의 3차원 영상 촬영기술 개발
우리 대학 물리학과 박용근 교수 연구팀은 CT촬영의 원리와 비슷한 광회절 단층촬영법을 이용해, 광학 집게로 포획한 입자의 3차원 위치를 고속으로 측정할 수 있는 기술을 개발했다.
이 기술로 광학 집게를 사용한 세포 단계의 수술 작업을 실시간 촬영할 수 있어 세포의 반응, 수술 예후 등을 모니터링 할 수 있게 됐으며, 기존에는 어려웠던 세포 내부 성분 및 총량에 대한 정확한 수치 측정이 가능해졌다.
연구 결과는 미국 광학회지 ‘옵티카(Optica)’ 4월 20일자 온라인 판 표지 논문으로 선정됐다.
광학 집게는 빛을 이용해 미세 입자를 포획해 힘을 가하거나 3차원 위치를 자유자재로 움직일 수 있는 기술이다.
렌즈를 이용해 레이저 빔을 머리카락의 수백분의 일 크기의 초점으로 모으면 자석에 철가루가 끌려오듯 주변의 미세입자들이 달라붙는다. 초점의 위치를 옮기거나 힘을 가해서 미세 입자의 3차원 위치를 조절하는 것이 광학 집게의 원리이다.
광학 집게로 움직인 미세 입자의 위치를 측정하기 위해서 광학 현미경을 이용하는데, 입자의 2차원 움직임은 미세 입자에 의해 산란된 빛의 정보를 측정함으로써 쉽게 알 수 있었다.
하지만 다른 물체가 시선 방향의 미세 입자를 가로막아 산란된 빛의 정보가 왜곡되거나, 생물 세포처럼 복잡한 형상인 경우에는 3차원 위치의 정확한 측정이 어려웠다.
연구팀은 병원의 CT촬영 원리와 비슷한 광회절 단층촬영법을 이용해 입자의 3차원 영상화에 성공했다. 다각도로 CT 영상을 찍어 환자 몸 내부를 들여다보듯이, 광학 집게로 포획한 미세 입자에 레이저 빔을 여러 각도로 입사해 촬영한 뒤 이를 분석하는 방식이다.
2 마이크로미터 크기의 유리구슬을 광학 집게로 집어 백혈구 세포 위에 얹은 뒤 백혈구의 반응을 1초당 60장의 속도로 영상화했다. 앞쪽에 위치한 백혈구가 구슬을 가려 기존의 기술로는 촬영이 어려웠지만, 연구팀의 광회절 단층촬영법으로 구슬의 3차원 위치 뿐 아니라 백혈구 내부의 물질 분포도 측정이 가능했다.
박 교수는 “포획한 입자의 3차원 위치와 내부 구조를 별도의 표지 없이 빠른 속도로 측정 가능한 기술이다” 며 “향후 물리학, 광학, 나노기술 및 의학 등의 다양한 분야에 응용될 것으로 기대한다”고 말했다.
김규현 학생(제1저자)은 "물리적, 화학적 자극에 따른 세포 반응을 단일 세포 단계에서 관찰하는 것이 중요하다"며, "이 방법을 이용해 부유 입자와 세포, 조직 등의 다양한 시스템에 광학 집게로 힘을 가하고 이를 3차원으로 실시간 영상화하는 실험을 수행할 예정이다"고 말했다.
□ 그림 설명
그림 1. 광집게로 집은 유리구슬을 백혈구 세포에 얹은 모습
그림2. 일반 현미경 관찰 영상과 광회절 단층촬영법 관찰 영상 비교
2015.04.21
조회수 12287
-
와이파이만 자동 감지해 다운로드하는 기술 개발
해외출장이 잦은 김 모 씨는 스마트폰에 영화를 다운받아 기내에서의 무료함을 달랜다. 그는 아침 회의에 들어가기 전 오후 5시까지만 다운을 완료하면 된다는 데드라인을 설정하고, 여러 일정을 마친 후 시간이 되자 기내에 탑승했다.
