-
유연 원격 내시경 수술로봇 K-FLEX로 동물실험 성공
〈이동호 박사과정, 네덜란드 라드바우드 대학 록사나 교수, 황민호 박사, 안정도 박사과정, 권동수 교수〉
우리 대학 기계공학과 미래의료로봇연구단(소장 권동수 교수)이 개발한 유연 원격 내시경수술로봇 ‘케이-플렉스(K-FLEX)’가 살아있는 동물의 담낭을 절개하는 수술에 성공했다.
지난 7월 17일 연구팀은 돼지를 통한 전 임상실험을 진행했다. 복강에 삽입된 유연 내시경 수술로봇을 이용해 담낭을 절개하는 실험이며 복강 내 로봇의 정밀 제어기술과 소형관절 설계기술이 핵심 기반기술이다.
이번 연구를 통해 전량을 수입에 의존하는 국내 연성 내시경 시장의 활로 개척과 더불어 암 치료 관련 사회적 비용의 축소 효과를 기대할 수 있을 것으로 전망된다.
연구팀의 케이-플렉스 로봇은 입이나 항문, 요도 등 우리 몸에 존재하는 통로를 따라 뱀처럼 유연하게 삽입돼 몸속을 자유롭게 관찰한다. 이상이 있는 경우 손가락처럼 생긴 초소형 로봇 팔이 나와 수술을 진행한다.
기존의 상용화된 수술 로봇은 곧은 수술도구를 이용하고 복부에 3~4개의 구멍을 내야 하는 문제점이 있는 반면 연구팀의 기술은 외부절개 없이 내부절개만으로 수술이 가능해 출혈량, 세균 감염, 합병증 등의 위험을 줄일 수 있다.
이러한 장점에도 불구하고 이 기술은 상용화가 활발하지 않다. 수술에 요구되는 기술의 난이도가 높고 필요조건들이 많기 때문이다. 로봇이 인체 내부의 굴곡진 부분으로 진입하기 위해 유연하면서도 큰 힘을 낼 수 있어야 하고, 기존 수술 로봇보다 더 많은 공간적 제약을 받는다.
연구팀은 위와 같은 유연성과 소형화 문제를 해결할 수 있는 강인한 소형 관절 기술을 개발했다. 핵심 연구원인 황민호 박사의 연구를 통해 초소형 로봇 팔이 낼 수 있는 힘을 두 배 이상 끌어올리는 동시에 크기도 절반으로 축소시켰다.
곧은 직선 형태의 수술 기술과 달리 유연 수술 로봇 기술은 전 세계적으로도 발전되지 않은 상황이다. 권 교수 연구팀은 내시경 모듈을 제외한 모든 부품과 소프트웨어를 순수 국내 기술을 통해 개발했다.
연구팀은 국립암센터 손대경 교수 연구팀의 협조를 통해 돼지 배의 표면에 만든 절개 부위에 다양한 방향과 각도로 휘어지는 유연 내시경 수술로봇을 삽입하고 병변이 위치한 간과 담낭으로 로봇을 접근시켰다.
이후 내시경의 채널을 통과한 직경 3.7mm의 소형 수술도구가 간을 젖히며 수술을 위한 시야 확보를 한 뒤 다른 채널을 통과한 전기 소작기를 이용해 간과 담낭 사이를 절제했다.
모든 수술 과정은 연구팀이 내시경의 앞부분에 설치한 카메라를 통해 송출된 돼지 신체 내부를 모니터링하며 원격 조종 장치를 통해 진행됐다.
한편 연구팀은 이 기술을 통해 지난 6월 29일 영국 런던 임페리얼 컬리지에서 열린 ‘서지컬 로봇 챌린지 2018(Surgical Robot Challenge 2018)’에서 수술로봇 강국들을 제치고 ‘베스트 어플리케이션 어워드’와 ‘오버롤 위너’상을 동시에 수상하기도 했다.
이번 연구를 총괄한 권동수 교수는 “이번 실험의 의미는 국내 최초로 유연한 내시경로봇을 살아있는 동물의 복강 내에서 이동시켜 병변에 접근시키고 수술을 진행함으로써 임상 적용의 가능성을 확인했다는 의미를 갖는다”고 말했다.
권 교수 연구팀은 이러한 핵심기술을 기반으로 2018년도 ‘이지엔도서지컬(EasyEndo Surgical Inc.)’이라는 수술로봇 회사를 설립했다. 권 교수를 비롯한 8명의 학생들이 공동 창업한 회사로, 케이-플렉스를 포함한 다양한 수술로봇을 개발하고 있다.
케이-플렉스 연구는 한국연구재단의 지원을 받아 수행됐다.
□ 사진 설명
사진1. K-FLEX 시스템 전체 그림
2018.08.16
조회수 10652
-
김학성 교수, 빛에 의해 스위치처럼 작동하는 단백질 개발
〈 김 학 성 교수 〉
우리 대학 생명과학과 김학성 교수 연구팀이 빛으로 결합력을 제어할 수 있는 결합 단백질을 개발해 빛을 이용한 세포 신호전달 제어에 새 방법을 제시했다.
이는 제한적이었던 기존 광 제어 기술의 한계를 극복해 다양한 세포신호 전달 제어에 활용할 수 있을 것으로 기대된다.
허우성, 최정민 박사가 주도한 이번 연구는 앙케반테 케미(Angewandte Chemie) 6월 27일자 온라인 판에 게재됐다.
빛을 이용한 세포의 신호전달 조절은 물리, 화학적 방법보다 비 침습적이고 빠르기 때문에 신호전달 연구에 효과적으로 활용 가능하다.
그러나 지금까지는 자연에 존재하는 광 스위치 단백질에 의존했기 때문에 이 단백질들을 각각의 신호전달 조절에 맞도록 다시 설계해야 하는 복잡하고 힘든 과정으로 인해 응용이 극히 제한됐다.
최근에는 합성된 광스위치 분자를 단백질에 결합시켜 빛에 따라 그 기능을 조절하려는 연구가 진행됐다. 그러나 이 경우 빛에 따라 스위치처럼 작동하는 단백질의 설계방법이 단백질 종류에 따라 다르고 복잡하다는 한계가 있었다.
