-
멀티프로젝션 상영관 기술 세계 첫 개발
- KAIST, CJ CGV와 공동개발해 전국 40개 상영관에서 상용화 완료 -- “3D 입체영상 기술 대체해 창조경제 이바지 할 것” -
영화 시장에서 멀티프로젝션을 상영관에 도입하는 연구가 진행되고 있다.
우리 학교 문화기술(CT)대학원 노준용(42) 교수 연구팀이 CJ CGV와 공동으로 몰입감을 제공하는 멀티프로젝션 기술 ‘CGV 스크린X(이하 CGV ScreenX)’를 개발했다.
‘CGV ScreenX’는 극장 화면의 경계를 넘어 전면 스크린은 물론 좌우 벽면에 확장된 영상을 투사해 관객들의 시야를 꽉 채우기 때문에 마치 영화 속에 들어온 것과 같은 미래형 상영관이다.
이 기술은 기존 3D 입체영화와 비교하면 △전용 안경이 필요 없고 △어지러움 증을 유발하지 않으며 △옆면을 스크린으로 활용해 영화 몰입감을 극대화하는 것이 특징이다.
특히, 세계 최초로 개발한 이 기술은 할리우드를 비롯한 전 세계 극장에 역수출 할 수 있다는 장점이 있으며, 기존의 극장 구조를 그대로 이용하면서 프로젝터만 추가하면 되기 때문에 높은 투자비 없이 도입할 수 있다.
노 교수팀과 CJ CGV는 몰입형 영상 기술을 구현하기 위해 멀티프로젝션 기술, 컨텐츠 재구성 기술, 시스템관리 기술 등 핵심적인 기술을 개발했다. 멀티프로젝션 기술은 기존의 극장 옆면을 스크린으로 활용해 자연스러운 영상을 표현할 수 있도록 최적화됐으며, 기존의 광고나 영화 상영 시스템과 동기화 되도록 설계됐다.
이와 함께 서로 다른 구조를 가진 다양한 극장 환경에서 동일한 컨텐츠를 효과적으로 재생할 수 있는 컨텐츠 재구성 기술, 복잡한 시스템을 적은 인력으로도 효율적으로 다수의 극장에 설치·운영하는 시스템 관리 기술을 개발했다.
노준용 교수는 “컨텐츠의 제작, 시스템 설치, 상영 등 전 과정에서 상영 환경의 영향을 많이 받는 멀티프로젝션을 극장 환경 내에서 일반화 시킬 수 있는 기술을 개발한 것이 핵심”이라며 “기존에 한정된 환경에서만 선보여지던 값비싼 멀티프로젝션 기술의 플랫폼화, 대중화를 실현함으로써 이 분야 기술적 우위를 선점한 점에서 의미가 크다”고 이번 기술에 대한 의미를 설명했다.
최근에는 CGV ScreenX 기술을 바탕으로 국내 최고의 비주얼리스트로 불리는 김지운 감독이 영화 를 제작해 화제를 모으고 있다. 는 제18회 부산국제영화제 갈라 프레젠테이션 섹션에 공식 초청되어 뜨거운 관심을 모았으며, 영화제 기간 내내 영화업계 관계자들로부터 영화의 새로운 가능성을 보여준다는 평가를 받았다.
참고로 CGV ScreenX는 현재 CGV여의도 9개관 전관 포함, 전국 22개 극장의 40개 상영관에서 지난 1월부터 선보이고 있으며 연내 50개 상영관으로 확대될 예정이다.
1. CGV ScreenX 기술 요약
그림1. CGV ScreenX 기술 요약- 하드웨어(상영시스템), 소프트웨어(콘텐츠), 관리 기술을 포함한 기술 개발로 다양한 상영관에서의 동시운용을 실질적으로 가능하게 함
2. CGV ScreenX 주요 기술
① 표준 콘텐츠 제작
- 상영관의 통계적인 분석을 통하여 다수의 상영관을 커버할 수 있는 적절한 형태의 콘텐츠 템플릿 제공
② 상영관 특화영상 재구성
- 각 상영관의 구조를 고려하여 상영관에 적합한 형태로 표준 콘텐츠를 자동으로 재구성하여 배포하는 기술
③ 프로젝터별 보정 영상 생성
- 데이터베이스로부터 각 상영관에 설치된 다수의 프로젝터별 보정정보를 입력 받아 재구성 된 특화영상을 실시간으로 보정하여 재생하는 기술
- 상영관의 특성에 기반 한 설계를 통해 보정 과정의 많은 부분이 자동화
되어있어 기존의 방법에 비해 매우 간편함
④ 동기화 재생- 각각의 옆면 보조 프로젝터 뿐만 아니라, 중앙 프로젝터 및 광고, 영화 재생 서버와 실시간 동기화하여 재생하는 기술
2013.10.21
조회수 14835
-
소금쟁이 착안해 나노박막 물성 측정법 개발
-“수 nm 두께 나노박막의 기계적 물성도 손쉽게 측정할 수 있어”-- 네이처 커뮤니케이션즈 3일자 게재 -
우리 학교 기계공학과 김택수 교수와 한국기계연구원(원장 최태인) 나노역학연구실 현승민 박사 공동연구팀은 물 표면의 특성을 이용해 나노박막의 기계적 물성을 평가하는 새로운 방법을 개발했다.
연구결과는 세계적 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)" 3일자 온라인판에 게재됐다.
이번에 개발된 기술을 활용하면 직접 측정하기 어려운 나노박막의 강도, 탄성 등 기계적 물성을 직접 측정해 정확한 결과 값을 얻을 수 있다. 또 방법이 간단해 나노박막 기계적 물성 평가의 새로운 패러다임을 제시한 것으로 학계와 산업계는 평가하고 있다.