스마트폰을 확인하니 다운이 완료됐고, 자동으로 와이파이만 인식해 다운로드 했기 때문에 LTE 데이터는 전혀 소비되지 않았다.
우리 대학 전기및전자공학과 박경수, 이융, 정송 교수 연구팀은 와이파이와 이동통신 망의 단절을 자동으로 감지해 모바일 콘텐츠를 전달하는 기술 및 시스템을 개발했다.
이동통신 망에서 와이파이 망으로 데이터를 분산시키고 이양하는 것을 와이파이 오프로딩이라 한다. 이는 스마트폰에서 쉽게 볼 수 있는 기능이다.
그런데 현재의 와이파이 오프로딩은 원활하지 않아 자동적 시스템이 아닌 개인의 선택에 의해 이뤄지고 있다. 와이파이 망을 벗어나 이동하는 경우 연결이 단절되고 버퍼링이 발생해, 사용자들은 한 곳에서만 와이파이를 사용하거나 아예 해제하고 이동통신망을 이용하는 것이다.
원활한 오프로딩을 위해 관련 미래 표준을 만들고 있지만 LTE 망 통합 등의 변화가 필요하고 추후 장비 업그레이드 비용이 문제가 된다.
연구팀은 이러한 네트워크 단절 문제를 자동으로 처리하면서 와이파이 망을 최대한 사용하게 만드는 모바일 네트워크 플랫폼을 구축했다. 우선 네트워크 단절을 트랜스포트 계층에서 직접 처리해 네트워크간 이동 시에도 연결의 끊김 없이 전송이 가능한 프로토콜을 개발했다.
더불어 연구팀은 지연 허용 와이파이 오프로딩 기법을 개발했다. 다운로드 완료 시간을 예약하면 잔여 시간과 용량 등의 정보를 계산한 뒤, LTE와 와이파이를 스스로 조절해 최소의 LTE 데이터로 원하는 시간대에 다운로드를 완료할 수 있는 알고리즘이다.
이 기술은 스트리밍 플레이어에도 적용 가능해 와이파이 망에 있는 동안 더 많은 트래픽을 전송해 구역을 벗어나도 버퍼링 없는 동영상 시청이 가능하다.
이 기술로 사용자는 적은 요금으로 질 높은 콘텐츠를 이용할 수 있고, 사업자는 기존 LTE망의 재투자 및 효율적인 와이파이 망 유도가 가능하다. 또한 모바일 동영상 콘텐츠 사업자에겐 더 많은 수요자를 확보할 수 있다.
이융 교수는 “와이파이 오프로딩과 LTE 망의 관계를 최소화함으로써 모바일 콘텐츠 사업자, 망 사업자, 사용자 모두가 윈윈할 수 있는 기술이 될 것이다”고 말했다.
이번 연구는 미래창조과학부 정보통신기술진흥센터 (IITP) 네트워크 CP실(임용재 CP)의 지원을 받아 수행됐고, 5월에 개최하는 모바일 시스템 분야 최고 권위의 국제 학회인 에이씨엠 모비시스(ACM MobiSys)에서 발표될 예정이다.
□ 그림설명
그림 1. 지연 허용 와이파이 오프로딩 기법 개념도
2015.04.20
조회수 13845
-
종양 전역에 약물 전달하는 항암치료나노기술 개발
<박 지 호 교수>
우리 대학 바이오 및 뇌공학과 박지호 교수 연구팀이 종양의 전역에 약물이 골고루 전달되게 해 항암효과를 현저히 높일 수 있는 새 항암치료 나노기술을 개발했다.
이번 연구는 나노분야 학술지 ‘나노 레터스(Nano Letters)’3월 31일자 온라인 판에 게재됐다.
일반적으로 수술이 어려운 종양의 치료를 위해 항암약물치료법이 사용된다. 하지만 종양이 외부로 들어오는 약물의 접근을 여러 방법으로 막기 때문에 종양 전체에 항암효과를 보기 어려웠다. 혈류로 투여된 약물들의 대부분이 혈관주위의 종양세포들에만 전달되고, 중심부의 종양세포에는 전달되지 않아 재발 문제가 자주 발생한 것이다.