연구팀은 LRR(Leucine-rich repeat) 단백질을 기반으로 아조벤젠 유래 광 스위치 분자를 합리적 방법으로 단백질 모듈에 결합시켰다. 이를 통해 빛으로 단백질의 구조변화를 유도해 표적에 대한 결합력을 조절했다.
또한 빛에 의한 상피세포 성장인자 수용체(EGFR, epithelial growth factor receptor)에 대한 결합력 조절이 가능한 단백질을 개발하고, 이를 이용해 세포 내 EGFR 신호 전달을 빛으로 조절할 수 있음을 증명했다.
연구팀은 LRR 모듈로 구성된 단백질의 구조 특성을 기반으로 광스위치 분자를 반복 모듈 사이에 결합시켜 빛으로 표적에 대한 결합력이 효과적으로 조절되는 단백질의 합리적 설계 방법을 개발했다.
이는 다양한 표적에 대해 결합하는 LRR 단백질에 광범위하게 적용할 수 있는 기반 기술로, 빛을 이용한 세포 내 다양한 신호 전달 조절에 활용할 수 있는 새로운 단백질 창출 방법을 제시한 것이다.
이번 연구는 한국연구재단의 글로벌연구실사업(GRL)과 중견연구자지원사업을 통해 수행됐다.
□ 그림 설명
그림1. LRR 단백질 기반으로 합리적 설계를 통해 광스위치 단백질 개발 및 이를 이용한 세포 신호전달 조절
2018.08.13
조회수 11234
-
김성용 교수, 빅 데이터 통해 아중규모 난류의 고유특성 규명
〈 김 성 용 교수 〉
우리 대학 기계공학과/인공지능연구소 김성용 교수 연구팀이 빅 데이터 분석을 통해 아중규모 난류의 고유한 특성과 원동력을 발견하는 데 성공했다.
이번 연구는 원격탐사장비인 연안레이더와 해색위성을 통해 관측된 해양 표층 대형자료의 빅 데이터 분석을 통해 수 킬로미터 및 수 시간 규모의 해양유체를 이해함으로써 전지구 및 지역 기후변화 예측모델의 개선에 기여할 것으로 기대된다.
이번 연구는 환경유체 및 지구물리분야 국제 학술지인 ‘저널 오브 지오피지컬 리서치-오션스(Journal of Geophysical Research-Oceans)’ 8월 6일자에 두 편의 연계논문으로 게재됐다.
김 교수 연구팀의 유장곤, 이은애 석사가 각 논문의 1저자로 참여했고, 석사 연구 주제의 일부가 관련분야 최상위 학술지에 출간되는 성과를 달성했다.
2012년 美 항공우주국(NASA)은 ‘영원한 바다(Perpetual Ocean)’라는 위성을 이용한 해양관측 자료를 시각화한 프로젝트를 공개했다. 이는 2년 반에 걸친 바다 표면 흐름의 움직임에 대한 자료를 모아 제작된 것으로 그 모습이 마치 화가 빈센트 반 고흐의 ‘별이 빛나는 밤(The Starry Night)’속 하늘의 배경과 유사해 대중의 흥미를 끌었다.
이 ‘영원한 바다’는 중규모(100km 이상의 공간 규모) 수준의 난류운동을 기반으로 한 것으로 김 교수 연구팀은 중규모보다 더 작고 짧은 시공간 규모인 아중규모(1~100km 및 매 시간 규모)에서 해양 난류를 연구했다.
아중규모 난류는 지구물리유체 및 환경유체 분야에서 큰 관심을 받는 분야로 열과 밀도를 포함한 물리적 혼합 및 난류특성에 대한 연구 뿐 아니라 해양 영양분의 표층으로의 전달 및 적조와 엽록소의 번성 등 해양생물, 생태 및 환경 보존의 주요한 물리적 원인으로 주목받고 있다.
전 세계적으로 아중규모 해양 난류는 주로 컴퓨터를 이용한 수치 모델링 연구로 진행되고 있으나, 시공간으로 급격히 변하는 아중규모의 해양유체를 기존 장비 및 기술로 관측하기에는 어려움이 있어 제한적이고 간헐적인 현장 관측만 가능한 상황이다.
연구팀은 원격탐사장비인 연안레이더와 해색위성을 이용해 관측한 1년간의 해수유동장 및 5년간의 엽록소 농도장을 빅 데이터 분석해 해양난류의 고유한 특성을 입증했다.
연구팀은 해양난류 파수영역(wavenumber) 에서의 에너지 스펙트럼의 기울기 변화를 계절과 공간에 따른 변화 관점에서 분석했다.
이를 통해 아중규모 난류의 순방향과 역방향의 에너지 캐스케이드(energy cascade, 난류운동에서 큰 규모에서 작은 규모 또는 작은 규모에서 큰 규모로 에너지가 이동하는 현상)가 일어나고, 에너지가 투입되는 공간규모가 약 10 km이며 이는 경압불안정성(baroclinic instability, 수평방향으로 밀도 변화가 심할 때 중력장에서 불안정해져 이를 복원하기 위해 난류 현상이 발생하는 상태)에 의한 것임을 입증했다.
김 교수 연구팀의 연구결과는 해양물리, 대기 및 기후변화의 전 지구 고해상도 모델링 분야의 아중규모 물리현상의 모수화(参数化, parameterization)에 대한 중요한 기여를 할 것으로 기대된다. 아중규모의 원리를 이해함으로써 방사능, 기름유출과 같은 해양 오염물 추적 등 실제적이고 다양한 응용이 가능할 것으로 보인다.
또한 이번 연구는 우리나라 동해안 극전선의 가장자리에서 활발하게 생성되는 아중규모 소용돌이와 전선의 장기 관측자료를 이용한 것으로, 국내 연안 레이더 및 해색위성을 이용한 대형자료의 분석과 해양물리 및 물리생물의 상호작용 연구의 활성화에 기여할 것으로 예상된다.
