-
차량 배기열을 에너지원으로 화학합성 가능성 최초 밝혀
우리 대학 신소재공학과 박찬범 교수와 정연식 교수 공동 연구팀이 한밭대학교(총장 최병욱) 오민욱 교수팀과 네덜란드 델프트 공과대학교(TU Delft) 프랭크 홀만(Frank Hollmann) 교수팀과의 협력을 통해 상온용 *열전소재 기반 열전 촉매반응과 산화환원 효소반응을 접목해 폐열로 고부가가치 화학물질을 합성하는 데 성공했다고 22일 밝혔다.
☞ 열전효과: 물질의 양단에 온도 차가 존재할 때 내부에 전위차가 생겨 전기가 발생하는 현상.
신소재공학과 윤재호, 장한휘 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션즈 (Nature `Communications)' 6월 29일 字에 게재됐다. (논문명: Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons)
전 세계적으로 1차 에너지 소비를 기준으로 약 70%의 에너지가 사용되지 못한 채 폐열(Waste heat)로 사라진다. 열전(Thermoelectric)소재는 열을 직접 전기로 변환할 수 있는 소재로, 다양한 환경에서 버려지는 폐열을 회수하여 전기에너지로 변환하는 열전발전에 사용되는 등, 지속 가능한 에너지 물질로서 주목받고 있다.
그러나 우리가 일상생활에서 쉽게 접할 수 있는 낮은 온도의 열원에서 발생하는 저온 폐열은 열전소재를 이용해 충분한 발전 효율을 확보할 수 없어, 실 사용처가 매우 제한적이라는 한계점이 있었다.
연구팀은 이러한 문제를 해결하기 위해 전기 에너지가 아닌 화학 에너지에 주목했다. 화학 에너지는 전기 에너지보다 안정하여 보관과 운송이 간편하다는 장점이 있다.
연구팀은 상온용 열전소재인 비스무트 텔루라이드(Bismuth telluride)가 섭씨 100도 이하의 낮은 온도에서도 물과 산소로부터 과산화수소를 생성하며, 이러한 현상이 열전소재가 만들어내는 전위차에 비례한다는 것을 실험적으로 입증했다.
연구팀은 더 나아가 저온 폐열을 사용하는 비스무트 텔루라이드의 열전 촉매반응을 생체촉매인 퍼옥시게나아제(Peroxygenase) 활성에 적용했다. 퍼옥시게나아제는 과산화수소를 이용해 유기합성에서 중요하게 여겨지는비활성 탄화수소의 선택적 옥시관능화(oxyfunctionalization)를 유도하여 고부가가치 화학원료로 쓰이는 반응성 산소화 화학종을 생성할 수 있는 효소이다. 연구팀은 열전소재가 과산화수소를 실시간으로 공급하도록 설계해 퍼옥시게나아제가 지속해서 탄화수소의 옥시관능화 반응을 수행하도록 만드는 데 성공했다.
연구팀은 그뿐만 아니라 차량의 대전 시내 주행 중에 발생하는 배기열을 활용해서 고부가가치 화학물질 합성에 성공해, 이번에 개발한 시스템의 실용화 가능성도 높였다.
연구팀은 "이번 연구는 폐열을 고부가가치 화학물질 생산에 이용할 수 있음을 처음으로 발견했다는 것에 의의가 있다ˮ며, "열전소재의 반응 메커니즘을 더 자세하게 밝혀 성능을 높이고, 다양한 생체촉매와 접목 및 규모 확대를 통해, 산업적 파급력을 높일 계획ˮ이라고 밝혔다.
한편 이번 연구는 한국연구재단 리더연구자지원사업(창의연구)의 지원을 받아 수행됐다.
2022.07.22
조회수 6199
-
가까운 미래에 많은 지역에서 가뭄이 일상화되는 사실 최초 예측
우리 대학 문술미래전략대학원(건설및환경공학과 겸임) 김형준 교수 연구팀이 국제 공동 연구를 통해 과거 최대의 가뭄이 여러 해에 걸쳐 지속해서 발생하는 시점, 즉 세계의 각 지역에서 가뭄이 일상화되는 시점을 최초로 추정했다고 밝혔다. 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’6월 28일 판에 출판됐다. (논문명: The timing of unprecedented hydrological drought under climate change; doi:10.1038/s41467-022-30729-2)
지구온난화에 대한 장기적인 대책을 검토하기 위해서 그 영향이 미래에 어떻게 변화되는지에 대한 전망은 매우 중요한 정보가 된다. 특히 종래의 통계치나 경험을 적용할 수 없게 되는 시기가 도래한다면 그 시점을 파악하는 것이 매우 중요하다.
KAIST, 동경대학교, 일본 국립환경연구원 등 7개국 13기관으로 구성된 국제 공동 연구팀은 수치모델을 이용해 전 지구 하천유량의 미래 변화를 예측하고 가뭄이 일어나는 빈도를 조사함으로써 과거 최대의 가뭄이 수년에 걸쳐 일어나게 되는 이른바 `재난'이 일상화가 되는 시기를 세계 최초로 추정해냈다.
연구 결과는 지중해 연안이나 남미의 남부 등 특정한 지역들에서 이번 세기 전반 혹은 중간쯤에 과거 최대의 가뭄이 적어도 5년 이상 연속적으로 넘어서는 시기를 맞이하고 과거로부터 지금까지의 기후에서 비정상 상태가 일상에서 빈번하게 일어날 확률이 높아짐을 보인다. 또한, 온실가스의 배출을 적극적으로 줄여나가더라도 어떤 지역에서는 십여 년 안에 이와 같은 `재난의 일상화'가 일어날 수 있음을 발견했다. 하지만, 기후변화에 적극적으로 대응하는 시나리오(RCP2.6)의 경우에는 가뭄의 일상화 시점이 늦어지거나 계속되는 기간이 줄어드는 것으로 나타났다.
교신 저자인 김형준 교수 연구팀의 유스케 사토 박사(문술미래전략대학원 연구부교수)는 "수자원 혹은 농업 분야의 기후변화 대책에는 보통 많은 시간이 요구되며 현재의 비정상이 일상화가 되기 전에 충분한 준비를 해두는 것이 중요하다ˮ고 말했다.
김형준 교수는 "이번 연구 결과는 전 세계의 가뭄 발생의 미래경로에 있어서 탄소중립 실현의 중요성을 강조하고 특정 지역에서는 기후변화 대응과 더불어 기후변화 적응대책을 적극적으로 준비해나가야 할 필요가 있다는 것을 시사한다ˮ고 밝혔다.
한편 이번 연구는 한국연구재단 해외우수과학자유치사업(BP+)와 인류세연구센터의 지원을 받아 수행됐다.
2022.07.21
조회수 6737
-
대량의 고농도 일산화탄소를 고부가가치 바이오케미칼로 전환하는 기술 개발
우리 대학 생명과학과 조병관 교수 연구팀이 산업 부생가스 등으로 대량 발생하는 고농도의 일산화탄소를 고부가가치 바이오케미칼로 전환할 수 있는 생체촉매 기반 C1 바이오 리파이너리 기술*을 개발했다고 14일 밝혔다.