연구팀은 문제 해결을 위해 리포좀과 엑소좀이라는 소포체를 이용했다. 리포좀은 인공나노소포체로서 혈류를 통해 혈관 주위의 종양 세포 부위까지 약물을 전달한다. 종양 세포에서 자연적으로 분비되는 생체나노소포체인 엑소좀에 약물을 무사히 탑재하는 것이 리포좀의 역할이다.
엑소좀은 종양에서 세포 내부의 생물학적 물질들을 전달하기 때문에 종양의 진행 및 전이에 중요한 요소로 알려져 있다. 리포좀이 항암 약물을 엑소좀에 탑재하면, 엑소좀이 이동하는 종양 내의 모든 위치로 약물이 전달됨으로써 질병이 치료되는 것이 연구의 핵심이다.
연구팀은 이 기술을 이용해 빛에 반응해 항암효과를 내는 광과민제를 종양이 이식된 실험용 쥐에 주입했다. 이후 종양 부위에 빛을 노출시켜 항암효과를 유도한 후 분석한 결과 종양조직 전역에서 항암효과를 관찰할 수 있었다.
연구팀의 핵심 성과는 종양 및 다른 질병들의 미세 환경을 파악해 질병에 대항하는 맞춤형 약물전달 기술 개발의 발판을 마련한 것이다.
연구팀은 이 기술을 제약회사에서 개발 중인 항암제에 적용해 약물전달이 어려운 악성 종양의 치료효과를 실험 진행 중이다.
박 교수는 “엑소좀이 세포에서 끊임없이 분비되는 특성과 주변 세포로 생물학적 물질을 전달하는 특성을 응용해 종양 중심부까지 약물을 전달 가능하게 만든 최초의 연구”라고 말했다.
박지호 교수 지도아래 이준성 박사, 김지영 석사가 주 저자로 참여한 이번 연구는 한국연구재단이 추진하는 신진연구자지원사업, 글로벌프론티어사업, 미래유망융합기술파이오니어사업의 지원을 받아 수행됐다.
□ 그림설명
그림 1. 종양 전역에 약물이 골고루 전달되게 해 항암효과를 높이는 새 종양투과 약물전달 나노기술
세포막과 결합하는 리포좀에 의해서 세포로 전달된 물질이 그 세포가 분비하는 엑소좀에 효율적으로 탑재돼 주변세포로 전달되는 과정을 보여주는 모식도(좌). 이러한 엑소좀기반 세포간 약물전달이 실제로 종양 스페로이드 및 생체 내 종양모델에서 관찰된 결과들 (우).
2015.04.06
조회수 15742
-
광전환 효율 높인 고분자 태양전지 모델 개발
<김 범 준 교수>
국내 연구진이 차세대 에너지원으로 각광 받고 있는 플라스틱 태양전지의 광전환 효율을 크게 높이는데(5% 이상, 기존 대비 1%p 이상 증가) 성공하였다. 특히 기존의 태양전지를 대체할 수 있다는 점에서 의미가 크다.
우리 대학 김범준, 부산대 우한영 교수(공동 교신저자)가 주도하고, 우리 대학 강현범, 부산대 우딘 모하메드 아프사르 박사(공동 제1저자)가 참여한 이번 연구는 미래창조과학부와 한국연구재단에서 추진하는 기초연구사업(중견연구자), 글로벌프론티어사업 등의 지원으로 수행되었고, 화학분야의 권위지 JACS(Journal of the American Chemical Society) 2월 18일자에 게재되었다.
고분자-고분자 태양전지는 기존의 풀러렌 유기태양전지에 비해 상용화에 핵심요소인 기계적인 안정성뿐만 아니라 열에 대한 안정성도 크게 향상시킬 수 있다.