이번 연구는 한국연구재단, 한국해양과학기술원 해양위성센터, 해양경찰청 연구센터의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 고흐의 별이 빛나는 밤과 NASA 가 제작한 영원한 바다 사진
그림2. 에너지 스펙트럼의 기울기 변화에 따른 에너지의 순방향 및 역방향 캐스케이드와 에너지가 투입되는 공간 규모를 보여주는 예
그림3. 동해에서 해색위성을 이용해 관측된 표층 엽록소 농도장에서 표현된 아중규모 난류 유동의 예
그림4. 임원지역 표층 해수유동장과 울릉도 남부지역 표층 클로로필 농도장
2018.08.13
조회수 12772
-
홍순형 교수, 초경량 다기능성 그래핀 나노복합소재 개발
〈 홍 순 형 교수 〉
우리 대학 신소재공학과 홍순형 교수 연구팀이 고분자 기지 내 2차원 나노소재인 그래핀 나노플레이트렛 (GNP)을 복합화해 초경량 다기능성 나노복합소재를 개발했다.
이번 기술은 항공기 및 인공위성용 초경량 소재, 전자파 차폐용 스텔스 소재 등 다양한 분야에 적용 가능할 것으로 기대된다.
김준희 박사과정이 1저자로 참여한 이번 연구는 재료분야 국제 학술지 ‘파티클 (Particle & Particle Systems Characterization)’지 6월 22일자 표지논문에 선정됐다. (논문명 : Polymer Nanocomposites: Fabrication of Graphene Nanoplatelet/Epoxy Nanocomposites for Lightweight and High-Strength Structural Applications)
그래핀 나노플레이트렛은 현존하는 소재 중 가장 물성이 우수한 2차원 나노소재로 제조 단가를 낮출 수 있는 기술이 개발되면서 상용화가 유망해진 신소재이다.
최근 그래핀 연구가 활발히 진행되면서 기존 소재와 혼합된 복합소재로 다양한 상업적 응용 가능성이 커지고 있지만 기지에 첨가 시 응집현상이 일어나는 단점이 있어 기존 강화재료에 비해 경쟁력이 부족했다.
연구팀은 문제 해결을 위해 기지 내 그래핀 나노플레이트렛의 표면을 기능기화 물질인 멜라민으로 개질(改質)했다. 멜라민이 가진 벤젠 구조를 이용한 파이 결합(π-π)을 통해 연구팀은 멜라민을 매개체로 그래핀 나노플레이트렛과 기지소재 사이에 강한 화학결합을 유도했다.
이 기능기화에 의한 표면개질 기술은 재료의 표면에 새로운 특성을 형성해 사용 조건을 만족시키는 기능을 부여하는 기술이다. 이 기술을 통하면 그래핀 나노플레이트렛 표면에 결함을 만들어 줄 필요가 없어 그래핀 나노플레이트렛의 우수한 특성을 최대로 활용할 수 있다.
또한 연구팀은 고에너지 밀링공정 기술을 사용해 그래핀 나노플레이트렛과 기능기화 물질을 서로 화학적으로 강하게 결합했다. 이를 이용해 그래핀 나노플레이트렛을 고분자 소재인 에폭시 내에 균질분산시켜 항복강도 1.4배, 탄성계수 2배로 강화된 초경량, 다기능성 그래핀-고분자 나노복합소재를 개발했다.
연구팀의 그래핀 나노복합소재 기술은 비공유 기능기화에 의해 그래핀을 기지 내에 균일하게 분산시킬 수 있으며, 생산성을 크게 향상시킨 고에너지 밀링공정 기술을 개발해 물성 향상과 더불어 산업계 상용화 가능성을 높였다.
이번 연구는 주목받는 신소재인 그래핀 나노플레이트렛의 응집현상을 기능기화 공정을 통해 해결하는 동시에 그래핀 나노복합소재의 상용화 가능성을 제시했다는 면에서 의미를 갖는다.
홍 교수는 “항공기 및 인공위성용 초경량 소재, 내습․내산화용 배리어 소재, 투명 유연전자소재, 전자파 차폐용 스텔스 소재 등 다양한 분야에 적용가능하다”며 “단일 공정을 이용해 그래핀 표면을 개질하고 기지 소재 내 균질 분산시킨 물성이 극대화된 나노복합소재 제조를 위한 원천기술이다”고 말했다.
이번 연구는 소재기술혁신을 목표로 하는 한국연구재단 미래소재디스커버리 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 기능기화에 의한 표면개질된 그래핀 나노플레이트렛을 3D 이미지로 묘사(파티클지 표지)
2018.08.06
조회수 12196
-
이정호 교수, 이주호 박사, 악성 뇌종양의 근본적 원인 밝혀
〈 이 주 호 박사 〉
악성 뇌종양인 교모세포종은 미디어에서 주요 소재로 나올 만큼 인간에게 치명적인 질병으로 일반 대중에게 낯설지 않은 질병이다. 실제로 악성 뇌종양으로 인한 미국 암 관련 사망률은 4위에 달하며 미국의 에드워드 케네디, 존 매케인 상원의원 등이 이 질병으로 사망했거나 투병 중이다.
우리 대학 의과학대학원 이정호 교수 연구팀이 세브란스병원 신경외과 강석구 교수와의 공동 연구를 통해 악성 뇌종양인 교모세포종 돌연변이 발생이 암 부위가 아닌 암에서 멀리 떨어진 뇌실하영역에서 발생한다는 사실을 규명했다.
이는 교모세포종 발병의 원인이 암 발생 부위일 것이라는 기존의 학설을 뒤집는 연구 결과로, 악성도가 가장 높은 종양인 교모세포종의 치료법 개발에 새로운 방향을 제시할 것으로 기대된다.
또한 그동안 암 조직만을 대상으로 이뤄진 암 연구가 암의 기원이 되는 조직에 대한 연구로 발전하면서 교모세포종 뿐 아니라 다른 암에 대해서도 치료의 실마리를 찾을 수 있는 기반이 될 것으로 보인다.
의과학대학원 졸업생 이주호 박사가 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처(Nature)’ 8월 1일자 온라인 판에 게재됐다.
교모세포종은 가장 예후가 좋지 않은 종양이다. 암 발생의 근본적인 원인에 대한 이해가 부족해 수술을 하더라도 재발 가능성이 매우 높기 때문이다. 수술만으로 치료가 불가능해 항암치료, 방사선치료, 표적항암제 등을 병행하지만 아직도 그 치료법이 명확하지 않다.