* 제철 공정과 같은 산업공정에서 발생하는 부생가스, 합성가스는 다량의 일산화탄소, 이산화탄소 등의 탄소 1개로 이루어진 C1 가스로 구성되어 있음. 이러한 C1 가스를 미생물과 같은 생체촉매를 활용하여 다양한 화학물질로 전환하는 공정을 C1 가스 바이오 리파이너리(bio-refinery) 기술이라고 함.
최근 탄소 포집 및 전환과 같은 기술들에 대한 산업계의 요구가 커지는 가운데, 미생물을 활용한 친환경 생체촉매 기술이 크게 성장하고 있다.
조병관 교수 연구팀은 아세토젠 미생물을 생체촉매로 활용한 C1 가스 바이오 리파이너리 기술을 개발했다. 이 미생물들은 혐기성 미생물들로 우드-융달 대사회로라는 매우 독특한 대사회로를 이용하여 C1 가스로부터 아세트산을 만드는 미생물로 알려져 있다.
이러한 아세토젠 미생물을 생체촉매로 활용해 산업 부생가스를 활용하는 기술에는 한 가지 문제가 있는데, 바로 독성가스인 일산화탄소의 농도다. 이 미생물은 60% 이상의 고농도 일산화탄소 조건에서는 생명 활동이 크게 저해를 받기 때문에, 생체촉매로써 사용할 수 없게 된다. 다양한 산업에서 발생하는 C1 가스는 공정 과정에 따라 10~70% 정도의 일산화탄소가 포함돼있는데, 특히 철강산업 공정에서 발생하는 고로가스(BFG)에는 약 60%가 넘는 일산화탄소가 포함돼 있다. 따라서, 미생물 기반 고효율 생체촉매 개발을 위해서는 일산화탄소에 대한 저항성을 높이는 것이 필수적으로 선행돼야 한다.
연구팀은 아세토젠 미생물 중 하나인 유박테리움 리모좀(Eubacterium limosum) 균주를 고농도 일산화탄소 조건에 지속적으로 노출해 일산화탄소에 대한 내성이 뛰어난 돌연변이체(ECO2)를 발굴했는데, 해당 돌연변이체는 일산화탄소가 약 60% 이상 포함된 합성가스 조건에서 야생형 미생물보다 약 6배 정도 빠른 성장 속도를 보였다. 이러한 성장 속도는 현재까지 보고된 아세토젠 미생물 중 고농도 일산화탄소 조건(CO 함량 60% 이상)에서 전 세계에서 가장 빠른 속도다.
연구팀은 위의 돌연변이 미생물의 유전체 서열분석을 통해 아세틸 조효소 A 합성 단백질(acetyl-CoA synthase)을 암호화하는 유전자(acsB) 내 돌연변이가 발생한 것을 규명하고, 인공지능 기반의 구조예측을 통해 이러한 변이가 일산화탄소 내성 및 고정률 향상을 유도했음을 밝혔다.
연구팀은 일산화탄소에 대한 내성이 향상된 ECO2 돌연변이 미생물에 2,3-부탄다이올(2,3-butanediol, 2,3-BDO)* 생합성 경로를 도입해 C1 가스를 C4 화학물질로 전환할 수 있는 미생물 기반 생체촉매 시스템을 개발했다. ECO2 기반의 생체촉매가 가스 발효과정을 통해 야생형 미생물 대비 약 6.5배 정도의 높은 2,3-BDO 생산성을 보여줌으로써, C1 가스를 효율적으로 C4 화학연료로 전환하는데 성공했다.
*2,3-부탄다이올(2,3-butanediol, 2,3-BDO): 농업용 자재, 식품첨가제, 의약품 첨가제, 고분자 첨가제 등 활용 범위가 광범위한 바이오케미칼
연구를 주도한 조병관 교수는 “산업공정 과정에서 발생하는 C1 가스는 일산화탄소, 이산화탄소 등의 혼합가스로, 이를 직접적으로 미생물이 이용하기 위해서는 일산화탄소에 대한 내성 및 전환율 향상이 필수적이다”라고 설명했으며, “다양한 합성생물학 기술들 활용하면 아세토젠 미생물 생체촉매의 활용도를 더욱 개선할 수 있으며, 이러한 고효율 C1 가스 전환 생체촉매 연구는 C1 가스 바이오 리파이너리의 핵심 원천기술로 다양한 산업현장에 적용할 수 있을 것”라고 밝혔다.
생명과학과 진상락(석박사통합과정), 강슬기(박사과정) 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘화학 공학 저널(Chemical Engineering Journal, 영향력지수 14.66)’에 6월 22일 字 온라인판에 게재됐다. (논문명: Development of CO gas conversion system using high CO tolerance biocatalyst)
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 사업단의 지원을 받아 수행됐다.
2022.07.15
조회수 8400
-
새로운 인공지능 형광 현미경 적용, 뇌 신경세포 등 3차원 고화질 영상기술 개발
우리 대학 김재철 AI 대학원 예종철 교수 연구팀이 서울대학교 장성호 교수팀, 포스텍 김기현 교수팀과 공동연구를 통해 형광 현미경의 오랜 문제인 이방성(Anisotropy)을 해결해, 3차원 영상 화질을 획기적으로 끌어올리는 인공지능 기술을 개발했다고 29일 밝혔다.
이방성 문제란 형광 현미경으로 3차원 영상을 획득하는 데 있어 빛의 성질로 인해 영상 공간 방향 간에 적게는 2~3배, 많게는 10배까지도 화질 차이가 발생하는 문제를 뜻한다. 예를 들면 3차원 영상을 보는 각도마다 화질의 차이가 발생하는 것이다.
연구팀은 수학적 기법인 최적 수송이론 기반을 둔 새로운 인공지능 시스템을 개발해 공초점 현미경과 광 시트 현미경에 적용했다. 기존 인공지능 기법들과는 다르게, 인공지능 학습 데이터가 따로 필요하지 않고, 하나의 3차원 영상만으로도 인공지능 학습에 적용할 수 있다는 점에서 획기적이라 볼 수 있으며, 생물학 연구자들에게 생물 표본의 3차원 고화질 영상 획득에 큰 도움을 줄 것으로 기대된다.
예종철 교수는 "3차원 영상 획득에 있어 극복하기 어려웠던 현미경의 물리적 한계를 인공지능 기술을 통해 뛰어넘었다는 점에서 의미가 있고, 비지도 학습 기반으로 훈련이 진행되기 때문에, 다양한 많은 종류의 3차원 영상 촬영 기법에도 확장 적용 가능하며, 또한 인공지능 연구의 새로운 응용을 개척했다는 데 의미가 있다ˮ 고 말했다.
김재철 AI 대학원의 예종철 교수가 주도하고, 박형준 연구원이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 6월 8일 字 온라인판에 게재됐다.
*논문명 : Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy
논문 링크: https://www.nature.com/articles/s41467-022-30949-6
2022.06.29
조회수 7494
-
인공지능 이용해 3차원 홀로그래피 현미경의 박테리아 신속 식별 기술 개발
우리 대학 물리학과 박용근 교수 연구팀이 홀로그래피 현미경과 인공지능을 이용한 신속 박테리아 병원균 식별 기술을 개발했다고 27일 밝혔다.