나노박막의 기계적 물성 평가는 반도체, 디스플레이 등의 신뢰성을 예측하는데 중요한 것은 물론 나노 세계의 새로운 현상을 발견하는데도 필요하다. 그러나 기계적 강도는 구조물이 바닥으로부터 떨어져 측정을 하는데 나노박막의 경우 쉽게 부서지는 문제점이 있어 시험이 어려웠다.
연구팀은 소금쟁이와 같은 곤충이 물의 표면 위를 자유로이 떠다니는 것에 착안했다.
연구팀은 표면 장력이 크고 낮은 점성을 갖는 물의 특성을 이용해 물 표면에 약 55nm(나노미터) 금나노박막을 띄워 놓고 손상 없이 기계적 물성을 정확하게 특정하는데 성공했다.
이 기술을 이용하면 다양한 종류의 나노박막 뿐만 아니라 두께가 수 나노미터에 이르는 박막의 기계적 물성까지도 측정할 수 있을 것으로 기대된다.
김택수 교수는 이번 연구에 대해 “물의 특성을 이용한 새로운 강도 시험 방법의 개발을 통해 기존에 접근하기 어려웠던 나노박막의 기계적 물성 평가를 효과적으로 수행할 수 있게 됐다”고 의의를 밝혔다.
또 “향후 기존의 강도 시험법으로는 측정이 불가능했던 그래핀과 같은 2차원 나노박막의 기계적 물성을 밝혀나갈 계획”이라고 말했다.
KAIST 기계공학전공 김재한 박사과정(제1저자) 학생이 KAIST 김택수 교수, 한국기계연구원 현승민 박사의 지도를 받아 수행한 이번 연구는 한국연구재단 신진연구지원사업, 한국기계연구원 주요연구 사업과 21세기 프론티어 사업의 지원으로 수행됐다.
<물 표면을 이용한 나노박막의 기계적 물성 평가 과정>
<왼쪽에서부터 현승민 박사, 김재한 박사과정생, 김택수 교수 (카이스트, 한국기계연구원 공동 연구팀)>
2013.10.14
조회수 18333
-
세계 최초로 미생물 이용 가솔린 생산
- 대장균의 지방산 대사회로를 대사공학적으로 개량하여 알코올, 디젤, 가솔린 생산 -
우리 학교 연구진이 세계 최초로 대사공학적으로 개발된 미생물을 이용하여 바이오매스로부터 가솔린(휘발유)을 생산하는 원천기술을 개발했다. 이 신기술은 나무 찌꺼기, 잡초 등 풍부한 비식용 바이오매스를 이용하여 가솔린, 디젤과 같은 바이오연료, 플라스틱과 같은 기존 석유화학제품을 생산할 수 있어 생명공학 등 관련 산업기술 발전에 크게 기여할 것으로 기대된다.
이번 연구는 미래창조과학부(장관 최문기) 글로벌프론티어사업의 차세대 바이오매스 연구단(양지원 단장)과 기후변화대응 기술개발사업의 지원으로 이상엽 특훈 교수팀이 진행하였으며, 연구결과는 네이처(Nature) 9월 30일(온라인판)에 게재되었다.
* 논문명 : Microbial production of short-chain alkanes
연구팀은 세포의 유전자를 조작하여 원하는 형태의 화합물을 대량으로 생산하도록 하는 기술인 대사공학을 이용하여 크래킹(cracking) 없이 세계 최초로 미생물에서 직접 사용가능한 가솔린을 생산하는데 성공했다.
* 크래킹 : 끓는점이 높은 중질유를 분해하여 원료유보다 끓는점이 낮은 경질유로 전환하는 방법
가솔린은 탄소수가 4~12개로 이루어진 사슬모양의 탄화수소 화합물로 그 동안 미생물을 이용하여 ‘짧은 사슬길이의 Bio-Alkane(가솔린)’을 생산하는 방법은 개발되지 않았다. 따라서 기존 기술은 추가적인 크래킹(cracking) 과정을 거치지 않고는 가솔린으로 전환할 수 없어 비용과 시간이 많이 소요되는 한계가 있었다.
* 2010년 미국에서 사이언스지에 발표한 미생물 이용 Bio-Alkane(배양액 1리터당 약 300mg)의 경우 탄소 사슬 길이가 13~17개인 바이오 디젤에 해당
연구팀은 대사공학기술을 미생물에 적용하여 지방산 합성을 저해하는 요소를 제거하고, 지방산의 길이를 원하는 목적에 맞게 조절할 수 있는 효소를 새롭게 발견하였으며, 개량된 효소를 도입하여 미생물에서 생산하기 어려운 길이가 짧은 길이의 지방산 생산에 성공하였다.
또한 세포내에 생산된 짧은 길이의 지방산 유도체로부터 가솔린을 생산할 수 있는 추가 대사반응과 생물체 내에 존재하지 않는 식물 유래의 신규 효소를 포함하는 합성대사경로를 도입하여 최종 대장균 생산균주를 개발하였다. 이렇게 개발된 대장균을 배양하여 배양액 1리터당 약 580mg의 가솔린을 생산하는데 성공했다.
개발된 기술은 바이오 연료, 생분해성 플라스틱 등과 같은 다양한 바이오 화합물을 생산할 수 있는 플랫폼 기술이 될 수 있을 것으로 전망된다.