이정호 교수 연구팀은 암 발생 부위가 아닌 종양과 떨어져 있는 뇌실하영역이라는 곳에 주목했다. 교모세포종이 수술 이후에도 재발률이 높다는 점에서 원인이 다른 곳에 있을 것이라고 판단한 것이다.
이 교수는“교모세포종은 종양을 떼어내도 1~2년 후에 재발률이 높다. 암은 돌연변이인데 돌연변이가 발생하는 곳이 종양이 아닌 다른 부위라고 생각했고 그곳이 바로 뇌실하영역(subventricular zone : SVZ)이라는 사실을 밝혀냈다”고 말했다.
연구팀은 2013년부터 2017년 사이에 수술을 한 뇌종양 환자 28명을 대상으로 종양조직 외에 수술 중 제거되는 종양조직, 정상조직, 뇌실주변의 조직 3가지를 조합해 분석했다. 딥 시퀀싱, 단일세포시퀀싱 등을 통해 교모세포종의 시작이 뇌실하영역에서 발생한 낮은 빈도의 종양을 유발하는 돌연변이에 의한 것임을 밝혔다.
특히 유전자 편집 동물 모델을 통해 뇌실하영역에서 돌연변이가 생기면 이 돌연변이를 가진 세포가 뇌실하영역을 떠나 뇌의 다른 부위로 이동해 교모세포종이 되는 사실 또한 확인했다. 돌연변이 세포가 마치 불꽃놀이처럼 곳곳으로 퍼진 뒤 시간이 지나자 다른 부위에서 종양으로 진화한 것이다.
연구팀은 KAIST 교원창업(소바젠, 대표 김병태)을 통해 이번 연구결과를 바탕으로 뇌실하영역의 세포가 교모세포종으로 진화되는 과정을 막기 위한 치료약 개발에 나설 예정이다.
1저자인 이주호 박사는 “암 중 예후가 가장 좋지 않은 교모세포종에 대한 발암의 비밀을 국내 연구진이 풀어냈다는 것에 큰 의미가 있다”며 “악성 뇌종양의 연구와 치료의 획기적 전환점을 최초로 증명하고 제시한 것이다”고 말했다.
이정호 교수는 “암 중 가장 예후가 좋지 않은 교모세포종의 원인을 파악하고 동물 모델 제작까지 성공했다는 점에서 큰 의미가 있다. 환자에게서 찾은 것을 동물에 그대로 반영했기 때문에 여기서 치료를 할 수 있다면 임상까지 가능할 것이다.”고 말했다.
이정호 교수 연구팀은 후천성 뇌 돌연변이에 의한 난치성 뇌전증의 원리와 치료법을 최초로 규명한 바 있다. 이를 토대로 글로벌 제약회사와 함께 임상 2상이 진행될 정도로 난치성 뇌질환의 진단 및 치료법 개발을 세계적으로 리드하고 있다.
이 교수는 한국인으로서는 처음으로 난치성 뇌전증의 유전 병리학적 진단 기준을 세우는 세계 뇌전증학회 핵심 위원으로 참여해 국제 기준을 제정 중이다.
이번 연구는 서경배과학재단, 보건복지부 세계선도의과학자육성사업, 한국연구재단, 보건산업진흥원 사업을 통해 수행됐다.
□ 그림 설명
그림1. 교모세포종의 발암의 시작을 불꽃놀이에 비유한 그림
그림2. 동물 실험을 통해 뇌실하영역이 발암의 시발점임을 증명
2018.08.02
조회수 17045
-
김준 교수, 난치성 유전질환인 섬모병증 치료제 후보 발굴
〈 김준 교수, 김용준 박사과정 〉
우리 대학 의과학대학원 김준 교수가 연세대학교 생명공학과 권호정 교수 연구팀과의 공동 연구를 통해 난치성 유전질환인 섬모병증의 치료제 후보를 개발했다.
이번 연구 결과는 섬모병증 치료제 개발을 위한 기반이 될 것으로 기대되며 유사한 난치성 유전질환에 대한 저분자 화합물 약물 개발 플랫폼으로도 활용 가능할 것으로 예상된다.
김용준 박사과정이 1저자로 참여하고 정인지, 김성수, 정유주 연구원이 공동 저자로 참여한 이번 연구는 의, 과학 분야 국제 학술지 ‘저널 오브 클리니컬 인베스티게이션(Journal of Clinical Investigation)’ 7월 23일자 온라인 판에 게재됐다.(논문명 Eupatilin rescues ciliary transition zone defects to ameliorate ciliopathy-related phenotypes)
세포 소기관인 일차섬모는 배아가 발생하는 과정에서 세포 간 신호전달에 관여하고 망막 광수용체 세포가 기능하는 역할을 하는 등 인체에 중요한 기관이다.
섬모병증은 이러한 섬모의 형성에 필수적인 유전자들의 돌연변이로 인해 발생되며 소뇌발달 및 신장 이상, 망막 퇴행 등의 증상을 보인다.
현재 섬모병증을 치료하는 약물은 개발되지 않았다. 섬모병증 뿐 아니라 기능손실 유전자 돌연변이가 원인이 되는 대부분의 희귀유전질환은 유전자 치료를 제외하고는 치료 약물의 개발이 이뤄지지 않았다.
연구팀은 문제 해결을 위해 섬모병증 원인의 하나인 CEP290 유전자 돌연변이를 유전자 편집기법으로 모사한 세포를 구축한 뒤 화합물 라이브러리 스크리닝 기법을 통해 섬모병증에서 나타나는 섬모형성 부진 현상을 극복할 수 있는 천연 저분자 화합물을 발굴했다.
발굴된 화합물은 CEP290 단백질과 복합체를 이뤄 섬모형성과 기능에 관여하는 단백질(NPHP5)에 작용하는 것으로 밝혀졌다. CEP290 단백질이 유전자 돌연변이로 인해 만들어지지 않는 경우 NPHP5 단백질도 정상적으로 작용하지 못하는데 이 화합물은 NPHP5의 기능을 정상화시켜 복합체가 담당하던 기능의 일부를 회복함을 확인했다.
또한 연구팀은 발굴한 화합물을 섬모병증 증상을 갖는 동물 모델에 주입했고 망막 퇴행 현상을 지연시키는 효과를 입증했다.