그러나 풀러렌 유기태양전지(10%)에 비해 고분자-고분자 태양전지의 광전환 효율은 매우 낮다(4% 이하). 이것은 광 활성층을 형성하는 두 고분자가 잘 섞이지 않고 과도하게 분리되는 현상(상 분리)이 발생하기 때문이다. 이러한 상 분리 현상은 전자의 생성과 운반을 저해하고 태양전지의 광전환 효율을 감소시킨다.
연구팀은 전도성 고분자의 분자량과 구조를 조절함으로써 두 고분자의 상 분리 현상을 효과적으로 제어하여 5% 이상의 높은 광전환 효율을 가진 태양전지를 개발하였다.
연구팀은 현재 태양전지의 광전환 효율을 6%까지 끌어올렸는데, 이 수치는 지금까지 학계에 보고된 것 중에서 가장 높은 효율이다.
김범준 교수는 “이번 연구는 고분자 플라스틱 태양전지가 미래 에너지원, 특히 유연성이 필요한 휴대용 차세대 전자소자의 에너지원으로서 높은 응용가능성을 보여주는 사례”라고 밝혔다.
□ 그림 설명
그림 1. 플렉서블 고분자 / 고분자 태양전지 샘플
2015.03.30
조회수 13933
-
신경세포 전달 후 분해 원리 30년 만에 규명
윤태영 교수
2013년도의 노벨 생리의학상은 제임스 로스먼, 랜디 셰크먼, 토마스 쥐트호프에게 돌아갔다. 그들은 신경전달물질, 호르몬 등의 주요 물질이 자루 모양의 지질막인 소포(vesicles)에 담겨 택배처럼 전달되는 과정을 발생시키는 단백질을 발견한 공로를 인정받았다.
수상자들은 소포의 막을 열어 세포막과 융합해 물질을 분출하는 방식으로 에너지를 전달하는 역할인 스네어(SNARE)라는 단백질과, 물질을 분출한 후의 스네어 단백질 재활용을 위해 기능하는 NSF라는 단백질을 발견했다.
우리에게 잘 알려진 보톡스도 스네어 단백질의 작용 과정을 역으로 이용한 것이다. 보톡스가 스네어를 절단해 소포가 세포막과 융합하지 못하게 만들어 신경전달물질의 방출을 막고, 그로인해 근육의 수축을 방해하는 것이다.
이런 운송 업무가 있기 때문에 우리 세포는 신체 곳곳에 단백질과 같은 물질이 공급돼 정상적인 기능을 할 수 있다.
우리 대학 물리학과 윤태영 교수 연구팀은 그간 명확하지 않았던 NSF가 스네어 결합체를 분해해 세포수송을 지속시키는 원리를 규명했다고 밝혔다.
이번 연구 결과는 저명 학술지 사이언스지 3월 27일자에 게재됐다.
NSF와 스네어 단백질은 30여 년 전에 발견됐지만 각각의 물질이 작용하는 방식은 명확히 규명되지 않았다. 특히 세포막과 결합한 스네어 결합체를 NSF가 어떤 방법으로 분해해 재활용하는지에 대해선 의견이 분분했다.
지금까지 과학자들은 NSF가 스네어 결합체를 분해할 때 끈을 조금씩 푸는 것처럼 점진적인 과정을 통해 분해가 이뤄지고, 하나의 스네어 결합체를 분해하는 데 ATP라는 연료 역할을 하는 유기화합물 수십 개가 필요하다는 가설을 주장했다.
하지만 윤 교수팀의 연구는 단분자 형광 기법과 자기집게 기술(magnetic tweezers)을 사용해 가설을 반박했다. 마치 매듭의 양 끝을 잡고 당기면 한 번에 풀리듯, ATP를 주입하면 NSF가 스프링처럼 에너지를 저장했다가 스네어 결합체 전체를 단번에 폭발적으로 풀어냄을 증명한 것이다.
이번에 규명된 NSF는 근육의 이동, 단백질 분해, DNA의 복제 및 이동 등 신체에서 중요한 역할을 하는 AAA+ 단백질 그룹에 속해있다. 따라서 NSF와 비슷한 구조의 AAA+ 단백질 그룹은 함께 동작할 것으로 예상되며, 앞으로 많은 생물 현상 이해의 주춧돌이 될 것으로 보인다.
