- 구부리고, 접히고 구겨져도 작동이 가능한 이차전지 원천기술 개발 -
- 휘어지는 유기 태양전지 접목한 새로운 개념의 충전 기술 기반 -
최근 국내 대기업간 휘어지는 스마트 폰 경쟁이 치열하다. 특히, 국내 기업인 S사와 L사는 휘어지는 배터리를 탑재해 눈길을 끌었다. 그러나 앞으로는 배터리를 옷처럼 입고 다니는 것은 물론 태양광으로 충전도 가능할 전망이다.
우리 학교 EEWS 대학원 최장욱(39) 교수는 같은 과 이정용(40) 교수, 기계공학과 김택수(36) 교수와 공동으로 휘는 것은 물론 접어도 안전하게 작동하면서 태양열로 충전하는 신 개념 배터리를 개발했다. 연구 결과는 나노과학분야 세계적 권위지 ‘나노 레터스(Nano Letters)’지 5일자 온라인판에 게재됐다.
이번에 개발된 배터리를 이용하면 웨어러블 컴퓨터 기술개발이 탄력을 받을 것으로 기대된다. 또 아웃도어 의류에 적용할 경우 한겨울에도 입으면 땀나는 옷이 나올 것으로 예상된다.
휘어지는 전자기기는 미래 고부가가치 시장으로 여겨지고 있다. 삼성전자의 갤럭시 기어(Galaxy Gear), 애플(Apple)의 아이와치(i-Watch), 구글(Google) 글래스 등 다양한 입는 전자제품이 출시됐거나 시제품으로 소개됐으며 시장선점을 위한 기술경쟁은 더욱 치열해질 전망이다.
그러나 기존의 딱딱한 배터리는 입는 전자기기에 큰 장애물로써, 자유롭게 휘어지는 배터리를 개발하기 위해 많은 국내외 연구팀에서 노력하고 있다.
최 교수 연구팀은 옷으로 사용되는 섬유가 반복적인 움직임에도 변형되지 않는 점에 착안해 배터리에 유연한 특성을 부여했다.
연구팀은 폴리에스터 섬유에 전통적인 기술인 니켈 무전해 도금을 한 후, 전극 활물질로 양극에는 리튬인산철산화물을, 음극에는 리튬티타늄산화물을 얇게 도포해 유연한 집전체를 개발했다. 이처럼 섬유를 기반으로 개발된 배터리는 섬유의 유연함을 유지할 수 있어 구부림·접힘·구겨짐이 모두 가능하다.
기존 배터리의 집전체가 알루미늄과 구리를 사용해 몇 번만 접어도 부러지는 단점을 간단한 방법을 통해 획기적으로 개선한 것이다.
특히, 집전체 골격으로 쓰인 3차원 섬유구조는 반복적인 움직임에도 힘을 분산시켜 전극물질의 유실을 최소화하면서도 전지의 구동을 원활하게 해 5,000회 이상 접어도 정상적으로 작동했다. 현재는 2V의 전압과 85mAh의 용량을 나타냈으며, 이는 추가적인 최적화 과정을 통해 맞춤형 디자인을 할 수 있어 다양한 웨어러블 응용 분야에 적용될 수 있다고 연구팀은 설명했다.
게다가 이번에 개발한 배터리의 제조기술은 현재 양산 제조공정을 그대로 활용할 수 있어 생산라인의 재투자 없이 바로 적용될 수 있을 것으로 기대된다.
이와 함께 연구팀은 휘어지면서도 가벼운 특징을 갖는 유기태양전지 기술을 적용, 옷처럼 입고 구김이 가는 상태에서 태양광으로 충전하는 기능도 추가했다.
최장욱 교수는 “지금까지 입는 전자제품 개발에 있어 가장 큰 난관이었던 입는 배터리의 실마리를 풀어 미래 이차전지 분야 핵심원천기술로 활용될 것”이라며 “기존 이차전지 기업들과의 협력해 상용화되면 다양한 소형 모바일 전자기기를 입고 다니는 새로운 IT 시대를 가능하게 할 것”이라고 밝혔다.