1저자인 김용준 박사과정은 “이번 연구는 기능손실 유전자 돌연변이로 인해 발생하는 유전질환도 저분자 화합물 약물로 치료가 가능함을 규명했다는 의미를 갖는다”고 말했다.
김준 교수는 “발굴된 후보약물의 효과를 동물실험을 통해 확인했기 때문에 인체에서의 효과 또한 증명하는 후속 연구를 진행할 예정이다”고 말했다.
이번 연구는 보건복지부 희귀질환연구센터지원사업, 한국연구재단 바이오의료기술개발사업, 글로벌연구실 사업의 지원으로 수행됐다.
□ 그림 설명
그림1.섬모형성 이상을 회복시키는 약물 발굴
그림2. 발굴된 약물에 의해 섬모병증 모델 생쥐의 망막퇴행이 지연되는 효과 확인
2018.07.30
조회수 12277
-
최원호 교수, 플라즈마 내 전자의 가열 원리 규명
〈 최원호 교수, 박상후 연구교수〉
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 약하게 이온화된 플라즈마(weakly ionized plasma)에서 전자가 가열되는 구조와 제어 원리를 규명하는데 성공했다.
플라즈마 내의 모든 반응이 전자로부터 시작된다는 점으로 볼 때 전자의 가열 원리를 규명함으로써 플라즈마를 더욱 자유롭고 다양하게 활용할 수 있을 것으로 예상된다.
이는 대기압 플라즈마 내에 존재하는 자유 전자에 대한 기초 연구 자료로 기존 플라즈마의 활용 및 응용 가능성을 높이는 등 플라즈마 물리학 및 응용기술 발전에 크게 기여할 것으로 기대된다.
박상후 연구교수가 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’5월 14일자와 7월 5일자 온라인 판에 연달아 게재됐다. (논문명 : Electron information in single- and dual-frequency capacitive discharges at atmospheric pressure, 단일 및 이중 주파수 대기압 플라즈마의 전자 정보 / Electron heating in rf capacitive discharges at atmospheric-to-subatmospheric pressures, 대기압과 대기압보다 낮은 압력에서 라디오 주파수 플라즈마 내의 전자 가열)
물질의 세 가지 상태인 고체, 액체, 기체와 더불어 ‘물질의 네 번째 상태’라 불리는 플라즈마는 표준 온도 및 압력(25 ℃, 1 기압)의 상태에서는 자연적으로 존재하지 않으나 인위적으로 기체에 에너지를 가하면 플라즈마 상태가 된다.
학계 및 산업계는 활용 목적과 조건에 맞춰 다양한 형태의 플라즈마 발생원을 개발해 사용하고 있다. 특히 대기압 플라즈마는 응용 가능 분야가 다양하고 활용도가 높아 학술적, 산업적 활용성 측면에서 많은 관심을 받고 있다.
일반적으로 플라즈마 내의 다양한 화학적, 물리적 반응은 전자로부터 시작되기 때문에 전자의 밀도와 온도의 시공간적 변화는 아주 중요한 정보이다. 플라즈마 및 가속기 물리학 분야에서 자유 전자의 가열 여부는 과학자들의 관심을 지속적으로 받은 연구 주제이다.
그러나 대기압 조건에서는 자유 전자와 중성기체의 충돌이 빈번하기 때문에 이온화된 플라즈마 내 자유 전자의 밀도와 온도를 측정하는 데에는 한계가 있어 자유 전자의 가열 구조 및 원리를 실험적으로 규명할 수 없었다.
또한 전자 가열의 제어 방법 및 주요 요인에 대한 정보가 부족해 플라즈마의 반응성과 활용성 개선이 제한적이었다.
연구팀은 문제 해결을 위해 전자-중성입자 제동복사(electron-neutral bremsstrahlung)란 기술을 이용해 플라즈마 내 자유 전자의 밀도, 온도를 정확히 진단하고 이를 2차원으로 영상화하는 기술을 개발했다.
연구팀은 개발한 진단 기술을 이용해 대기압 플라즈마에서 수 나노초(10억분의 1초) 단위로 자유 전자의 온도(에너지)를 측정해 전자가 에너지를 얻는 가열 과정의 시공간적 분포 및 근본 원리를 밝히는 데 성공했다.
0.25~1기압 압력구간에서의 전자 온도의 시공간적 분포의 변화를 실험적으로 최초로 확인해 대기압 및 대기압보다 낮은 압력에서 전자가 에너지를 얻는 가열의 기본 원리를 규명했다.
최 교수는 “이 연구 결과는 자유 전자와 중성입자의 충돌이 매우 빈번한 조건에서 발생하는 플라즈마에서의 전자 가열 원리를 학문적으로 이해하는 데 유용할 것이다”며 “이를 통해 경제적, 산업적 활용 가능한 대기압 플라즈마 발생원을 개발하고 다양하게 활용하는데 큰 역할을 하길 기대한다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 측정된 파장의 제동복사 및 전자 온도의 시공간적 변화
그림2. 단일 및 이중 주파수로 구동하는 플라즈마에서 측정된 제동복사 및 전자 온도의 시공간적 변화
2018.07.26
조회수 13711
-
이현주 교수, 배기가스 정화용 로듐 앙상블 촉매 개발
〈 정호진 박사과정, 이현주 교수 〉
우리 대학 생명화학공학과 이현주 교수가 포항공대 한정우 교수와의 공동 연구를 통해 자동차 배기가스 정화에 사용할 수 있는 분산도 100%의 로듐 앙상블 촉매를 개발했다.
연구팀의 촉매는 자동차 배기가스 정화 반응에서 시중의 디젤 산화 촉매에 비해 50도 낮은 온도에서 100%의 전환율을 달성하는 성능을 보였다. 연구팀의 앙상블 촉매는 기존의 단일원자 촉매, 나노입자 촉매와는 다른 개념으로 금속 앙상블 자리(ensemble site)가 필요한 다양한 분야에 적용 가능할 것으로 기대된다.