스네어 단백질은 신경세포 통신과 인슐린 분비 등에 중추적 역할을 하고 있어 윤 교수팀의 성과는 알츠하이머와 같은 퇴행성 뇌질환, 당뇨병과 같은 대사질환 관련 연구 뿐 아니라 피부미용 연구에도 이바지 할 것으로 기대된다.
윤 교수는 “생물 물리 분야에서 우리나라가 최고수준의 기초과학 연구력을 보유하고 있음을 증명했다”며 “이번 연구결과는 여러 대사질환을 분자수준에서 이해할 수 있는 토대가 될 것”이라고 말했다.
이번 연구는 고등과학원의 현창봉 교수팀, 독일 막스 플랑크 연구소 라인하르트 얀(Reinhard Jahn) 교수팀, 우리 대학 의과학대학원 김호민 교수팀과의 공동 연구로 진행됐으며, 윤 교수 연구팀의 류제경, 민두영 박사, 나상현 학생의 주도로 이뤄졌다.
□ 그림 설명
그림 1. 신경전달물질의 분비가 끝난 후 NSF가 SNARE 단백질 복합체를 한 번에 분해하는 모습
그림 2. NSF 가 SNARE 복합체를 풀어내는 모습
2015.03.27
조회수 13740
-
3차원 형상 제조 포토리소그래피 공정 기술 개발
<김신현 교수>
우리 대학 생명화학공학과 김신현(33) 교수 연구팀이 산소의 확산 원리를 이용해 3차원의 형상을 구현할 수 있는 포토리소그래피(photolithography) 공정 기술을 개발했다.
연구 결과는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 온라인 판에 게재됐으며, 동일 저널의 대표 그림(featured image)으로 선정됐다.
포토리소그래피는 빛을 노출시켜 원하는 상을 얻는 필름 카메라의 원리와 같다. 감광물질(photoresist)을 원판에 바르고 자외선을 노출시켜 빛을 받은 부분만 굳게 만든 뒤, 나머지 부분은 깎아내는 방식이다. 이는 반도체, 집적회로 등 미세패턴을 다루는 대부분의 산업계에서 널리 사용되고 있다.
하지만 기존 포토리소그래피 공정은 자외선이 항상 수직방향으로 내리쬐기 때문에 빛의 노출 방향에 따라 형성되는 미세패턴이 2차원으로만 제조되는 한계가 있었다.
연구팀은 3차원 패턴 제조를 위해 산소를 사용했다. 일반적으로 빛을 이용한 중합반응에서 산소는 물질이 굳게 되는 경화작용을 방해하는 요소로 알려져 있다. 하지만 김 교수 연구팀은 이 특성을 역으로 이용했다.
일부 영역에만 자외선을 노출시키면 그 부분만 산소의 농도가 감소하게 되고 그 외 영역의 산소의 농도는 유지된다. 농도의 차이로 인해 자외선이 노출된 영역으로 산소의 확산 현상이 발생한다.
이를 통해 기존에는 동일한 속도로 발생한 경화작용이 시간차를 두고 이뤄진다. 물질의 형성이 일정하지 않기 때문에 미세패턴의 모양도 다양해지고, 확산 방향과 속도를 의도적으로 조절함으로써 3차원 형상의 패턴 제작도 가능해지는 것이다.
이러한 신규 기술을 연속적으로 융합해 사용하면 더욱 복잡한 형상과 다양한 성분으로 구성이 가능하다. 자성 입자를 삽입해 자기장을 이용한 의료용 패치를 만들거나, 온도에 따라 팽창하고 수축하는 젤을 삽입해 곡면을 갖는 형태의 필름도 제작할 수 있다.
