내구성이 뛰어나면서도 물에 뜨는 인공근육이 개발됐다. 모터 없이도 로봇을 움직이는데 활용될 수 있으며 향후 인간의 근육도 대체가능할 것으로 기대된다.
우리 학교 해양시스템공학전공 오일권 교수와 김재환 박사과정 학생은 한국기계연구원 임현의 박사와 공동으로 그래핀을 이용해 기존보다 10배 이상 오랫동안 작동할 수 있으면서도 물에 뜨는 인공근육을 개발했다.
연구결과는 나노 분야 세계적 학술지 ‘ACS Nano’ 최근호에 게재됐다.
인간의 근육을 모방한 이온성 고분자 인공근육은 소음이 없고 구조가 간단한 것은 물론 단위 부피당 출력이 높아 기계식 모터와 유압식 작동기를 대체할 수 있어 많은 관심을 받아왔다. 그러나 백금 전극 표면에 존재하는 균열을 통해 내부 전해액이 빠져나가 내구성이 부족해 상용화가 어려웠다.
오 교수 연구팀은 귀금속인 백금과 비슷한 전기전도성을 가지면서도 그래핀 입자간 거리가 좁은 그래핀 종이를 전극으로 활용했다.
연구팀은 환원된 그래핀 산화물 입자를 두껍게 쌓아 5㎛(마이크로미터, 100만분의 1미터) 두께로 제작한 종이형태의 전극을 제작해 액체투과성 실험을 한 결과 전해액이 거의 빠져나가지 않았다. 내부 전해액 이온의 크기보다 그래핀의 입자간 공간이 좁기 때문이다.
연구팀은 그래핀 전극이 이온성 고분자와 맞닿는 부분엔 레이저 처리를 통해 표면적을 늘려 접착성을 높였다. 이에 따라 인공근육의 움직임에 대한 내구성도 확보했다.
기존 백금전극으로 만들어진 인공근육은 4.5V(볼트), 1Hz(헤르츠) 조건으로 6시간 동안 실험한 결과, 30분이 지난 후 움직임이 절반 이하로 떨어졌다. 반면 오 교수 연구팀이 개발한 인공근육은 동일 조건에서 성능이 지속적으로 유지되며 안정적으로 작동이 가능했다.
이와 함께 전극으로 사용된 그래핀은 물을 밀어내는 성질이 있어 개발된 인공근육 역시 물어 잘 뜨고 쉽게 구할 수 있어 저렴한 가격으로도 제작가능하다고 연구팀은 전했다.
이처럼 물에 뜨고 내구성이 향상된 인공근육의 원천기술은 향후 △생체로봇 △유연 전자소자 △부드러운 햅틱 디바이스 △생체 의료기기 등 최근 각광 받고 있는 차세대 핵심 분야에 응용될 수 있을 것으로 기대된다.
이번 연구를 주도한 오일권 교수는 “이번에 개발한 그래핀 기반 인공근육은 간단히 전극만을 교체해 기존에 알려졌던 작동기의 근본적인 문제를 해결했다”며 “수년 내 응용전자소자를 개발할 수 있을 것”이라고 말했다.
그림1. 연구팀이 개발한 그래핀 기반 인공근육(사진)
그림1-1. 연구팀이 개발한 그래핀 기반 인공근육(그래픽)
그림2. 인공근육이 6V 전압을 인가했을 시 작동하는 모습
그림3. (a)기존 무전해 도금으로 제작된 이온성 고분자-금속 복합체 작동기 (b)연구팀이 개발한 환원된 그래핀 산화물 페이퍼 전극 기반의 이온성 고분자-그래핀 복합체 작동기.
그림4. 레이저 처리된 환원된 그래핀 산화물 페이퍼 전극의 제작 과정.
그림5. (a) 물이 전해액일 때의 IPMC 작동기와 IPGC 작동기의 성능 지속성 실험 결과와 (b) 60℃의 오븐에서 12시간 이상 건조 후 실험 결과. (c),(d)이온성 액체가 전해액일 때의 IPMC 작동기와 IPGC 작동기의 성능 지속성 실험 결과. (e),(f) IPGC 작동기의 굽힘 거동 성능과 곡률.