또한 이 기술을 활용하면 재생 가능한 바이오매스를 전환하여 바이오 연료, 계면활성제, 윤활유 등으로 이용할 수 있는 알코올(Fatty alcolols) 및 바이오 디젤(Fatty ester)도 생산이 가능하다는 점에서 기존의 석유기반 화학산업을 바이오기반 화학산업으로 대체하는 기반이 될 수 있을 것으로 기대된다.이상엽 교수는 “비록 생산 효율은 아직 매우 낮지만 미생물을 대사공학적으로 개량하여 가솔린을 처음으로 생산하게 되어 매우 의미있는 결과라고 생각하며, 향후 가솔린의 생산성과 수율을 높이는 연구를 계속할 예정”이라고 밝혔다.
그림 1. 대장균을 이용한 바이오 매스로부터 short-chain alkane(가솔린)을 생산하는 대사회로
a) 지방산 분해 회로 차단, b) 바이오 매스로부터 짧은 길이의 지방산을 대량 생산, c) 지방산을 가솔린 생산의 중간체인 fatty acyl-CoA로의 전환 유도, d) fatty acyl-CoA의 가솔린의 직접적인 전구체인 fatty aldehyde로의 전환 유도, e) 최종 가솔린 생산
(보충설명) 미생물의 세포 내부를 들여다보면, 매우 복잡한 지방산 대사회로 네트워크가 존재 한다. 지방산은 세포 내부에서 합성되어, 미생물이 살아가는데 필요한 세포막을 형성하거나, 분해되어 에너지원으로 사용되기도 한다. 대부분의 미생물에서 지방산은 전체 세포의 1%도 되지 않을 만큼 소량 만들어지고, 지방산의 길이 또한 매우 길기 때문에, 이러한 지방산을 이용해서 우리가 원하는 화합물을 대량으로 만들거나, 새로운 화합물을 생산하는 것은 매우 어려웠다. 이를 극복하기 위하여, 이상엽 특훈교수 연구팀은 시스템 대사공학적 기법을 대장균에 도입하여 효소의 개량 및 지방산 합성을 저해하는 요소를 제거하여 짧은 길이의 지방산 과생산에 성공하였고, 생물체내에 존재 하지 않는 신규 회로를 도입하여 지방산을 가솔린으로 전환하는데 성공하였다.
그림 2. short chain alkane을 생산하는 발효 공정 시스템 (보충 설명) 위와 같은 cooling 장치가 연결된 발효기를 통하여 가솔린을 생산함
2013.10.01
조회수 24926
-
양자점 이용한 고효율 투명 태양전지 개발
- 양자점 전해질에 분산해 9%대 고효율 염료감응 태양전지 원천기술 개발 -- 네이처 자매지 ‘사이언티픽 리포트’ 19일자 게재 -
우리 학교 신소재공학과 강정구 교수 연구팀은 모바일 양자점(mobile quantum dots)을 활용해 투명한 고효율 염료감응 태양전지 원천기술을 개발하는데 성공했다.
연구 결과는 세계적 학술지인 네이처(Nature)에서 발간하는 사이언티픽 리포트(Scientific Reports) 19일자 온라인판에 게재됐다.
현재 양산 가능한 염료감응 태양전지는 효율이 약 14% 정도로 낮아 가시광선 및 적외선 영역의 빛 흡수를 높이기 위해 염료, 빛 산란층, 플라즈몬 구조 등을 적용해 왔다. 그러나 이러한 구조들로 인해 태양전지가 두꺼워져 고효율의 투명 태양전지 구현에 한계가 있었다.
연구팀은 빛 흡수를 높이기 위해 염료감응 태양전지의 전해질에 양자점을 분산시켜 빛 산란층과 플라스몬 구조 없이도 9%대의 고효율을 달성했다.
아직은 현재 양산 가능한 태양전지보다 효율이 낮고, 상용화에는 많은 시간이 소요될 것으로 예상되지만 근본적으로 두께가 얇고 저렴한 염료감응 태양전지의 장점으로 인해 매우 의미 있는 연구결과라고 연구팀은 전했다.
이와 함께 연구팀은 전해질에 분산돼 있는 양자점이 염료와 함께 빛을 흡수하고 나서 다시 빛을 방출해 TiO2-염료 층과 전해질이 있음에도 불구하고 투명한 태양전지를 구현해내는데 성공했다.연구팀은 또 이번 연구를 통해 △가시광선 영역대에서도 양자점의 흡수와 방출 스펙트럼에 따라 형광공명 에너지 이동과 빛을 흡수한 양자점이 산화된 염료의 환원을 가속화시켜 태양전지 효율이 증가했으며 △빛 분산층과 플라즈몬 구조가 있는 투명하지 않은 셀과의 비교에서도 양자점의 흡수에 의한 효율 증가가 다른 효과보다 크고 투명한 특성을 보였음을 밝혀냈다.
강정구 교수는 이번 연구에 대해 “염료감응 태양전지의 높은 효율과 투명성을 모두 확보할 수 있게 됐으며, 투명한 유리창에 태양전지를 설치하는 것이 최종 목표”라며 “적외선 영역의 빛을 사용해 전기를 만들 수 있는 방법을 제시해 염료감응 태양전지의 적용 범위가 더욱 확대될 것으로 기대된다”고 말했다.
이번 연구는 KAIST 인공광합성센터, 고효율박막태양전지센터, 나노계면센터, WCU, 글로벌프론티어 사업 등의 지원을 통해 수행됐다.