이 기술로 디스플레이 소자를 포함한 다양한 전자기기의 광학소자, 패치형 약물 전달체, 물과 기름에 젖지 않는 표면 등 3차원 미세패턴 및 미세입자 연구를 통해 구현 가능한 기술들의 상용화가 기대된다.
김 교수는 “3D 프린팅 기술은 혁신적이지만 미세형상 제어와 대량생산이 어려운 반면, 이 기술은 3차원의 미세패턴을 대량생산할 수 있다”며 “대부분의 학계와 산업계에서 포토리소그래피 장비를 쓰기 때문에 큰 파급효과가 있을 것”이라고 말했다.
연구팀은 연구 결과를 2013년 불의의 사고로 고인이 된 콜로이드 및 유체역학 분야의 세계적 대가 故 양승만 교수(前 생명화학공학과 교수)에게 헌정했다.
이번 연구는 심태섭 박사(현 펜실베니아 대학 연구원)가 주도했으며, 미래창조과학부 산하 한국연구재단의 중견연구자 지원사업으로 수행됐다.
□ 그림 설명
그림 1. 기존의 포토리소그래피 공정
그림 2. 기존 포토리소그래피 공정과 새로 개발된 포토리소그래피 공정
그림 3. 개발된 포토리소그래피 공정을 이용해 형성된 미세 구조 및 패턴
그림 4. 복잡한 형상과 성분 조합으로 이루어진 구조체
2015.03.25
조회수 14386
-
약물로 조절되지 않는 뇌전증(간질) 원인 밝혀
<이정호 교수>
우리 대학 의과학대학원 이정호 교수팀이 약물로 조절되지 않는 난치성 뇌전증(간질 발작)의 원인을 밝히고 새로운 치료법의 발판을 마련했다.
세브란스 병원 김동석 교수 연구팀과 공동으로 진행한 이번 연구는 의과학 분야 학술지 ‘네이처 메디슨(Nature Medicine)’ 24일자 온라인 판에 게재됐다.
뇌전증은 세계적으로 5천만 명 이상에게 발생하는 주요 뇌질환이다. 이는 약물로 발작 조절이 가능하지만, 30% 가량의 환자는 어떠한 약물도 효과가 없는 난치성 뇌전증을 앓고 있다.
기존 뇌전증 치료제는 실험동물에게 특정 물질이나 전기 자극을 주고난 뒤, 약물을 투여해 증상이 완화되면 치료제로 승인받는 방식으로 개발됐다. 하지만 실험의 방향과 다른 원인의 뇌전증이 발병하면 약물 치료제가 전혀 반응하지 않는 문제가 있었다.
이에 연구팀은 약물 치료 효과가 없어 간질 수술을 받은 환자 77명의 뇌 유전체 정보와 임상 자료를 심층 분석했다. 그 결과 약 16%의 환자는 마치 백설기 안의 건포도처럼 뇌의 특정 부분에만 돌연변이가 존재하고 나머지 신체 부위는 정상인 것으로 밝혀졌다.
이 과정을 통해 뇌전증을 일으키는 변이 유전자를 발견해 약물로 조절되지 않는 난치성 뇌전증의 원인을 밝혔다. 또한 같은 형태의 돌연변이를 실험용 쥐에 주입한 후 유전 변이에 따른 맞춤형 치료법 개발에 성공했다.
연구팀의 핵심 성과는 기존에 발견되지 않던 난치성 뇌전증의 원인을 파악해 맞춤형 치료법을 개발할 수 있는 발판을 마련한 것이다.
연구팀은 함께 참여했던 병원 측과 임상을 계획 중이다.
이정호 교수는 “선천적으로 몸 전체에 돌연변이가 분포한다는 기존 학설을 뒤집고, 뇌에만 돌연변이가 발생해 난치성 뇌질환을 유발함을 증명한 최초의 연구”라고 말했다.
마크로젠 (대표: 정현용) 이환석 박사 팀과 공동 진행한 이번 연구는 보건복지부 질병중심 중개 중점연구와 세계선도 의생명과학자 육성 사업, 미래창조과학부 뇌과학 원천기술 개발사업, KAIST 미래형 시스템 헬스케어 연구개발 지원으로 수행됐다.