기계공학과 경기욱 교수 연구팀이 피부에 부착하여 다양한 촉감을 전달할 수 있는 초경량의 얇고 유연한 인공근육기반 촉감 전달 패치를 개발했다. 최근 가상현실(virtual reality, VR)과 증강현실(augmented reality, AR)의 기술이 각광받으면서, 더욱 현실감을 증대시키기 위해서 시각과 청각뿐만 아니라 촉각을 전달하는 기술이 중요한 역할을 하고 있다. 또한 사용자가 로봇을 원격조종하여 세밀한 작업을 하기 위해서는, 세밀한 촉감 전달이 필요하다. 그러나 단순한 진동이나 압력을 넘어서, 세밀하고 다양한 촉감을 전달할 수 있는 기술은 여전히 큰 도전이다. 개발된 촉감 구동기는 지름 6 mm, 두께 1.1 mm로 매우 작고 얇은 구조임에도 불구하고, 압력에서부터 고주파 진동까지 다양한 촉감을 전달할 수 있다. 또한 개발된 구동기는 32 mg 의 매우 가벼운 무게에도 불구하고 25 g의 추를 빠르게 밀어 올릴 수 있을 정도로 높은 출력밀도를 갖고 있다. 연구팀
2025-03-28기존의 의료용 나노 소재는 체내에서 잘 전달되지 않거나 쉽게 분해되는 문제가 있었다. 우리 연구진은 카이랄 나노 페인트 기술로 의료용 나노 소재에 카이랄성을 부여한 자성 나노 입자를 개발했다. 그 결과 항암 온열 치료 효과가 기존보다 4배 이상 향상됐고, 약물 전달 시스템에도 적용하여 코로나 19 백신 등 mRNA 치료제의 효율성을 극대화할 수 있는 새로운 패러다임을 제시했다. 신소재공학과 염지현 교수 연구팀이 바이오 나노 소재의 표면에 카이랄성*을 부여할 수 있는 ‘카이랄 나노 페인트’기술을 최초로 개발했고 후속 연구로 생명과학과 정현정 교수팀과 함께 mRNA를 전달하는 지질전달체** 표면에도 성공적으로 도입했다고 19일 밝혔다. 이 연구들은 각각 국제 학술지 ACS Nano와 ACS Applied Materials & Interfaces 에 게재됐다. *카이랄성(Chirality): 카이랄성은 물체가 거울에 비친 모습과 겹치지 않는 성질을
2025-03-19우리 연구진이 종양 조직에서 세포를 분리하고 증식시키는 과정이 매우 복잡하고 시간이 많이 소요되며 고비용으로 인해 환자 접근성이 떨어지는 기존 항암 세포치료 방식의 한계를 극복하면서, 동시에 항암 세포치료제의 강력한 치료 효능을 기대할 수 있는 새로운 암 치료 방식을 개발하여 화제다. 우리 대학 바이오및뇌공학과 박지호 교수 연구팀이 항암 세포치료제의 항암 치료 효과를 체내에서 구현할 수 있는 mRNA 치료제를 개발했다고 11일 밝혔다. 연구팀이 개발한 해당 치료제는 강력한 암세포 사멸 능력을 기반으로 현재 유망한 항암 세포치료제로 개발되고 있는 종양 침윤 T세포를 종양 내에서 직접 증식시켜 항암효과를 유도할 수 있다. 개발된 치료제는 기존 세포치료제 대비 뛰어난 환자 접근성을 기반으로 대장암, 피부암과 같은 다양한 고형암 치료에 적용될 수 있을 것으로 기대된다. 연구팀은 종양 침윤 T세포의 효과적인 증식 및 높은 항암효과를 유도하기 위해 세포막에 발현하는 CD3
2024-12-11인체의 상당 부분을 차지하는 골격근을 이제 우리 연구진에 의해 랩온어칩과 같은 첨단 바이오 제조 기술을 적용해 안정적인 제작이 가능하게 됐다. 우리 대학 기계공학과 바이오미세유체 연구실 전성윤 교수 연구팀이 기계공학과 심기동 교수팀과 공동 연구를 통해, 체외 삼차원 환경에서 골격근 조직을 제작하는 바이오 미세유체시스템(Biomicrofluidic system)*을 개발했다고 27일 밝혔다. *바이오 미세유체시스템: 반도체 회로 제조 등에 사용되는 포토리소그래피(Photolithography) 공정 등을 기반으로 제작되는 마이크로 스케일의 시스템으로, 세포 및 생체조직 배양, 유동 생성 및 제어 등에 활용됨 연구팀은 해당 연구에서 자체 개발한 미세유체시스템을 사용해 골격근 조직 배양에 있어 큰 비중을 차지하는 하이드로겔의 구성 성분, 겔화 시간, 세포의 농도를 조절해 다양한 조건에서 삼차원 근육 밴드를 제작했다. 또한, 제작된 골격근 조직에 대해 근육의 수축력 및 반
2024-11-27현실과 가상이 융합된 메타버스 시대를 생생하고 현실감 있게 표현하기 위해 디스플레이와 광학 기기 기술이 더욱 빠르게 발전하고 있다. 하지만 차세대 발광 물질로 주목받으며 청색광 구현이 가능한 납 기반 페로브스카이트는 납 이온의 유독성으로 인해 산업적 응용이 제한되고 있다. 이에, 우리 연구진이 청색광 구현이 가능한 친환경 대체 소재를 개발해서 화제다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 납 이온이 없이도 우수한 색 표현력과 높은 발광 효율을 가질 수 있는 친환경 대체 소재를 개발하였다고 13일 밝혔다. 연구팀은 이번 연구에서 유로퓸 이온(Eu2+)*으로 페로브스카이트의 납 이온을 대체함으로써 우수한 색 표현력과 높은 발광 효율을 동시에 가지는 발광 소재를 개발할 수 있음을 보였다. *유로퓸 이온: 원자 번호 63번인 희토류 금속 유로퓸(Eu)의 이온 형태. 주로 전자를 2개 또는 3개 잃은 양이온(Eu2+ 또는 Eu3+)으로 존재함 개발된 세슘 유로퓸 브로
2024-11-13