정호진 박사과정이 1저자로 참여한 이번 연구 결과는 화학 분야 국제 학술지 ‘미국 화학회지(JACS, Journal of the American Chemical Society)’ 7월 5일자 온라인 판에 게재됐다. (논문명 : Fully Dispersed Rh Ensemble Catalyst to Enhance Low-Temperature Activity, 저온 활성 향상을 위한 완전히 분산된 로듐 앙상블 촉매)
다양한 불균일계 촉매 중 귀금속 촉매는 높은 활성을 보이기 때문에 널리 사용된다. 하지만 귀금속의 희소가치 때문에 귀금속 사용 효율을 극대화하는 것이 매우 중요하다.
단일원자 촉매는 모든 금속 원자가 촉매 반응에 참여할 수 있기 때문에 널리 사용되지만, 금속 원자가 독립적으로 존재하기 때문에 앙상블 자리가 필요한 촉매 반응에서 촉매 성능을 발휘하지 못한다.
한편 프로필렌(C3H6)과 프로판(C3H8) 등의 탄화수소는 대표적인 자동차 배기가스 오염물질로 반드시 촉매 산화 반응을 통해 이산화탄소(CO2)와 물(H2O)로 전환한 뒤 배출돼야 한다. 탄소-탄소, 탄소-수소 결합을 깨뜨려야만 탄화수소 산화반응이 진행되기 때문에 촉매 반응을 위해서는 금속 앙상블 자리를 확보하는 것이 필수적이다.
연구팀은 문제 해결을 위해 100%의 분산도를 갖는 로듐 앙상블 촉매를 개발해 자동차 배기가스 정화반응에 적용했다. 100%의 분산도를 갖는다는 것은 모든 금속 원자가 표면에 드러나 있기 때문에 모든 원자가 반응에 참여할 수 있다는 의미이다.
이는 단일원자 촉매도 동일하게 갖는 특징이지만, 앙상블 촉매는 100% 분산도와 더불어 두 개 이상의 원자가 붙어있는 앙상블 자리가 존재한다는 장점 또한 갖고 있다.
그 결과 일산화탄소(CO), 일산화질소(NO), 프로필렌, 프로판 산화 반응에서 모두 우수한 저온 촉매 성능을 보였다. 이는 탄화수소 산화 반응 성능이 없는 단일원자 촉매나 낮은 금속 분산도로 인해 저온 촉매 성능이 떨어지는 나노입자 촉매의 단점을 보완한 것이다.
특히 연구팀이 개발한 분산도 100%의 로듐 앙상블 촉매는 상용화된 디젤 산화 촉매(DOC, diesel oxidation catalysts)보다 높은 활성과 내구성을 가져 실제 자동차 배기가스 정화에 적용 가능할 것으로 기대된다.
이현주 교수는 “이번에 개발한 촉매는 기존의 단일원자, 나노입자 촉매와는 다른 새로운 금속 촉매 개념으로 학술적으로 기여하는 바가 크다”며 “자동차 배기가스 정화 촉매 분야에도 산업적으로 적용 가능해 가치가 큰 연구이다”고 말했다.
이번 연구는 한국연구재단 선도연구센터사업 초저에너지 자동차 초저배출 사업단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 분산도 100% 로듐 앙상블 촉매를 이용한 자동차 배기가스 정화 반응 개념도
그림2. 단일 원자 촉매와 앙상블 촉매의 촉매 구조와 성능 비교 모식도
그림3. EDS-mapping 분석법을 통해 관찰한 단일 원자 촉매, 앙상블 촉매, 나노입자 촉매 구조 사진
2018.07.23
조회수 13179
-
전상용 교수, 건선,아토피 치료용 펩타이드 개발
우리 대학 생명과학과 전상용 교수 연구팀이 피부 전달을 통해 건선을 치료할 수 있는 펩타이드 치료제를 개발했다.
연구팀은 수 년 전 발견한 펩타이드를 나노입자로 제작해 피부를 통해 전달함으로써 동물 모델에서 건선을 치료하는 데 성공했다.
김진용 박사가 1저자로 참여한 이번 연구는 나노분야 국제 학술지 ‘에이시에스 나노(ACS Nano)’ 6월 27일자 온라인 판에 게재됐다.(논문명 :Nanoparticle-Assisted Transcutaneous Delivery of a Signal Transducer and Activator of Transcription 3-Inhibiting Peptide Ameliorates Psoriasis-like Skin Inflammation)
건선은 대표적인 만성 염증성 피부질환으로 전 세계 성인의 약 3%가 앓고 있는 자가 면역질환 중 하나이다. 최근 건선의 원인에 STAT3라는 단백질이 핵심 역할을 한다는 사실이 밝혀졌다.
연구팀은 수 년 전 STAT3라는 단백질의 기능을 저하시킬 수 있는 펩타이드를 최초로 발견해 항암 치료제로 개발한 바 있다. 그러나 건선 피부는 각질층이 매우 두껍기 때문에 피부를 통해 펩타이드를 투과시켜 표적 약물 치료를 하는 데에는 기술적인 한계가 존재했다.
연구팀은 이번 연구에서 길이가 서로 다른 두 개의 인지질과 STAT3 억제 펩타이드가 특정 조건에서 약 30나노미터 크기의 매우 작은 원반 모양의 나노입자를 안정적으로 형성함을 발견했다.
연구팀은 특수 지질성분으로 이뤄진 제형(劑形)을 통해 수십 나노미터 크기의 원판형 나노입자로 이뤄진 STAT3 억제용 펩타이드를 제조했다.
연구팀이 개발한 STAT3 억제 펩타이드는 건선 피부를 가진 동물 모델에 투여했을 때 뛰어난 항염증 효과를 보였고, 건선 발병의 핵심 요소인 각질세포의 과증식과 염증성 싸이토카인인 IL-17 등의 분비를 막는 역할을 했다.
연구팀은 의과학대학원 김필한 교수와의 공동 연구를 통해 펩타이드가 피부 속으로 얼마나 깊이 투과되는지 관찰했고, 이를 통해 나노입자가 각질층을 통과해 진피층 상부까지 전달됨을 확인했다.
전상용 교수는 “STAT3 억제 앱타이드가 난치성 염증성 피부질환인 건선에 대해 우수한 치료 효과를 보이는 바이오 신약 후보물질이 될 수 있음을 확인했다.”며 “효율적인 피부 전달이 가능한 시스템을 구축했다는 점에서 큰 의미가 있으며 향후 임상 적용이 될 것으로 기대한다”고 말했다.