그림1. 모바일 양자점이 포함된 염료감응태양전지의 흡수 스펙트럼, 외부양자효율, 전압-전류.(상단) 플라즈몬 구조, 빛반사층과 모바일 양자점이 구현된 태양전지의 외부양자효율, 산란파워, 그리고 사진의 비교. (하단)
그림2. 모바일 양자점이 전해질에서 염료에 흡수된 빛 에너지를 전달하는 메커니즘(좌측)과 염료 및 양자점의 흡수스펙트럼과 양자효율 (우측): Foster Resonance Energy Transfer (FRET) (상단), 양자점에서 흡수된 빛에너지에 의한 산화된 염료의 환원 작용(중단), 2광자 흡수 (하단)
그림3. 염료감응 태양전지 샘플
그림4. 연구원 사진
2013.09.25
조회수 17918
-
건강한 망막혈관 생성을 유도하는 치료방법 개발
- 향후 당뇨망막병증 치료방법으로 적용 기대
우리 학교 연구진이 실명으로 이어질 수 있는 망막혈관 질환치료의 실마리를 찾아냈다. 혈액공급이 잘되지 않는 망막 부위로 건강한 망막혈관이 생성되도록 하여 망막신경을 보호하는 혈관생성단백질을 찾아낸 것. 향후 당뇨망막병증*과 미숙아망막병증**의 치료방법 개선을 위한 연구의 단초가 될 것으로 기대된다.
이번 연구결과는 국내에서 전문적인 기초과학 교육을 받고 있는 안과 전문의 연구원에 의해 이루어진 대표적인 중개연구의 결과여서 더욱 주목받고 있다.
* 미숙아망막병증 : 망막 혈관의 발달이 완성되지 않은 시기에 출생한 미숙아에서 발생하는 망막 혈관질환으로 소아실명의 가장 흔한 원인 질환이다.
* 당뇨망막병증 : 당뇨병의 합병증으로 망막조직으로의 불충분한 혈액공급으로 생기는 망막 혈관질환으로 성인실명의 중요한 원인 질환이다.
우리 학교 의과학대학원 이준엽 연구원이(안과 전문의, 지도교수: 고규영,유욱준) 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업(도약)의 지원으로 수행되었고, 연구결과는 사이언스 중개의학(Science Translational Medicine) 표지논문(9월 18일자)으로 소개되었다. 이 학술지는 임상의학과 기초과학을 연계하는 중개의학 분야 권위지로 사이언스지 자매지이다.
(논문명 : Angiopoietin-1 Guides Directional Angiogenesis Through Integrin αvβ5 Signaling for Recovery of Ischemic Retinopathy)
당뇨망막병증의 치료에는 망막조직을 파괴하는 레이저광응고술이나혈관증식과 혈액누출을 억제하는 항체치료제*가 적용되고 있다.
항체치료제는 망막신경을 파괴하지 않는 장점이 있지만 한시적으로 혈관증식을 억제할 뿐, 근본적인 해결이 아니어서 반복적인 치료가 필요하다는 한계가 있었다.
* 항체치료제 : 비정상적인 혈관증식과 혈액누출을 선택적으로 억제하기 위하여 개발된 항체로서, 현재 혈관내피세포성장인자 (VEGF)를 저해하는 아바스틴 (Avastin) 과 루센티스 (Lucentis) 가 대표적인 항체치료제이다.
연구팀은 개체의 발달과정에서 혈관의 생성과 안정화에 필수적이라고 알려진 안지오포이에틴-1* 단백질이 망막혈관의 생성과정에도 중요한 역할을 함을 동물실험을 통해 규명해냈다.
망막출혈에 의한 시력상실의 근본 원인이 되는 망막허혈**을 개선하고 망막신경을 보호하는 단백질을 알아낸 것이다.
망막조직으로 충분한 혈액을 공급해 망막신경의 기능을 보존하는 방식의 근본적인 치료방법 개발의 실마리가 될 것으로 기대된다.
* 망막허혈 : 망막 조직에 충분한 혈액 공급이 되지 않는 상태
* 안지오포이에틴-1(Angiopoietin-1) : 건강한 혈관의 생성을 유도하고 생성된 혈관의 안정화를 유지하는 데 중요한 성장인자.
실제 안지오포이에틴-1을 망막병증 생쥐모델의 안구에 투약한 결과 건강한 망막혈관의 생성이 촉진되어, 망막허혈에 따르는 비정상적인 혈관증식이나 망막출혈, 시력상실이 예방되었다.
이준엽 연구원은 “이번 연구는 안지오포이에틴-1이 망막혈관의 생성과 안정화에 중요한 인자라는 사실을 새롭게 규명함으로써 혈관생성을 억제하는 현재의 치료법에서 건강한 혈관을 생성하고 혈관의 기능을 강화하는 방식의 치료법으로 패러다임이 전환될 것을 기대한다”고 연구 의의를 밝혔다.
그림 1. 망막병증 생쥐모델에서의 안구 내 투여한 Angiopoietin-1의 역할 대조군에 비해 VEGF-Trap 치료군과 Angiopoietin-1 (Ang1) 치료군은 병적인 혈관의 증식을 유의하게 억제함 (아래), 추가적으로 Ang1 치료군은 망막 중심부의 무혈관부위(망막허혈)를 향하여 혈관이 생성되었고, 이러한 현상은 VEGF-Trap 치료군에서는 관찰되지 않음 (위).
그림 2. Angiopoietin-1에 의한 망막허혈과 망막 출혈의 감소 및 혈관의 정상화 (좌) 대조군에 비해 Angiopoietin-1 (Ang1) 치료군은 망막허혈부위 면적(화살표)을 유의하게 감소시켰으며, 망막 출혈의 양도 Ang1 치료에 의해 감소함. (우) Ang1 에 의해 새롭게 형성된 혈관은 정상 망막 혈관과 같이 혈관주위세포에 의한 지지를 받는 구조적으로 안정된 혈관임.
그림 3. Angiopoietin-1에 의한 망막 신경 보호 효과 (위) 대조군에 비해 Angiopoietin-1 (Ang1) 치료군은 망막 중앙부 와 주변부의 신경세포의 세포자멸사를 유의하게 억제함. (아래) 이러한 Ang1에 의한 망막 신경 보호 효과는 전기 생리학적 검사인 망막전위도 검사를 통해 확인됨.