병원균의 조기 식별은 감염질환 치료에 필수적이다. 치명적인 상태로 진행되기 전에 감염균에 맞는 효과적인 항생제의 선택과 투여가 가능해지기 때문이다. 하지만 현재의 일상적 병원균 식별은 통상 수일이 소요된다. 이로 인해 감염 초기 식별 결과 없이 실증적인 처방으로 항생제를 투여하는 사례가 빈번하며, 이로 인해 패혈증의 경우 치명률이 50%에 달하며 항생제 남용으로 인한 슈퍼박테리아 문제도 발생한다.
기존 방법으로 병원균 식별이 오래 걸리는 원인은 긴 박테리아 배양 시간이다. 질량 분석기로 대표되는 식별 기술들은 일정량 이상의 박테리아 표본이 확보되어야 균종과 관련된 분자적 신호를 검출할 수 있다. 이로 인해, 환자에서 추출한 시편을 하루 이상 배양해야만 검출이 될 정도의 박테리아 개수가 확보된다.
광학 분야의 저명 학술지인 `빛: 과학과 응용(Light: Science & Applications), (IF = 17.782)'에 게재된 이번 연구(논문명: Rapid species identification of pathogenic bacteria from a minute quantity exploiting three-dimensional quantitative phase imaging and artificial neural network)에서 박용근 교수 연구팀은 3차원 홀로그래피 현미경과 인공지능 알고리즘을 활용해서 단일 세포 수준의 표본으로도 병원균의 균종을 정확히 알아낼 수 있음을 입증했다.
홀로그래피 현미경으로 측정되는 3차원 굴절률 영상 정보에 내재된 균종과 관련된 특성을 인공지능 알고리즘으로 학습해 종을 구분하는 것이 핵심 아이디어다. 연구팀은 종별로 500개 이상의 박테리아의 3차원 굴절률 영상을 측정했고, 이를 인공지능 신경망을 통해 학습시켰다.
연구팀은 개발한 방법을 이용해 주요한 혈액 감염균을 신속하게 식별함으로써 실제 진단에도 응용될 가능성을 검증했다. 구체적으로 그람 음성 및 양성, 구균 및 간균을 모두 포함한 총 19가지 균종으로 혈액 감염 사례의 90% 이상의 원인이 되는 균들이다. 한 개의 병원균 혹은 병원균 덩어리를 측정한 단일 3차원 굴절률 영상에서는 약 82.5%의 정확도로 균종 판별이 가능했다. 연구팀은 또한 여러 영상을 확보할 수 있을 때 정확도가 증가해, 7개의 박테리아 영상이 확보된다면 99.9%의 정확도를 얻을 수 있었다.
연구진의 책임자이자 논문의 교신저자인 박용근 교수는 "홀로그래피 현미경의 세포 감별 능력을 인공지능으로 극대화해 감염 진단 기술로서의 가능성을 확인한 것이 의미ˮ라고 말했다. 제1 저자인 물리학과 김건 박사과정 학생은 "100,000분의 1 수준의 표본량으로도 질량 분석기의 균종 검출률과 비슷한 정확도를 얻었고 환자 시편에서 다양한 병원균을 식별하는 플랫폼 기술이 될 것으로 기대된다ˮ라고 덧붙였다.
이번 연구는 KAIST-삼성서울병원-토모큐브 팀의 수년간의 공동 연구를 통해 진행됐다. 물리학과 박용근 교수 연구팀의 기술에 다양한 기관의 경험과 비전을 반영함으로써 완성할 수 있었다. 삼성서울병원 진단검사의학과 이남용 교수, 진단검사의학과 허희재 교수, 감염내과 정두련 교수 연구팀, 서울성모병원 진단검사의학과 유인영 교수, 분당 차병원 응급의학과 김규석 교수, 우리 대학 나노과학기술대학원 정현정 교수 등 다양한 분야와 기관이 모여, 실험적 검증을 효과적으로 진행할 수 있었다. 또한 KAIST 교원 창업 기업인 ㈜토모큐브의 3차원 홀로그래피 기술 지원도 필수적인 역할을 했다.
한편 이번 연구는 한국연구재단 창의연구사업, 과학기술일자리진흥원의 지원을 받아 수행됐다.
2022.06.27
조회수 7164
-
고정확도 실시간 학습 가능한 모바일 인공지능 반도체 칩 세계 최초 개발
우리 대학 전기및전자공학부 유회준 교수 연구팀이 인공지능의 실시간 학습을 모바일 기기에서 구현, 고정확도 인공지능(AI: Artificial Intelligent) 반도체*를 세계 최초로 개발했다고 23일 밝혔다.
* 인공지능 반도체 : 인식·추론·학습·판단 등 인공지능 처리 기능을 탑재하고, 초지능·초저전력·초신뢰 기반의 최적화된 기술로 구현한 반도체
연구팀이 개발한 인공지능 반도체는 저비트 학습과 저지연 학습 방식을 적용해, 모바일 기기에서도 학습할 수 있다. 특히 이번 반도체 칩은 인공지능의 예상치 못한 성능 저하를 막을 수 있는 실시간 학습 기술을 성공적으로 구현했다.
전기및전자공학부 한동현 박사과정이 제1 저자로 참여한 이번 연구는 지난 6월 12일부터 15일까지 인천 연수구 송도 컨벤시아에서 개최된 국제 인공지능 회로 및 시스템 학술대회(AICAS)에서 발표됐으며 응용 예시를 현장에서 시연했고, 최우수 논문상과 최우수 데모상을 모두 석권해 그 우수성을 널리 알렸다. (논문명 : A 0.95 mJ/frame DNN Training Processor for Robust Object Detection with Real-World Environmental Adaptation (저자: 한동현, 임동석, 박광태, 김영우, 송석찬, 이주형, 유회준))
인공지능 (AI) 반도체 기술을 망라하는 국제 학술 대회 ‘AICAS 2022’는 인공지능 반도체 분야 세계 최고 권위를 가진 IEEE(미국 전기 전자 기술자 협회)학회로 평가받으며, 삼성, SK를 필두로, 한국전자통신연구원(ETRI), 엔비디아(NVIDIA), 케이던스(Cadence) 등 국내외 저명한 기업과 기관 등이 참석해 인공지능 반도체 회로와 시스템 전 분야, 인공지능 반도체와 관련된 연구성과를 공유하는 행사다.
기존 인공지능은 사전에 학습된 지능만으로 추론을 진행했기 때문에 학습하지 않은 새로운 환경 혹은 물체에 대해서는 물체 검출이 어려웠다. 하지만 유회준 교수 연구팀이 개발한 실시간 학습은 추론만 수행하던 기존 모바일 인공지능 반도체에 학습 기능을 부여함으로써, 인공지능의 지능 수준을 크게 끌어올렸다.
유 교수팀의 새로운 인공지능 반도체는 사전에 학습한 지식과 애플리케이션 수행 중에 학습한 지식을 함께 활용해 고정확도 물체검출 성능을 보였다. 특히 유회준 교수 연구팀은 렌즈가 깨지거나, 기계 오류로 인한 인공지능의 예상치 못한 정확도 감소도 자동으로 인지하고 이를 실시간 학습을 통해 보정, 기존 인공지능의 문제점을 해결했다.
유 교수팀은 실시간 학습 기능에 더해, 모바일 기기에서 저전력으로 학습이 가능할 수 있도록, 저비트 인공지능 학습 방법, 직접 오류 전사 기반 저지연 학습 방식을 제안, 이를 최적화할 수 있는 반도체(HNPU) 와 응용 시스템을 모두 개발했다.