이번 연구는 한국연구재단의 글로벌연구실사업과 바이오의료기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 앱타이드-지질 나노복합체의 건선 유발 생쥐 귀 모델에서의 치료효능 평가
그림2. 앱타이드-지질 나노복합체의 건선 유발 생쥐모델에서의 피부투과 효능 평가
2018.07.17
조회수 15740
-
박정영, 정유성 교수, 합금 촉매의 화학반응 실시간 관찰 성공
〈 박 정 영, 정 유 성 교수〉
우리 대학 EEWS 대학원 박정영, 정유성 교수 연구팀이 합금 촉매 표면에서 벌어지는 화학 반응 과정을 실시간으로 관찰해 합금 촉매의 반응성 향상과 직결된 반응 원리를 규명했다.
연구팀의 관찰 결과는 차세대 고성능 촉매 설계에 활용할 수 있는 반응성 향상 원리의 기반이 될 것으로 기대된다.
GIST 물리․광과학과 문봉진 교수 연구팀과 공동으로 수행한 이번 연구 결과는 종합 과학 분야 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 7월 13일자 온라인 판에 게재됐다. (논문명 : Adsorbate-driven reactive interfacial Pt-NiO1-x nanostructure formation on the Pt3Ni(111) alloy surface, 백금-니켈 합금 표면위의 촉매 활성도가 높은 금속-산화물 경계 나노구조물 형성의 실시간 관찰)
합금 촉매는 단일 금속 또는 금속 산화물 촉매에 비해 뛰어난 성능을 보여 연료전지반응이나 탄소계열 공업화학반응 등에 이용되고 있다. 하지만 합금 촉매 반응의 결과에 대한 근본적인 원리는 자세히 밝혀지지 않아 촉매 연구 과정에서 발생하는 예상치 못한 결과를 설명하기 어려웠다.
연구팀은 문제 해결을 위해 기존의 표면 직접 관찰 기기의 한계점을 크게 개선한 ‘상압 주사 터널링 전자 현미경’과 ‘상압 X-선 광전자분광기’를 활용해 백금-니켈 합금 촉매 표면의 역동적인 변화 과정을 관찰했다.
이를 통해 실제 반응 환경에서 백금-니켈 합금 촉매의 반응성 향상 이유가 금속-산화물 계면 나노구조의 표면 형성으로부터 시작됨을 밝혀냈다.
또한 일산화탄소 산화반응 과정에서 백금 혹은 니켈 산화물 단일 촉매에 비해 금속-산화물 계면 나노구조가 갖는 비교적 낮은 활성화 에너지는 촉매 반응 원리 상 반응성 향상에 보다 유리한 화학 반응 경로를 제시할 수 있음을 확인했다.
이 결과는 밀도범함수 이론을 바탕으로 한 양자역학 모델링 계산 결과를 통해 입증됐다.
박정영 교수는 “초고진공 환경을 기반으로 한 기존의 표면 과학이 풀지 못한 실제 반응 환경에서의 합금 촉매 반응 과정을 직접 관찰한 첫 연구사례이다”며 “합금 촉매의 계면이 촉매 향상도를 높일 수 있고, 현재 진행 중인 촉매전자학 연구와도 밀접한 관계를 가지고 있다. 다양한 종류의 실제 반응 환경에 근접한 촉매 표면 반응을 연구할 계획이다.”고 말했다.
이론적 원리 규명 연구를 주도한 정유성 교수는 “직접 관찰과 양자 계산을 통해 합금 촉매의 주된 활성 자리가 계면임을 규명한 연구로, 다양한 합금 촉매의 설계 및 최적화에 중요한 단서가 될 것이다”고 말했다.
상압 표면 분석을 주도한 GIST 문봉진 교수는“이 연구는 외부의 분자들과 쉴 새 없이 반응하면서 움직이는 마치 살아서 숨쉬고 있는 원자의 움직임과 반응성을 동시에 측정한 완벽한 표면물리연구이다”고 말했다.
이번 연구는 기초과학연구원 및 한국연구재단, GIST 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 주사 터널링 전자 현미경을 이용한 실시간 표면 관찰 이미지
그림2. 시간에 따른 표면 직접 관찰 이미지
2018.07.16
조회수 12908
-
김신현 교수, 풍뎅이 외피 본뜬 머리카락 굵기 레이저 공진기 개발
〈 이상석 박사과정, 김신현 교수, 김종빈 박사과정 〉
우리 대학 생명화학공학과 김신현 교수 연구팀이 한국화학연구원 김윤호 박사와의 공동 연구를 통해 머리카락 굵기 수준의 캡슐형 레이저 공진기를 개발했다.
연구팀의 캡슐형 레이저 공진기는 크리슈나 글로리오사 풍뎅이(Chrysina gloriosa, 이하 글로리오사 풍뎅이)의 외피와 동일한 구조를 미세 캡슐에 탑재한 기술로 치료용 레이저 등 광범위한 분야에 적용 가능할 것으로 기대된다.
이상석 박사과정이 1저자로 참여한 이번 연구 결과는 사이언스 자매지 ‘사이언스 어드밴시스(Science Advances)’ 6월 22일자 온라인 판에 게재됐다. (논문명 : Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals , 파장 가변성과 모양 재구성성을 갖는 콜레스테릭 액정 기반의 캡슐형 레이저 공진기)
글로리오사 풍뎅이는 좌측으로 원편광된 빛을 비추면 나뭇잎과 비슷한 초록색을 띠고, 우측으로 원편광된 빛을 비추면 아무 색도 보이지 않는다. 이러한 독특한 광학 특성은 포식자들을 피해 글로리오사 풍뎅이 간의 통신 수단으로 활용된다고 알려져 있다.
글로리오사 풍뎅이가 편광 방향에 따라 다른 색을 보이는 이유는 외피에 왼쪽 방향으로 휘감아 도는 나선구조가 존재하기 때문이다. 이러한 나선구조는 동일한 방향의 원편광 빛만을 선택적으로 반사해 반사색을 보인다.