그림 4. Angiopoietin-1 이 망막 혈관 생성을 유도하는 기전 Angiopoietin-1은 망막 혈관의 내피세포 (Endothelial cell) 에 작용하여 혈관의 안정성 유지에 중요한 역할을 할 뿐만 아니라 망막의 별아교세포 (Astrocyte) 의 integrin 수용체를 통하여 fibronectin 이라는 세포외기질의 생성을 증가시켜 망막 조직 내로의 혈관 생성의 경로를 안내하는 역할을 함.
2013.09.22
조회수 20561
-
투명한 유리벽을 양면 터치 게임 미디어로
- 지난 7월 시그래프 이머징 테크놀로지서 선보여 ‘가장 돋보인 작품’ 선정 -- “투명 디스플레이 패널의 실생활에 적용된 좋은 사례” -
우리 학교 산업디자인학과 이우훈 교수와 전산학과 이기혁 교수 공동연구팀은 투명한 유리의 양면을 터치해 게임을 즐길 수 있는 신개념 게임 미디어 ‘트랜스월(TransWall)’을 개발했다.
이 기술은 지난 7월 21일~25일 미국 애너하임에서 개최된 컴퓨터 그래픽 및 상호작용기술 분야에서 세계적인 학회인 시그래프(SIGGRAPH) 이머징 테크놀로지(Eerging Technologies)에 전시돼 ‘가장 돋보인 작품(Highlight)’으로 선정됐다.
연구팀은 ‘우리 주변의 유리벽을 오락과 커뮤니케이션 매체로 바꿀 수 없을까?’ 라는 생각에서 이번 프로젝트를 시작했다.
‘트랜스월’은 멀티터치가 가능한 두 장의 유리 사이에 홀로그래픽 스크린 필름을 삽입하고 양쪽에서 빔 프로젝터로 유리에 영상을 투영하는 방식이다. 또 유리에 서피스 트랜스듀서(Surface Transducer)를 부착해 터치하면 화면을 통해 직접 소리와 진동을 느낄 수 있다.
이처럼 ‘트랜스월’은 단순한 유리벽처럼 보이지만 사용자들은 시각, 청각, 촉각 정보를 주고받을 수 있는 다감각적 미디어다.
테마파크, 대형 쇼핑몰, 지하철 역사 등과 같은 공공장소에 설치하면 기다리는 지루한 시간에 양쪽에서 콘텐츠를 조작해 게임을 즐길 수 있다.
이와 함께 향후 이러한 양면 터치 상호작용 방식의 장점을 활용하는 다양한 문화적 콘텐츠 개발도 가능할 것으로 전망된다.
이우훈 교수는 “사람들에게 새로운 경험을 제공하는 오락과 소통의 미디어로서 트랜스월을 개발했다”며 “양면 터치 상호작용 방식을 통해 가까운 미래에 상용화될 대형 투명 디스플레이 패널이 실생활에 어떻게 활용될 수 있을지에 대한 하나의 비전을 보여주는 사례”라고 연구의 의의를 밝혔다.
https://vimeo.com/70391422 (트랜스월 소개 동영상)https://vimeo.com/71718874 (SIGGRAPH 2013 전시장면)
□ 그림설명
그림1.트랜스월의 구조
그림2. 트랜스월 옆면
그림3. 유리벽의 양쪽 면을 터치해 게임 등 다양한 미디어로 활용할 수 있다.
그림4. 트랜스월이 시그래프 이머징 테크놀로지에 전시돼 참가자들로부터 뜨거운 관심을 받고 있다
2013.09.12
조회수 15855
-
리튬공기 이차전지 핵심기술 개발
- KAIST-경기대 공동연구팀, 나노섬유·그래핀 복합촉매 개발 -- 리튬이온 이차전지보다 5배 용량 향상, 최대 800km 주행가능 -
서울-부산을 전기차로 왕복할 수 있는 시대가 열릴까? 차세대 초고용량 전지로 주목받고 있는 리튬공기 이차전지의 핵심기술이 개발됐다.
우리 학교 신소재공학과 김일두·전석우 교수와 경기대학교 신소재공학과 박용준 교수 공동연구팀은 나노섬유·그래핀 복합촉매를 개발하고 리튬공기 이차전지에 적용해 리튬이온 이차전지 보다 용량이 5배 높은 ‘리튬공기 이차전지’를 만드는 데 성공했다.
연구 결과는 나노 분야 권위 있는 학술지 ‘나노레터스(Nano Letters)’ 8월 8일자 온라인판에 게재됐다.
‘리튬이온 이차전지’의 음극과 양극에는 각각 흑연, 리튬전이금속산화물로 구성돼 있다. 이 전지는 핸드폰, 노트북 등에 널리 사용되고 있는데 전기차에 적용할 경우 한 번 충전에 약 160km 정도만 주행할 수 있어 아직은 전기차용으로는 용량이 충분하지 않다는 것이 일반적인 평가다.
연구팀이 이번에 개발한 ‘리튬공기 이차전지’는 음극은 리튬, 양극은 산소를 사용한다. 무게가 가벼우면서도 실제 얻을 수 있는 에너지밀도가 리튬이온 이차전지보다 훨씬 높아 차세대 이차전지 중 가장 큰 각광을 받고 있다.
그러나 방전 시 리튬과 산소가 서로 만나 리튬산화물(Li2O2)이 형성되고 충전 시 다시 분해되는데 이 과정이 원활하게 일어나지 않는 문제점으로 인해 높은 저항이 발생하며, 수명이 짧아 상용화에 어려움이 있었다. 따라서 리튬산화물의 형성 및 분해반응을 보다 수월하게 해주는 고효율 촉매 개발이 필수적이었다.