저전력, 실시간 학습을 수행할 수 있는 모바일 인공지능 전용 반도체, HNPU는 다음과 같이 6가지 핵심 기술이 도입됐다.
○ 확률적 동적 고정 소수점 활용 저비트 학습 방식 (SDFXP: Stochastic Dynamic Fixed-point Representation)
- 동적 고정 소수점에 확률적 표현을 결합하고 확률적 반올림을 도입하여 인공지능 학습에 필요한 비트 정밀도를 최소화 할 수 있는 방법
○ 레이어별 자동 정밀도 검색 알고리즘 및 하드웨어 (LAPS: Layer-wise Adaptive Precision Scaling)
- 학습의 난이도를 자동으로 파악하고 심층신경망의 레이어별로 최적의 비트수를 자동으로 찾아주는 알고리즘 및 이를 가속하는 하드웨어
○ 입력 비트 슬라이스 희소성 활용* (ISS: Input Slice Skipping or Bit-slice Level Sparsity Exploitation)
- 데이터를 이진수로 표현했을 때 중간중간 나타나는 ‘0’ 비트를 활용하여, 데이터 처리량을 높이는 방식
○ 내재적 순수 난수 생성기 (iTRNG: Intrinsic True Random Number Generator)
인공지능 연산을 활용한 순수 난수 생성기를 설계, 데이터의 암호화 및 확률적 반올림을 구현
○ 다중 학습 단계 할당을 통한 고속 학습 알고리즘 및 하드웨어 (MLTA: Multi Learning Task Allocation & Backward Unlocking)
기존 역전파 (Back-propagation) 알고리즘에서 탈피해, 직접 오류 전사를 통한 저지연 학습 구현
○ 실시간 인공지능 학습 기반 자동 오류 검출 기능 저하 보정 시스템 개발 (Real-time DNN Training based Automatic Performance Monitor and Performance Recovery System)
평상시 물체 검출 결과를 주기적으로 모니터링하면서, 갑작스러운 확률 변화를 자동으로 인식, 정확도 저하를 보정하기 위해 실시간 학습을 적용
* 희소성 활용 (Sparsity Exploitation) : 심층 신경망 모델의 연산은 수많은 곱셈누적(MAC: Multiply-And-Accumulate)연산의 연속이다. 연산자에 0이 존재할 시, 굳이 연산을 해보지 않아도 결과는 0임을 알기에 이를 뛰어넘는 방식으로 연산 속도를 높이는 방식.
이러한 기술을 사용해 HNPU는 저전력 물체검출을 구현하여, 다른 모바일 물체검출 시스템과 비교해 75% 높은 속도, 44% 낮은 에너지 소모를 달성하면서도, 실시간 학습으로 고정확도 물체검출을 개발해 주목을 받았다.
연구팀은 HNPU의 활용 예시로 카메라 렌즈가 깨지거나, 기계 오류, 조명, 밝기 변화로 인공지능의 추론 능력이 떨어졌을 때, 실시간 학습을 통해 다시 정확도를 높이는 고정확도 물체검출 시스템을 개발했다. 이는 이후 자율 주행, 로봇 등 다양한 곳에 활용될 것으로 기대된다.
특히 연구팀의 HNPU 연구는 2022 국제인공지능회로및시스템학술대회(AICAS 2022)에서 발표돼, 최우수 논문상과 최우수 데모상을 모두 석권하여 그 우수성을 널리 알렸다.
연구를 주도한 KAIST 전기및전자공학부 유회준 교수는 “현재 인공지능은 사전에 학습한 지식만으로 주어진 문제를 해결하고 있으며, 이는 변화하는 환경과 상황에 맞춰 계속 학습하는 인간의 지능과 뚜렷한 차이를 보인다”라며 “이번 연구는 실시간 학습 인공지능 반도체를 통해 인공지능의 지능 수준을 사람 수준으로 한층 더 끌어올리는 연구”라고 본 연구의 의의를 밝혔다.
2022.06.23
조회수 6681
-
인간 뇌처럼 뉴런-시냅스 동시 구동 모사한 메모리 최초 구현
우리 대학 신소재공학과 이건재 교수팀이 100 nm(나노미터) 두께의 단일 소자에서 뉴런과 시냅스를 동시에 모사하는 뉴로모픽(neuromorphic) 메모리를 개발했다고 23일 밝혔다. 뉴런은 신경계를 이루는 기본적인 단위세포를, 시냅스는 뉴런 간의 접합 부위를 말한다.
이 교수팀은 인간의 뇌처럼 뉴런과 시냅스가 유기적으로 동작하는 방식의 단일 메모리 소자를 최초로 구현했으며, 이를 통해 반도체 소자로 인간 뇌를 완전히 구현한다는 뉴로모픽 컴퓨팅 본연의 목표 달성에 근접할 수 있을 것으로 기대된다.
1,000억 개의 뉴런과 100조 개의 시냅스의 복잡한 네트워크로 구성된 인간 뇌는 그 기능과 구조가 고정된 것이 아니라 외부 환경에 따라서 유연하게 변하는 특징을 가지고 있다. 따라서 뉴로모픽 소자는 뉴런과 시냅스의 특성을 모사해 기존의 컴퓨터로는 구현할 수 없는 인간 뇌의 고도 인지 기능을 실현하는 데에 가장 큰 목적을 두고 있다.
지금까지 뉴로모픽 컴퓨팅 구현을 위해서 CMOS 집적회로와 비휘발성 메모리 등을 이용한 연구들이 진행됐으나, 기존 기술들은 뉴런과 시냅스의 기능을 분리해 모사한다는 한계점을 가지고 있었다.
인간 뇌에서 뉴런과 시냅스는 서로 유기적으로 연결돼 있으며, 서로 간의 상호작용을 통해 인지 기능이 발현된다. 이러한 뉴런과 시냅스의 기능을 인간 뇌처럼 단일 구조체에서 통합해 구현하는 것은 어려운 도전 과제였다.
이 교수 연구팀은 휘발성의 소자(threshold switch)로 뉴런을, 비휘발성의 상변화 메모리 소자로 시냅스를 모사해 단기·장기 기억이 공존하는 단일 뉴로모픽 소자를 개발했으며, 이를 통해 집적도 개선 및 비용 절감 효과도 얻을 수 있을 것으로 기대된다. 특히 기존 CMOS 뉴런 소자에서는 단순 신호 발산 기능만이 구현됐으나, 연구팀의 뉴런-시냅스 통합소자는 신호 발산 유형이 환경에 따라서 유연하게 적응하는 가소성(plasticity)을 구현하는 데 성공했다.
이건재 교수는 이번 연구 성과에 대해 "인간은 뉴런과 시냅스의 상호작용을 통해 기억, 학습, 인지 기능을 발현하므로 둘 모두를 통합 모사하는 것이 인공지능에 있어서 필수적인 요소ˮ라며 "개발한 단일 뉴런-시냅스 소자는 기존의 단순 이미지 학습 효과를 넘어서, 피드백 효과를 기반으로 한 번 배운 내용을 더 빨리 학습하는 재학습(retraining) 효과 구현도 성공해 인공지능뿐만 아니라 뇌를 역설계하는 연구에도 큰 도움이 될 것이다”고 언급했다.