□ 그림 설명
그림 1. 차세대 염기서열 분석법을 이용한 뇌특이적 질병유전변이의 발굴
국소 대뇌 피질 이형성증에 의한 난치성 뇌전증 환자의 뇌조직과 혈액샘플에서 얻은 DNA를 차세대 염기서열 분석법으로 비교분석해 뇌 특이적 질병 유전 변이를 발견.
그림 2. 난치성 뇌전증 실험용 쥐 제작 및 약물치료
대뇌 발달이 진행 중인 생쥐 배아에 질병유전변이를 주입. 성장 완료 후 뇌전도검사를 통해 뇌전증 발생 여부 및 빈도를 확인하고 약물 투여를 통해 치료여부를 확인.
그림 3. 맞춤형 약물 치료 효과
질병 유전변이를 발현하는 생쥐의 뇌조직 단면에서 환자와 같은 거대신경세포가 관찰되고 약물치료를 통해 거대신경세포가 정상세포로 변화하는 과정.
2015.03.24
조회수 19922
-
신용카드 두께 플렉서블 리튬이온 배터리 개발
최장욱 교수
우리 대학 EEWS 대학원 최장욱(40) 교수와 한국표준과학연구원 송재용(44) 박사 공동 연구팀은 신용카드보다 얇고 무선 충전이 가능한 플렉서블 리튬이온 배터리를 개발했다고 밝혔다.
연구 성과는 나노과학분야 학술지 ‘나노 레터스(Nano Letters)’ 3월 6일자 온라인 판에 게재됐다.
이번 연구는 모바일 전자기기, 전기 자동차 등 폭넓은 분야의 전원으로 사용되는 리튬이온 배터리가 플렉서블 전자기기에도 적합한 전원으로 개발됐다는 의의를 갖는다.
기존 리튬이온 배터리는 양극, 분리막, 음극을 샌드위치처럼 층층이 쌓는 적층방식이기 때문에 두께를 줄이기 어려웠다. 또한 층 사이에 발생하는 마찰로 인해 구부리기 어렵고, 전극 필름이 벗겨져 성능 유지에 한계가 있었다.
연구팀은 적층이라는 고정관념에서 벗어나 분리막을 없애고 양극과 음극을 평면으로 동일선상에 배열한 뒤, 양극 간 격벽을 둬 리튬이온 배터리에서 발생할 수 있는 합선, 전압강하 등의 현상을 없애는 데 주력했다.
이후 5천 번 이상의 연속 굽힘 실험을 통해 배터리 성능 유지와 더불어 더 유연한 새로운 개념의 전극 구조가 가능함을 확인했다.
플렉서블 배터리는 통합형 스마트 카드, 미용 및 의료용 패치, 영화 ‘아이언 맨’처럼 목소리와 몸짓으로 컴퓨터에 명령할 수 있는 피부 부착형 센서 등에 적용될 수 있다.
더 나아가 연구팀은 이 배터리에 전자기 유도 및 태양전지를 적용해 무선 충전 기술도 함께 개발하는 데 성공했다.
현재는 이 동일 평면상 배터리 기술을 프린팅 기술과 접목해 대량 생산 공정을 개발 중이며, 궁극적으로 반도체, 배터리 등의 전자제품을 3D 프린터로 생산할 수 있는 새 패러다임을 목표로 하고 있다.
최장욱 교수는 “현재 개발된 기술은 피부 부착형 의료용 패치의 전원 역할을 해 패치 기능의 다양화에 기여할 것”이라고 말했다.
이번 연구는 한국연구재단의 중견연구자사업과 국가과학기술연구회 융합실용화 연구사업의 지원을 받아 수행됐다.
□ 사진설명
사진 1. 약물 전달 패치와 일체화된 플렉서블 이차전지
사진 2. 플렉서블 배터리 구성도
사진 3. 플렉서블 배터리를 이용해 제작한 스마트카드
2015.03.17
조회수 15832