연구팀은 전기방사 방법으로 대량생산이 가능한 코발트산화물 나노섬유와 그래핀을 섞어 나노 복합촉매를 개발했다.
촉매활성이 매우 높은 ‘코발트산화물 나노섬유’에 큰 비표면적과 높은 전기전도도를 가지고 있는 ‘비산화그래핀’을 결착시킴으로써 리튬공기 이차전지의 성능을 극대화 시킬 수 있었다고 연구팀은 전했다.
개발된 나노 복합촉매를 리튬공기 이차전지의 양극에 적용하면 리튬이온 이차전지 용량의 5배에 달하는 1000mAh/g 이상의 고용량에서도 80회 이상의 충·방전이 가능한 우수한 수명특성을 보였다.
연구팀이 이번에 확보한 충·방전 특성은 현재까지 보고된 성능 중 가장 높은 수준이며, 금속 산화물과 그래핀을 소재로 활용했기 때문에 저렴하게 만들 수 있다. 상용화에 성공해 전기차에 적용하면 한 번 충전에 800Km이상 주행할 수 있어 서울-부산을 왕복 가능해질 것으로 기대된다.
김일두 교수는 “안정성 등 상용화까지는 해결할 과제들이 많이 있지만 본격적인 전기차 시대를 위해 여러 기관들과 협력해 연구할 것”이라며 “우리나라에서 리튬공기 이차전지 분야의 핵심 소재 중에 하나인 나노촉매 합성 기술 개발을 주도해 차세대 리튬공기 이차전지 분야의 활성화에 기여하고 싶다”고 말했다.
한편, 이번 연구에는 KAIST 신소재공학과 류원희 박사, 송성호 박사과정 학생, 경기대학교 윤택한 석사과정 학생이 참여했다.
그림1. 나노복합촉매로 구성된 리튬공기 이차전지 개념도
그림2. 코발트산화물 나노섬유/그래핀 나노 복합촉매 이미지
그림3. 리튬공기 이차전지용 코발트산화물 나노섬유/그래핀 나노 복합촉매 제조과정 이미지
2013.09.05
조회수 19722
-
다양한 물질로 만든 나노선 상용화 가능성 열려
- 산·학·연 2년간 공동연구 끝에 나노선 상용화 가능한 기술 개발 -- 폭 50nm, 길이 20cm 나노선 2시간이면 200만 가닥 대량생산 가능해 -
폭이 수십 나노미터 정도로 매우 얇은 나노선의 상용화를 앞당길 혁신적인 기술이 국내 산·학·연 공동연구진에 의해 개발됐다. 향후 나노선을 이용한 반도체, 고성능 센서, 생체소자 등 다양한 분야에 활용될 것으로 전망된다.
우리 학교 전기및전자공학과 윤준보 교수 연구팀은 (주)LG이노텍(대표 이웅범), 나노종합기술원(원장 이재영)과 공동으로 첨단 과학 분야에서 핵심적인 소재로 쓰이고 있는 나노선을 다양한 소재로 필요한 길이만큼 대량 생산할 수 있는 기술을 개발했다.
연구결과는 나노 과학 분야의 권위 있는 학술지인 ‘나노 레터스(Nano Letters)’ 7월 30일자 온라인판에 게재됐다.
나노선은 폭이 최대 100나노미터 정도에 불과한 긴 선 모양의 구조체로 기존에 발견되지 않았던 다양한 열적, 전기적, 기계적 특성을 보이는 다기능성 나노 소재다. 나노 세계에서만 보이는 특성을 활용하기 위해 나노선은 반도체, 에너지, 생체소자, 광학소자 등 다양한 분야에 활용될 수 있는 첨단 소재로 각광 받고 있다.
그러나 수 밀리미터를 성장시키는데 3~4일이 소요될 만큼 합성 속도가 매우 느리고 대량 생산이 어려운 것은 물론 원하는 물질을 자유자재로 나노선으로 제작할 수 있는 기술이 개발되지 않았다.
또 제작된 나노선을 실제로 적용하기 위해서는 가지런히 정렬시켜야 하는데 기존 기술은 정렬을 위해 복잡한 후처리를 해야 하고 정렬 상태도 완벽하지 못해 상용화에 커다란 걸림돌이었다.
연구팀은 이러한 종래의 문제점을 극복하기 위해 기존의 화학적 합성법을 사용하지 않고 반도체공정을 적용했다.
연구팀은 직경 20센티미터의 실리콘 웨이퍼 기판에 광식각 공정을 이용해 목표하는 주기보다 큰 패턴을 형성한 뒤 이 주기를 반복적으로 줄여가는 방법을 이용해 100나노미터 초미세 선격자 패턴을 제작했다.
이 패턴을 기반으로 반도체 제조과정에서 널리 쓰이는 박막증착공정을 활용해 폭 50nm(나노미터), 최대 길이 20cm(센티미터)의 나노선을 완벽한 형태로 대량 제조하는데 성공했다.
개발된 기술은 장시간의 합성 공정을 거칠 필요가 없으며 별도의 후처리를 하지 않아도 완벽하게 정렬된 상태로 만들 수 있어 상용화 가능성이 높은 것으로 학계와 산업계는 평가하고 있다.
윤준보 교수는 이번 연구에 대해 “낮은 생산성, 긴 제조시간, 물질합성의 제약, 나노선 정렬 등과 같은 기존 기술의 문제점을 해결했다는 데 의미가 있다”면서 “그동안 나노선을 산업적으로 널리 활용하지 못했지만 개발된 기술을 활용하면 나노선을 사용한 고성능의 반도체, 광학, 바이오 소자 등의 상용화를 앞당길 수 있을 것”이라고 밝혔다.