한편 이번 연구는 삼성전자 전략산학과제와 지능형반도체 사업의 지원을 받아 수행됐으며, 국제 학술지 `네이쳐 커뮤니케이션즈(Nature Communications)'에 5월 19일 字 게재됐다.
2022.06.23
조회수 6786
-
20큐비트급 소형 리드버그 양자컴퓨터 개발
우리 대학 물리학과 안재욱, 문은국 교수 연구팀이 20큐비트급 리드버그 양자컴퓨터를 개발해 계산과학의 난제인 최대독립집합 문제를 계산했다고 22일 밝혔다.
양자컴퓨터는 양자역학의 원리를 사용하여, 디지털컴퓨터로는 불가능한 계산을 수행할 것으로 예상되는 대표적 미래기술이다. 20큐비트급 양자컴퓨터는 기존 컴퓨터가 백만회 순차 처리해야 하는 계산량을 한 번에 처리하는 계산성능을 갖는다.
세계 주요국들은 양자컴퓨팅을 전략기술로 분류해, 국가적 연구역량을 집중하고 있으며 글로벌 대기업, 기술벤처, 국가연구소와 주요 대학의 막대한 시설과 인력, 연구비가 동원되고 있다. 우리나라 정부도 양자기술을 10대 전략기술의 하나로 선정해 투자를 확대하고 있다.
소형(20~50큐비트급)의 양자컴퓨터가 속속 개발되고 있는 현시점에서, 가장 중요한 이슈 중 하나는 `디지털컴퓨팅 알고리즘으로는 비효율적인 계산 문제(NP-문제로 분류됨)를 양자컴퓨터가 계산할 수 있는지'이다.
따라서, KAIST가 20큐비트급의 양자컴퓨터를 개발해 NP-완전문제를 계산했다는 것은 한국의 양자컴퓨팅 연구가 세계적 양자컴퓨터 개발경쟁에 진입하였음을 의미한다.
우리 대학 물리학과 안재욱, 문은국 교수 연구팀은 리드버그 원자들을 이용해, 조합 최적화 문제를 계산하는 양자 단열 컴퓨팅 방식의 양자컴퓨터를 개발했다. 연구팀은 초고진공 공간에 배치한 극저온 리드버그 원자를 사용해, 20큐비트급 그래프의 조합 최적화 문제를 실험적으로 계산하는 데 성공했다.
물리학과 김민혁, 김강흔 대학원생 연구원과 황재용 학부생 연구원이 참여한 이번 연구는 국제 학술지 `네이처 피직스(Nature Physics)' 6월 18권 7호에 출판됐다. (논문명 : Rydberg quantum wires for Maximum Independent Set problems).
한편 리드버그 원자란 높은 에너지 상태의 원자로서, 일반 원자보다 만 배 정도 큰 마이크로미터 크기의 지름을 갖고, 리드버그 원자들간의 상호작용은 일반 원자들보다 10^22배 정도로 강하다.
양자 단열형 양자컴퓨팅은 양자 회로형(또는 양자디지털형), 측정기반형과 함께 범용양자컴퓨팅 방식으로 알려져 있다. 대표적인 양자 단열형 양자컴퓨터인 D-wave 社의 양자컴퓨터는 고정 큐비트를 사용한다는 결정적 단점이 있다. 하지만 KAIST의 리드버그 양자 단열형 양자컴퓨터는 재배치 또는 이동이 가능한 큐비트를 사용하기 때문에 주목을 받는다.
KAIST 리드버그 양자컴퓨터는 초고진공 상태에 최대 126개의 리드버그 원자들을 임의로 배치해 양자 단열형 양자컴퓨팅을 수행한다. 이번에 발표한 최근 연구에서는 꼭지점이 최대 20개인 그래프의 최대독립집합을 계산하는데 성공했다. 또한 원거리 꼭지점들을 잇는 리드버그 양자선 개념을 최초로 개발해 모든 꼭지점들을 임의로 연결하는 초기하학적 그래프를 계산할 수 있음을 보였다.
참고로, 디지털 컴퓨팅에서 모든 계산 문제들을 계산복잡도에 따라 P-문제(결정 다항)와 NP-문제(비결정적 다항)로 분류한다. 여행자 문제(Traveling Salesman Problem), 최대독립집합 문제 등으로 대표되는 NP-문제들은 디지털 컴퓨팅의 알고리즘으로는 효율적으로 계산할 수 없음이 잘 알려져 있다. 따라서, 양자컴퓨터가 NP-문제들을 계산할 수 있을지가 큰 관심사다.
최대독립집합 문제는 대표적인 NP-완전문제의 하나이며, 주어진 그래프(꼭지점과 간선의 집합)에서 서로 연결되지 않는 꼭지점들의 최대집합을 알아내는 계산 문제다. 그래프의 크기가 커지면, 디지털컴퓨팅 알고리즘으로는 계산량이 지수적으로 증가해 효과적인 계산을 할 수 없다. 이러한 문제를 효과적으로 계산하게 되면 산업적으로 물류, 생산관리, 작업관리, 네트워크 디자인 등에서 혁명적 경제가치를 창출하게 된다.
<그림 1> 은 리드버그 양자선(각각 빨강, 주황, 노랑 꼭지점들)을 이용하여 간선으로 연결되지 않는 데이터 큐비트(하얀 꼭지점들)를 연결하는 3차원 큐비트 구조체의 모식도이다. 이 구조는 쿠라토프스키 그래프로 잘 알려진 K(3:3) 그래프이다. 참고로 쿠라토프스키 K(3:3)와 K(5) 그래프쌍은 상대적으로 만들기 쉬운 평면그래프와 조합하여 모든 그래프를 만들 수 있다. 우리 대학 연구진은 본 연구에서 K(3:3)와 K(5)를 실험적으로 최초 구현하였다.
연구를 주도한 물리학과 안재욱 교수는 “이번 연구는 리드버그 양자컴퓨터의 활용 가능성을 보였다는 데 의의가 있다”라고 자평하며 “아직은 큐비트 개수가 충분하지 않지만, 차 단계 연구를 통해 실 활용이 가능한 꿈의 양자컴퓨터를 개발할 수 있을 것”이라는 포부를 밝혔다.
한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2022.06.22
조회수 9732
-
질병 세포만 찾아 교정치료 가능한 유전자 가위 시스템 개발
우리 대학 의과학대학원 이지민 교수 연구팀이 한국과학기술연구원(KIST) 오승자 선임연구원, 강원대학교 이주용 교수와 공동 연구를 통해 질병 세포에서만 핵 내 유전자 교정을 수행할 수 있는 유전자 가위 시스템(CRISPR/Cas9)을 개발했다고 14일 밝혔다.
연구팀은 세포 내 마이크로RNA가 특정 서열을 인식해 절단한다는 특성을 활용해, 질병 세포에서 과발현되는 마이크로RNA에 의해 특이적으로 절단될 수 있는 링커를 연결한 유전자 가위 시스템을 설계했다. 이렇게 설계된 시스템은 질병 세포 특이적 마이크로RNA가 적은 정상세포에서는 세포질에 머물러 유전자 교정을 수행하지 않지만, 질병 세포에서는 링커가 절단되면서 유전자 가위가 세포핵으로 들어가 유전자 교정을 수행할 수 있다.
이러한 플랫폼은 유전자 가위를 질병 세포에서만 기능 할 수 있게 해 정상세포와 질병 세포가 혼합돼있는 실제 환자에게도 효과적인 유전자 교정 치료를 진행할 수 있을 것으로 기대된다.