글로리오사 풍뎅이가 가진 나선구조를 활용하면 인공적으로 액정을 구현하는 것이 가능하다. 이러한 액정 나선구조는 글로리오사 풍뎅이의 외피처럼 편광 방향에 따른 반사 특성을 보이며 특정 파장의 빛을 제어할 수 있기 때문에 보통의 레이저와 달리 거울 없이도 레이저 공진기를 구현할 수 있다.
이러한 액정을 활용한 레이저 공진기는 필름 형태로 구현되곤 했는데 필름 형태의 공진기는 레이저의 발광 방향이 고정돼 있고 크기가 커 미세한 부분에 사용하기에는 한계가 있었다.
연구팀은 액정 레이저 공진기를 머리카락 크기 수준의 캡슐 내부에 제작해 목표 지점에 주사하거나 이식할 수 있는 새로운 형태의 레이저 공진기를 개발했다.
캡슐형 레이저 공진기는 삼중 구조로 구성된다. 코어의 액정 분자와 발광 분자의 혼합물을 액체 상태의 배향층과 고체 상태의 탄성층이 겹으로 감싸는 형태이다.
배향층은 코어의 액정 분자가 높은 배향 수준을 갖게 하는 역할을 통해 레이저 공진기의 성능을 향상시키고, 탄성층은 캡슐의 기계적 안정성을 높인다. 연구팀은 미세유체기술을 이용해 복잡한 삼중 구조를 제어된 방식으로 설계했다.
캡슐형 레이저 공진기는 공기 중에서도 안정적으로 구형을 유지하며 레이저 발광이 캡슐 표면을 따라 수직 발생해 3차원의 전방향(omnidirectional) 레이저 발광이 가능하다.
또한 캡슐형 공진기를 기계적으로 변형시켜 발광 방향과 레이저의 세기를 조절할 수 있고 온도 조절을 통해 액정의 나선구조 간격을 변화시키면 레이저 발광의 파장도 조절이 가능하다.
김 교수는 “개발한 새로운 형태의 캡슐형 레이저는 작은 크기와 높은 기계적 안정성을 가져 주사 및 이식이 가능하며 국부적인 영역에만 조사할 수 있는 치료용 레이저로 사용 가능하다”며 “자연에 존재하는 C.글로리오사 풍뎅이의 외피 구조를 모방해 발전시킨 것으로 인간은 자연에서부터 배우고 공학적으로 창조하게 됨을 증명한 연구이다”고 말했다.
이번 연구는 한국연구재단의 중견연구자지원사업과 X-project 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 좌원편광 빛과 우원편광 빛에 노출된 C. gloriosa 풍뎅이의 사진
그림2. 캡슐형 레이저 공진기의 구성 (좌) 및 광학 현미경 사진 (우)
2018.07.03
조회수 10252
-
이정용 교수. 근적외선 이용한 영구 무선충전 플랫폼 개발
〈 이 정 용 교수 〉
우리 대학 EEWS 대학원 이정용 교수와 서울대학교 최장욱 교수 공동 연구팀이 눈에 보이지 않는 근적외선 대역의 빛 에너지를 전기로 변환하는 기술을 통해 웨어러블 전자기기용 영구 무선충전 플랫폼을 개발했다.
백세웅 박사, 조정민 석사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 5월 11일자 온라인 판에 게재됐다. (논문명 : Colloidal quantum dots-based self-charging system via near-infrared band)
수 나노미터 수준의 콜로이달 양자점은 광 특성 변환이 쉽고 용액 공정을 통해 합성이 가능해 차세대 반도체 재료로 각광받는다. 특히 황화납(PbS) 양자점의 경우 가시광 뿐 아니라 적외선 영역까지 광 흡수가 가능해 여러 광전소자에 응용할 수 있다.
콜로이달 양자점을 이용한 광전변환소자는 지속적 연구와 발전을 통해 현재 12% 이상의 광전변환효율을 달성했으나 그동안 뚜렷한 응용 분야를 찾지 못하고 있었다.
연구팀은 콜로이달 양자점 전지의 높은 근적외선 양자효율을 웨어러블 전자기기의 무선충전에 응용했다. 기존 웨어러블 전자기기는 번거로운 충전 방식이 분야 발전의 큰 걸림돌이었다.
이번 연구에서는 양자점 전지 모듈을 유연 기판에 제작해 고 유연성 웨어러블 배터리와 함께 웨어러블 헬스케어 팔찌의 가죽 내부에 이식했다. 이를 통해 양자점 전지가 근적외선 광자를 통해 생성되는 전기를 배터리에 충전할 수 있는 플랫폼을 개발했다.
이전에도 비슷한 방식으로 태양광 발전 방식이 개발된 바 있으나 이번 연구에서 개발한 플랫폼은 더 많은 장점을 갖는다. 근적외선은 비가시대역의 빛이기 때문에 생활에 지장을 주지 않으며 가시광 대역에 비해 높은 투과도를 가져 전지를 노출할 필요 없이 내부 이식이 가능하다.
위와 같은 측면으로 인해 실제 상용화에 중요한 요소인 디자인 측면에서 더 많은 자유도를 가지며 기존 구조보다 더 높은 소자 효율과 안정성을 확보했다.
연구팀은 이미 상용화된 웨어러블 헬스케어 팔찌의 기존 배터리를 제거하고 개발한 무선충전 플랫폼을 도입했고, 이를 통해 실제 개발한 플랫폼이 상용화된 저전력 웨어러블 전자기기에 응용 가능함을 증명했다.
이 교수는 “근적외선 대역을 이용해 실제 웨어러블 전자기기의 충전문제를 해결한 것은 새로운 방식이다”며 “이번에 개발한 플랫폼의 규모를 넓히면 웨어러블 전자기기를 넘어서 모바일, IoT, 드론 및 4차산업의 핵심 분야의 새로운 방식의 에너지 변환 플랫폼이 될 것이다”고 말했다.
이 연구는 한국연구재단 기초연구사업, 기후변화대응기술개발사업, KAIST 기후변화연구허브 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 개발한 근적외선 무선충전 플랫폼과 웨어러블 헬스케어밴드에 응용한 모식도"
그림2. 개발한 기술에 대한 양자점 광전변환기기의 구조와 무선충전 플랫폼 성능
2018.06.14
조회수 13874