KAIST 전기및전자공학과 연정호 박사과정 학생, LG이노텍 이영재 책임연구원 나노종합기술원 유동은 선임연구원이 참여한 이번 연구는 미래창조과학부(장관 최문기)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약연구)의 지원으로 수행됐다.
2013.08.22
조회수 17355
-
명현 교수, 해파리 퇴치용 군집 로봇 개발
- 3대의 군집 로봇으로 현장 시연 완료 -
우리 학교 건설 및 환경공학과 명현 교수 연구팀이 해파리 퇴치용 로봇 제로스 (JEROS)를 이용한 협업 군집 로봇 개발을 완료하고 이를 현장에서 시험했다.
최근 우리나라 연근해에 해파리 떼가 출몰하면서 해파리로 인한 인명 사고와 조업 손실(연간 3,000억원 정도 추산됨)이 큰 문제가 되고 있는 가운데, 명현 교수 연구팀은 4년 전 해파리를 제거할 수 있는 무인 자동화 시스템인 ‘제로스’ 개발에 착수했으며, 작년에 1대로 현장 시험을 완료한 바 있다.
올해에는 제로스의 속도 및 퇴치 성능을 향상시키고 3대를 제작하여, 편대를 지으며 협동으로 해파리를 퇴치하는 군집 로봇을 개발, 현장에서 시험을 진행했다.
무인 수상 로봇의 일종인 ‘제로스’는 길이 1.5m, 폭 1m, 높이 1m이고, 폭 1.2m, 높이 1.2m 크기의 분쇄부를 탈부착 가능하다. 원기둥 형태의 두 개의 동체가 부력을 유지하며, 동체에 붙어 있는 두 개의 추진 모터를 이용해서 전・후진 및 회전이 가능하다. 또한 GIS (지리정보시스템) 기반 맵 데이터를 이용하여 해파리 퇴치 작업 영역을 지정하면 작업 경로를 자동으로 계산을 하며 GPS(위성항법장치) 수신기 및 IMU(관성항법장치)를 이용하여 자율 운항을 한다.
군집 로봇은 삼각 편대, 일렬 편대와 같이 정해진 패턴을 유지하는 동시에, 계산된 경로를 따라가며 해파리 퇴치 작업을 수행하게 된다. 이때 선도(리더) 로봇만 주어진 경로를 알면 되고, 다른 로봇들은 무선통신(지그비 방식) 을 이용하여 서로의 위치를 주고 받으며 편대를 유지하게 되므로, 개별적인 제어가 필요하지 않다는 장점이 있다.
제로스는 무인 항법을 통해 스스로 이동하며, 추진 속도를 이용하여 아래에 부착된 분쇄부 쪽으로 해파리가 미끄러져 들어오게 하고, 분쇄부 중앙의 고속 회전하는 프로펠러가 흡입하여 해파리를 완전 분쇄하게 된다.
현장 시험 결과에 따르면, 3대의 군집 로봇이 4노트(시속 7.2km) 의 속도로 진행하였을 때 처리 용량은 시간당 약 900kg인 것으로 나타났다.
연구팀은 현재 경남 마산만에서 보름달물해파리 제거 시험을 완료하였으며, 추후 다양한 장소 및 환경에서 성능 보완을 완료할 예정이다.
군집 제로스 기술은 해파리 제거 외에도 해양 순찰 및 경계, 원유 유출 방지, 부유 쓰레기 제거 등 다양한 목적으로도 활용될 수 있다.
한편, 이번 연구는 미래창조과학부의 ‘신진연구지원사업’ 및 산업통상자원부의 ‘융복합 로봇 전문인력 양성 사업’을 통해 수행됐다.
2013.08.19
조회수 16619
-
주차걱정 끝~! 접이식 초소형 전기차 개발
- 동물 모사해 접는 초소형 전기차 ‘아마딜로-T’ 개발 -
- 2.8m 차량을 접으면 1.65m, 한 대 공간에 3대 주차 가능해 -- “경차보다 작은 신규 초소형 세그먼트 차량 인증 법규 서둘러야” -
도심 속 주차난을 한 방에 해결해 줄 초소형 접이식 전기차 ‘아마딜로-T(Armadillo-T)’가 공개됐다.
13일 오전 10시 KAIST에서 공개한 접이식 자동차 ‘아마딜로-T’는 지난 2011년 12월부터 국토교통부, 국토교통과학기술진흥원 등의 지원을 받아 KAIST 조천식녹색교통대학원 서인수 교수 연구팀이 개발했다.
‘아마딜로’는 아메리카 대륙에 사는 가죽이 딱딱한 동물로 적을 만나면 공 모양으로 몸을 둥글게 말아 자신을 지켜낸다. 연구팀은 이 동물이 몸을 접는 모습에 착안해 차량을 디자인 했다. ‘아마딜로’라는 동물의 이름에 자동차의 시대를 연 포드의 세계 최초 대량생산 자동차인 ‘포드 모델 T’의 T를 붙여 아마딜로-T라는 이름을 붙였다고 연구팀은 전했다.
연구팀은 다양한 디자인을 검토해 △초소형 전기자동차 △독창적인 접이식 구조의 적용 △공기역학적 설계 및 실내 공간 최대화 △모터 제어 및 4륜 동력학적 통합제어 알고리즘의 개발 등을 통해 혁신적인 차체 형상과 고효율 및 차량의 안정성을 보장하도록 설계했다.
길이는 국내에서 가장 작은 경차보다도 짧은 2.8m에 불과하다. 주차모드로 전환하면 차량 중간지점을 기준으로 부채처럼 접히면서 1.65m로 줄어든다. 5m길이의 일반 주차장에 3대까지 주차할 수 있다.