KIST 신철희 박사와 우리 대학 의과학대학원 박수찬 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `뉴클레익 엑시드 리서치(Nucleic Acids Research, IF 16.971)' 온라인판에 지난달 30일 자 출판됐다. (논문명 : Cytosolic microRNA-inducible nuclear translocation of Cas9 protein for disease-specific genome modification).
마이크로RNA는 유전자를 전사 후 조절하는 19~24 뉴클레오티드(DNA나 RNA의 기본 단위) 길이의 RNA다. 마이크로RNA는 DNA로부터 전사된 메신저 RNA에 아르고너트(Argonaute; Ago) 단백질을 통해 결합하며, 결합한 메신저 RNA를 절단한다. 마이크로RNA의 비정상적인 발현이 다양한 질병에서 보고되고 있으며, 질병의 치료를 위한 표적 바이오마커로 많이 연구되고 있다.
다양한 질병에서 마이크로RNA를 표적으로 하는 치료법들이 빠르게 연구되고 있지만, 치료 물질의 전달 및 투여량의 문제, 세포 독성 및 비정상적 면역 반응 활성화 등의 문제가 있다.
유전자 가위 시스템은 단일 가이드 RNA(single guide RNA)를 조합해 정교한 유전자 교정을 수행하는 매우 효과적인 도구다. 하지만, 이 시스템의 실제 활용에는 기술적 한계들이 존재한다. 가장 큰 문제는 안정성 문제로, 표적 유전자가 아닌 다른 유전자를 편집하는 오프-타겟 이펙트(off-target effect)다. 또한, 다양한 세포가 혼합된 환경에서는 유전자 교정을 수행하기 어렵다.
연구팀은 이러한 문제를 해결하기 위해 질병 세포 본연의 생태를 활용하는 접근법을 고안했다. 연구팀은 핵 위치 신호(Nuclear localization signal; NLS)가 부착된 기존 유전자 가위(Cas9)에 핵 외 수송신호(Nuclear export signal; NES)를 연결한 질병 세포 마이크로RNA의 메신저 RNA 표적 서열을 결합한 유전자 가위를 제작했고, 이를 유전자 가위 `셀프 체크인'으로 명명했다.
연구팀은 인간 질병 세포에서 과발현되는 마이크로RNA-21의 표적 서열과 실험용 쥐의 마이크로RNA-294의 표적 서열을 연결한 유전자 가위의 인간 질병 세포 내 유전자 교정 기능을 비교했고, 마이크로RNA-21 표적 서열 연결 유전자 가위만이 세포 내 마이크로RNA-21에 의해 절단돼 핵까지 전달되어 기능을 수행할 수 있음을 확인했다.
연구팀은 다양한 폐암 세포에서 마이크로RNA-21의 발현량과 발암 단백질 Ezh2가 양의 상관관계가 있다는 것을 증명했고, `셀프 체크인'을 적용해 마이크로RNA-21이 과발현된 폐암 세포에서 발암 유전자 Ezh2의 유전자 교정을 성공적으로 수행했다.
또한, 암세포는 항암 약물에 지속해서 노출되게 되면, 약물 저항성을 획득하게 되는데, 연구팀은 폐암 세포에서 마이크로RNA-21과 Ezh2의 발현이 항암 약물 시스플라틴을 투여하면 오히려 증가함을 확인했다. 유전자 가위 셀프 체크인 기술을 통한 Ezh2 유전자 교정과 항암제(시스플라틴)의 병행 사용은 폐암 세포의 성장을 더욱 효과적으로 억제할 수 있음을 마우스 실험을 통해서 밝혔다.
연구팀이 개발한 유전자 가위 셀프 체크인 기술은 질병 세포에서만 기능하기 때문에, 오프-타겟 이펙트를 최소화할 수 있다는 장점이 있으며, 세포 내 시스템을 활용한다는 점에서 안정성이 높다고 할 수 있다. 또한, 단일 가이드 RNA 및 메신저 RNA 표적 서열을 상황에 맞게 교체해 사용할 수 있어, 다양한 질병에 적용이 가능할 것으로 기대된다.
연구팀은 "유전자 가위 셀프 체크인 기술은 기존 유전자 가위 시스템의 문제를 개선해, 높은 특이성을 가지고 질병 세포에 대한 유전자를 세포 특이적으로 교정할 수 있다는 것을 확인할 수 있다ˮ 라며 "다양한 질병 연관 마이크로RNA에 대응해 기술을 적용할 수 있을 것이다ˮ 라고 전했다.
한편 이번 연구는 삼성미래기술육성사업, 한국연구재단 이공분야기초연구사업 및 한국과학기술연구원 지원을 받아 수행됐다.
2022.06.14
조회수 11735
-
인공지능 엔진으로 영상 위변조 탐지 기술 개발
우리 연구진이 영상 내 변형 영역을 더욱 정밀하게 탐지하기 위해 영상내 색상 정보와 주파수 정보를 함께 활용하는 인공지능 엔진 기술을 학계 처음으로 개발했다. 이번 개발 기술은 기존 기술보다 정밀도와 정확도를 크게 높여 위변조 탐지 기술의 기술 유용성을 일정 수준 확보할 수 있는 기반을 제공한다는 점에서 그 의미가 크다. KAIST에서 각종 위변조 영상들을 잡아낸다는 의미를 지닌 `카이캐치(KaiCatch)' 소프트웨어는 이미지, 영상뿐만 아니라 CCTV 비디오 변형 여부도 분석할 수 있다.
우리 대학 전산학부 이흥규 교수 연구팀이 새로운 인공지능 구조와학습 방법론, 그리고 실험실 환경에서는 구하기 힘든 고급 변형 이미지 영상들을 사용해 영상 이미지 위변조 탐지 소프트웨어인 `카이캐치(KaiCatch)'의 영상 이미지 정밀도와 정확도를 크게 높일 뿐만 아니라 비디오 편집 변형도 탐지할 수 있는 카이캐치 2.1 버전을 개발했다고 13일 밝혔다.
카이캐치 소프트웨어는 `이상(異常) 유형 분석 엔진'과 `이상(異常) 영역 추정 엔진' 두 개의 인공지능 엔진으로 구성된다. `이상 유형 분석 엔진'은 블러링, 노이즈, 크기 변화, 명암 대비 변화, 모핑, 리샘플링 등을 필수 변이로 정의해 이를 탐지하며 `이상 영역 추정 엔진'은 이미지 짜깁기, 잘라 붙이기, 복사 붙이기, 복사 이동 등을 탐지한다. 이번에 새로 개발한 기술은 `이상 영역 추정 엔진'으로 기존 기술에서는 이상 영역 탐지 시 그레이 스케일(회색조)로 이상 유무를 탐지하였으나 분석 신호의 표현력이 낮고 탐지 오류가 많아 위변조 여부 판정에 어려움이 많았다. 이번에 개발된 기술은 색상 정보와 주파수 정보를 함께 활용해 정밀도(precision)와 재현율(recall)이 크게 향상되고 변형 영역을 컬러 스케일로 표현함으로써 해당 영역의 이상 유무뿐만 아니라 위변조 여부도 더욱 명확하게 판별이 가능해졌다.