전기차(EV) 시장의 성장과 함께 리튬이온 배터리의 충전 시간을 단축하는 기술이 중요한 과제로 떠오르고 있다. 우리 연구진이 충전 속도가 상대적으로 느린 전기차 리튬 배터리의 혁신적 전해질 기술을 개발하여 충전 시간을 15분으로 단축시키는데 성공했다. 우리 대학생명화학공학과 최남순 교수 연구팀이 신소재공학과 홍승범 교수 연구팀과 협력 연구를 통해 새로운 전해질 용매 ‘아이소부티로니트릴(isoBN)’을 개발하여 배터리내 리튬 이온 이동을 극대화시키는 전략으로 전기차 배터리의 충전 시간이 상온에서 15분 내로 가능한 기술을 개발했다고 17일 밝혔다. 연구팀은 전해질 내에서 용매화(Solvation) 구조를 조절하는 전략을 개발했다. 이는 배터리의 핵심 요소인 음극 계면층(SEI, Solid Electrolyte Interphase)의 형성을 최적화하여 리튬이온 이동을 원활하게 하고, 고속 충전 시 발생하는 문제(리튬 전착, 배터리 수명 단축 등)를 해
2025-03-17‘제2의 반도체’로 불리는 리튬이온 전지(LIB)는 가장 높은 시장 점유율로 에너지 저장 장치 시장을 주도하고 있지만, 화재에 취약하는 약점을 가지고 있다. 한국 연구진이 화재로부터 안전하고 값이 저렴한 아연 금속과 공기중의 산소로 구동되는 고에너지 밀도를 가진 고출력 차세대 전지를 개발했다. 우리 대학 신소재공학과 강정구 교수 연구팀이 연세대 한병찬 교수 연구팀, 경북대 최상일 교수 연구팀 및 성균관대 정형모 교수 연구팀과의 공동연구를 통해, 인공지능 기반 이종기능* 전기화학 촉매를 개발 및 촉매 활성 메커니즘을 규명하고, 고효율 아연-공기 전지를 개발했다고 4일 밝혔다. *이종기능: 충전(Charging) 동안에서의 산소 발생(OER) 기능과 방전(Discharging) 동안의 산소 환원 (ORR) 기능 최근 활발하게 연구가 진행되고 있는 아연-공기 전지 배터리의 음극에 사용되는 아연 금속과 공기극*에 필요한 공기는 자연에 풍부하다는 특성 때문에
2025-03-04전기자동차 시장의 성장에 이어, 항공 교통을 연결하는 도심 항공 모빌리티(Urban Air Mobility, UAM) 시장이 배터리 산업의 새로운 전환점으로 주목받고 있다. 항공 모빌리티를 위한 에너지원으로는 쓰이는 기존 상용 리튬이온전지는 무게당 에너지밀도가 낮은 한계점이 있어 대학과 기업 공동연구진이 이를 극복할 차세대 기술로 활용될 혁신적인 리튬황전지를 개발해서 화제다. 우리 대학 생명화학공학과 김희탁 교수팀이 LG에너지솔루션 공동연구팀과 협력 연구를 통해 배터리의 안정적 사용을 위해 전해액 사용량이 줄어든 환경에서 리튬황전지 성능 저하 원인을 규명하고, 이를 바탕으로 성능을 혁신적으로 개선할 수 있는 기술을 개발했다고 23일 밝혔다. 중국 CATL社는 2023년 ‘응축 배터리(Condensed battery)’기술을 발표하며 항공용 배터리 시장을 준비하고 있음을 밝힌 바 있다. 이와 같은 흐름 속에서, 기존 리튬이온전지를 뛰어넘는 차세대 기술로
2024-12-23그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개
2024-11-21친환경 에너지 기반 자동차, 모빌리티, 항공우주 산업군 등에 활용되는 구조배터리는 높은 에너지 밀도를 통한 에너지 저장과 높은 하중 지지의 두 기능을 동시에 충족되어야 한다. 기존 구조배터리 기술은 두 가지 기능이 상충하여 동시에 향상하기 어려웠지만 우리 연구진이 이를 해결하기 위한 기반 기술 개발에 성공했다. 우리 대학 기계공학과 김성수 교수 연구팀이 하중 지지가 가능하고 화재 위험이 없고 얇고 균일한 고밀도 다기능 탄소섬유 복합재료 구조 배터리*를 개발했다고 19일 밝혔다. *다기능 복합재료 구조 배터리(Multifunctional structural batteries): 복합재료를 구성하는 각 소재가 하중 지지 구조체 역할과 에너지 저장 역할을 동시에 수행할 수 있다는 점을 의미 초기의 구조 배터리는 상용 리튬이온전지를 적층형 복합재료에 삽입한 형태로, 기계적-전기화학적 성능 통합 정도가 낮으므로, 이는 소재 가공, 조립 및 설계 최적화에 어려움이 있어 상용화되기
2024-11-19