연구팀은 이번 연구에서 영상 생성 시 발생하는 흔적과 압축 시 발생하는 흔적 신호들을 함께 분석하기 위해 색상 정보와 주파수 정보를 모두 활용하는 접근 방법을 학계 처음으로 제시했다. 또 이러한 방법론을 설계 구현하기 위해 주파수 정보를 하나의 분할 네트워크에서 직접 입력으로 받아들이는 방식의 ‘압축 왜곡신호 탐지 네트워크(Compression Artifact Tracing Network, 이하 CAT-Net)’을 학계 최초로 개발하고 기존 기법들과 비교해 탐지 성능이 크게 뛰어남을 입증했다. 개발한 기술은 기존에 제시된 기법들과 비교할 때 특히 원본과 변형본을 판별하는 평가 척도인 F1 점수, 평균 정밀도(average precision)에서 대단히 뛰어나 실환경 위변조 탐지 능력이 크게 강화됐다.
비디오 편집 변형의 경우도, 프레임 삭제, 추가 등에 의한 편집 변형이 흔히 CCTV 비디오 등에서 발생한다는데 착안해 이러한 비디오 편집 변형을 탐지하는 기능 역시 이번 카이캐치 2.1 버전에 탑재됐다.
이번에 카이캐치 2.1 소프트웨어를 연구 개발한 이흥규 교수는 "영상 이미지 위변조 소프트웨어인 카이캐치를 휴대폰에 탑재되는 안드로이드 앱 형태로 일반에 소개한 2021년 3월 이후 현재까지 카이캐치 앱을 통한 900여 건의 위변조 분석 의뢰와 개별적으로 60건이 넘는 정밀 위변조 분석 의뢰를 받았다. KAIST 발표 논문 수준이나 실험 결과 등을 감안할 때 위변조 분야 최고 기술로 만든 소프트웨어인데, 오탐지율이 높아 실제 탐지 정밀도가 이론치보다 매우 낮았다. 많은 경우 위변조나 변형 여부에 대한 명확한 기술 판정이 불가능했으나 이번에 개발한 카이캐치 2.1 은 CAT-Net이라는 새로운 네트워크 구조와 학습 방법론, 그리고 ‘색상 및 주파수 영역 왜곡 흔적 동시 분석’이라는 첨단 기술을 사용해 정밀도를 높여, 보다 명확한 판별이 가능하도록 개발됐다. 앞으로 영상 위변조 판단 여부가 어려운 경우가 많이 줄어들기를 기대한다”고 말했다.
이 교수는 이어 "비디오는 MP4 파일 포맷이, 그리고 영상 이미지는 JPEG 이미지들이 일반인들이 널리 사용한다는 점에서 해당 포맷을 주 개발 대상으로 삼았다. 영상 이미지의 경우 영상 편집 변형 시 영상에 남겨지는 인위적으로 발생하는 JPEG 압축 미세 신호 탐지에 주안점을 두어, 위변조 여부와 위변조 영역을 잡아내는 것에 집중했다. 비디오의 경우 특정 프레임들을 삭제하거나 삽입하는 경우, 프레임 부분 편집 후 재압축 하는 경우 등을 탐지한다. 최근 CCTV 비디오 편집 여부에 대한 분쟁이 많아 크게 도움을 줄 수 있을 것으로 기대하며 향후에도 지속적으로 연구 개발해 취약점들을 보완해 나갈 계획이다ˮ 고 덧붙였다.
현재 카이캐치 소프트웨어는 안드로이드 기반 휴대폰의 구글 플레이스토어에서 ‘카이캐치’를 검색하여 앱을 다운로드 받아 설치한 후, 영상 이미지들을 카이캐치에 업로드하면 위변조 여부를 간단하게 테스트해 볼 수 있다.
한편 이번 연구는 제1 저자로 참여한 우리 대학 전기및전자공학부 권명준 박사, 그리고 김창익 교수, 남승훈 박사, 유인재 박사 등과 공동으로 수행됐으며, `스프링거 네이처(Springer Nature)'에서 발간하는 컴퓨터 비전 분야 톱 국제저널인 `국제 컴퓨터 비전 저널(International Journal of Computer Vision, IF 7.410)'에 2022년 5월 25일 字 온라인판에 게재됐다. (논문명 : Learning JPEG Compression Artifacts for Image Manipulation Detection and Localization)
이번 연구는 한국연구재단 창의도전연구기반지원사업지원과 KAIST 창업기업인 ㈜디지탈이노텍(http://www.kaicatch.com/) 과의 산학협력 연구로 수행됐다.
2022.06.13
조회수 7697
-
사람처럼 느끼고 상처 치유가 가능한 로봇 피부 기술 개발
우리 대학 기계공학과 김정 교수 연구팀이 메사추세츠 공과대학(MIT), 슈투트가르트 대학교(Univ. of Stuttgart)의 연구자들과 공동연구를 통해 `넓은 면적에 대해 다양한 외부 촉각 자극을 인지할 수 있으며, 칼로 베어져도 다시 기능을 회복할 수 있는 로봇 피부 기술'을 개발했다고 9일 밝혔다.
기계공학과 박경서 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 로보틱스(Science Robotics)'에 6월 9일 출판됐다. (논문명: A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing)
사람의 가장 큰 장기인 피부는 내부를 충격에서 보호함과 동시에 주위로부터의 물리적인 자극을 전달하는 통로다. 피부를 이용한 정보 전달(혹은 촉감)은 표면 인식, 조작, 쓰다듬기, 꼬집기, 포옹, 몸싸움 등으로 종류가 다양하며, 피부가 덮은 모든 부분에서 느낄 수 있기에 풍부한 비언어적 감정 표현과 교류를 가능하게 한다. 그래서 촉각은 `한 인간이 세계를 탐구하는 첫 번째 수단'이라고도 한다.
그러나, 로봇 분야의 비약적인 발전에도 불구하고 로봇 대부분은 딱딱한 소재의 외피를 가지며, 인간과의 물리적 교류를 터치스크린과 같은 특정한 부위로 제한하고 있다. 그 이유는 현재의 로봇 촉각 기술로는 `인간의 피부처럼 부드러운 물성과 복잡한 3차원 형상을 가지고, 동시에 섬세한 촉각 정보를 수용하는 것이 가능한 로봇 피부'를 개발하지 못하기 때문이다. 또한, 사람의 피부는 날카로운 물체에 베여 절상 혹은 열상이 발생하더라도 신축성과 기능을 회복하는 이른바 치유 기능을 하고 있으며, 이는 현대 기술로 재현하는 것이 매우 어렵다. 따라서, 사람과 로봇의 다양한 수준의 물리적 접촉을 중재하기 위해 부드러운 물성을 가지면서 다양한 3차원 형상을 덮을 수 있는 대면적 촉각 로봇 피부 기술이 필요하다.
김정 교수 연구팀은 이러한 로봇 피부를 만들기 위해 생체모사 다층구조와 단층촬영법을 활용했다. 이 기술들은 인간 피부의 구조와 촉각수용기의 특징과 구성 방식을 모사해, 적은 수의 측정 요소만으로도 넓은 3차원 표면 영역에서 정적 압력(약 0~15Hz) 및 동적 진동 (약 15~500Hz)을 실시간으로 감지 및 국지화하는 것을 가능케 했다. 기존의 터치스크린 기술은 해상도를 높일수록 필요한 측정점의 수가 증가하는 데 비해, 이번 기술은 넓은 수용영역을 갖는 측정 요소들을 겹치게 배치해 수십 개의 측정 요소만으로도 넓은 측정 영역을 달성할 수 있다.
연구팀은 측정된 촉감 신호를 인공지능 신경망으로 처리함으로써, 촉각 자극의 종류(누르기, 두드리기, 쓰다듬기 등)를 분류하는 것도 가능함을 선보였다. 더 나아가, 개발된 로봇 피부는 부드러운 소재(하이드로젤, 실리콘)로 만들어져 충격 흡수가 가능하고, 날카로운 물체에 의해 깊게 찢어지거나 베여도 피부의 구조와 기능을 손쉽게 회복하는 것이 가능했다.
연구진은 본 기술이 넓은 부위에 정교한 촉각 감각뿐만 아니라 사람의 피부와 유사한 물성과 질감도 부여할 수 있으므로, 서비스 로봇과 같이 사람과의 다양한 접촉과 상호작용이 필요한 응용 분야에 유용하게 활용될 것으로 기대했다. 예를 들면 점점 대중화되는 식당 서빙 로봇이나 인간형 로봇에 적용할 수 있다. 더 나아가, 로봇 피부를 의수/의족의 피부로 사용한다면 실제 사람의 손/다리와 똑같은 외형과 촉감 감각을 절단 환자들에게 제공할 수도 있다. 또한 인간형 로봇이 사람과 똑같은 기능과 외형의 피부를 가지고, 상처가 나더라도 피부의 기능을 복구하는 치유 능력을 갖게 할 수도 있다.
기계공학과 김정 교수는 "이번 연구를 통해 인간과 로봇이 같은 공간에 공존하기 위한 필수 기술인 대면적 로봇 촉각 피부를 개발했을 뿐만 아니라 현재 기술보다 월등한 사람의 피부감각 혹은 촉각의 성능에 비견할 만한 기술을 구현한 데 큰 의의가 있다ˮ라고 밝혔다.
한편, 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐으며,ᅠKAIST 기계공학과 양민진, 조준휘 박사과정과 메사추세츠 공과대학(MIT)의 육현우 박사, 슈투트가르트 대학교(Univ. of Stuttgart)의 이효상 교수가 공동연구자로 참여했다.
동영상 1: 로봇 피부 촉각 시연 (https://youtu.be/3T8dX32fo6U)
동영상 2: 로봇 피부 촉감 인식 시연 (https://youtu.be/CViv1oLo_Ec)
동영상 3: 로봇 피부 절개 및 복구 시연 (https://youtu.be/vsllVFM9yS4)
동영상 4: 로봇피부의 미용의수에의 적용 (https://youtu.be/qR1msF0FDTA)
2022.06.09
조회수 10184
-
차세대 뉴로모픽 구현을 앞당길 멤리스터 기반 고신뢰성 인공 뉴런(신경세포) 어레이 개발
우리 대학 전기및전자공학부 최신현 교수 연구팀이 뛰어난 안정성과 집적도가 높은 우리 뇌의 뉴런 세포의 동작을 모사하는 *고신뢰성 차세대 저항 변화 소자(멤리스터) 어레이를 개발했다고 7일 밝혔다.
☞ 멤리스터(Memristor): 입력에 따라 소자의 저항 상태가 바뀌는 소자. 입력 전압의 크기와 길이 등에 따라 소자 내부의 저항 값이 바뀌며 정보를 저장하거나 처리한다.
최 교수 연구팀은 기존 멤리스터의 불안정한 특성을 보이는 필라멘트 기반 방식에서 벗어나, 점진적인 산소 농도를 갖는 금속산화물을 이용해 안정적이고 신뢰성 높은 인공 뉴런 어레이를 발표하였다. 기존의 멤리스터 소자는 안정성이 낮고 응용에 사용하기 위한 어레이 형태로 제작하기 힘든 문제점이 있지만, 최 교수 연구팀이 개발한 소자는 뛰어난 안정성을 갖출 뿐만 아니라, 자가 정류 특성과 높은 수율을 갖춰 대용량 어레이 형태로 집적될 수 있다. 따라서 집적도가 높고 안정적인 뉴로모픽 시스템을 구현할 때 활발히 사용될 수 있을 것으로 기대된다.
전기및전자공학부 박시온, 정학천 석박사통합과정, 박종용 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 6월호에 출판됐다. (논문명 : Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing)
인간의 뉴런은 들어오는 신호의 크기와 주파수에 따라 스파이크를 내보내거나 내보내지 않는 방식으로 정보를 처리한다. 현대의 컴퓨터가 빅데이터를 처리하는데 많은 에너지를 소모하는 것과 다르게, 사람의 뇌는 매우 적은 에너지만으로도 많은 양의 데이터를 빠르게 처리할 수 있다. 이러한 이유로, 신경의 효율적인 신호전달 시스템을 모사하여 컴퓨팅에 사용하는 `뉴로모픽' 하드웨어 기술이 활발히 연구되고 있다. 멤리스터 소자는 고집적, 고효율로 뉴로모픽 컴퓨팅 시스템을 구현할 수 있는 차세대 소자로 주목받고 있다.
그러나 현존하는 멤리스터로 실용적인 대용량 인공신경망 컴퓨팅(Large-scale Neural Computing) 시스템을 구현하기에는 단위 소자의 신뢰성 및 수율의 문제가 있다. 기존의 멤리스터는 절연체 내부에서 필라멘트가 마치 번개와 같이 무작위적으로 생성되고 사라지며 동작하기 때문에 제어하기가 힘들어 낮은 신뢰성을 보이게 되며, 이로 인해 안정적인 뉴로모픽 시스템을 구현하는 데 한계점으로 지적되어 왔다.
최신현 교수 연구팀은 이러한 무작위적인 필라멘트 문제를 해결하기 위해 필라멘트 기반 저항 변화가 아닌, 산소 이온의 점진적인 이동을 이용해 저항 변화 소자를 구현함으로써 소자의 신뢰성 확보하였다. 또한 단위 소자를 통한 어레이 제작 기술을 확보하여, 400개의 고신뢰성 인공 뉴런 소자를 100% 수율의 크로스바 어레이 형태로 집적하는 데 성공했다.
연구팀은 제작한 고신뢰성 인공 뉴런 어레이 기반 뉴로모픽 시스템을 이용해 항균성 단백질(anti-microbial peptide) 아미노산 서열을 학습하고, 이를 바탕으로 새로운 항균성 단백질을 만들어내는 뉴로모픽 시스템을 구현하였다.
제1 저자인 박시온 석박통합과정 연구원은 "이번에 개발한 고신뢰성 인공 뉴런 소자는 안정적인 특성과 높은 수율을 바탕으로 차세대 멤리스터 기반 뉴로모픽 컴퓨팅 시스템 구현에 기여할 수 있을 것으로 기대되며, 개발된 인공 뉴런 소자를 이용해 촉각 등을 감지하는 로봇의 인공 신경계, 시계열 데이터를 처리하는 축적 컴퓨팅(reservoir computing) 등 다양한 응용을 가능케 하여 미래 전자공학의 기반이 될 것으로 기대한다ˮ라고 말했다.
한편 이번 연구는 삼성미래육성사업의 지원을 받아 수행됐다.
2022.06.07
조회수 8223