500kg의 무게에 최고속도는 시속 60km까지 낼 수 있으며 탑승 정원은 2명이다. 13.6kWh 용량의 배터리를 탑재해 10분 동안 급속 충전하면 최대 100km까지 주행 가능하다.
경차 또는 기존 저속 전기차 보다도 작은 초소형 차량(micro mobility)은 유럽에서는 국제연합유럽경제위원회(UNECE) 규정에 의거, 연비 및 안정성 등 차량 인증 법규가 존재한다. 일본에서도 정부 차원에서 많은 실증이 진행되고 있지만 국내에서는 아직 사회적 관심이나 법규 검토 등에서 아직 미약하다.
차량을 움직이는 동력은 바퀴 안쪽에 장착된 인 휠 모터(In-Wheel Motor)에서 나온다. 동력 창치를 바퀴에 적용함으로써 승객의 편의를 위한 차량의 공간을 최대화 할 수 있다. 또 4개의 바퀴를 독립적으로 제어할 수 있기 때문에 기존의 차량보다 더 안정되면서도 높은 성능을 낼 수 있으며, 차가 접힌 상태에서는 제자리에서 360도 회전이 가능하다.
다른 첨단기술도 접목했다. 사이드미러를 없애고 카메라를 통해 좌우측 후면을 볼 수 있도록 해 디자인을 간결하게 하면서 사각지대를 최소화했다. 또 최첨단 컴퓨터를 통해 배터리가 남은 양 등 차량 각 장치의 정보를 전달받아 모니터에 표시해준다. 주차 시에는 차량을 주차한 후 스마트폰 앱을 통해 외부에서 접을 수 있다. 게다가 접은 상태에서 스마트폰을 이용해 자동 주차 제어가 가능하다.
서인수 교수는 접이식 전기차 개발 배경에 대해 “고령화 사회에 대비한 노인들의 복지, 제한된 석유자원과 친환경 에너지, 근거리 도심 또는 지역사회 교통수단 등 다양한 목적을 가지고 만들었다”며 “최근 KAIST가 개발한 무선충전 전기버스처럼 상용화에 성공해 우리나라 창조경제 발전에 기여할 것”이라고 말했다.
연구팀은 ‘아마딜로-T’ 개발과정에서 총 13건의 국내외 특허를 출원했으며, 지난 5월 국제전기전자공학회 산하 국제전기기계및자동차학회에서 실시한 디자인경진대회에서 2위에 입상하는 성과를 이루기도 했다.
2013.08.13
조회수 16657
-
세계 최초 맞춤형 미생물 균주 대량 생산기술 개발
- 고부가가치 산업원료 생산 균주를 간편하고 빠르게 개발할 수 있는 원천기술 확보 -
우리 학교 생명화학공학과 이상엽 특훈교수와 유승민 연구교수 연구팀은 나일론 등 산업에 필요한 원료를 만드는 미생물 균주를 친환경 방법으로 쉽고 빠르게 대량 생산할 수 있는 ‘합성 조절 RNA’ 설계 원천기술을 세계 최초로 개발했다.
이번 연구결과는 세계적 학술지인 네이처 프로토콜스(Nature Protocols) 9월호 표지논문으로 선정되어 8월 9일 게재(온라인판)됐다.
’합성 조절 RNA 설계 기술’은 기존에 산업 균주를 개량하거나, 아직까지 알려지지 않은 미개척 산업 균주 개발‧개량에 광범위하게 적용이 가능하여 비천연 고분자를 포함한 다양한 화학물질, 원료, 의약품 등을 보다 효율적으로 개발, 생산할 수 있는 핵심원천기술이다.
기존의 균주개발은 유전자 결실(knockout) 이라는 유전공학 기법을 이용하여 미생물 염색체 내의 유전자를 하나씩 제거하는 방법을 통해 미생물내의 생산 물질의 양이 증가하는지를 관찰하는 것이었다.
그러나 아무리 작은 미생물일지라도 수천 개 이상의 유전자로 이루어져 있기에 이런 접근 방법을 통해 생물체 대사회로내의 모든 유전자를 조절한다면 수개월에서 수년의 시간이 소요되고 대용량 실험이 매우 어려우며, 미생물의 생장을 저해하고 원치 않은 물질들이 생산되는 한계가 있었다.
이상엽 교수와 유승민 연구교수는 이러한 기존 방법의 한계 극복을 위해 해당 유전자와 결합되는 부위의 합성 조절 RNA 유전정보를 바꾸는 ‘합성 조절 RNA’ 설계법을 개발하였다.
이를 통해 대장균의 조절 RNA를 기본골격으로 하여 세포내 존재하는 유전자의 발현을 단백질 수준에서 제어할 수 있는 맞춤형 합성 조절 RNA를 3~4일내에 제작할 수 있는 원천기술을 개발하였다.
이렇게 설계된 합성 조절 RNA들은 미생물 게놈을 건드리지 않은 채 유전자 전달체에 삽입하여 제작되므로 여러 종류의 균주들과 여러 유전자들에 대하여 동시다발적인 대용량 실험이 가능하다.
또한, 다양한 균주에 적용시 고효율의 균주를 선별하거나, 유전자 발현조절 효율이 가장 좋은 목적 유전자를 선별할 수 있어 향후 조절 RNA 라이브러리(Library)까지 구축할 수 있다.
네이처 프로토콜스 편집자인 이탄 즈로토린스키(Eytan Zlotorynski) 박사는 “본 논문은 합성 sRNA를 디자인하고 응용하는데 필요한 상세한 프로토콜을 기술하고 있어 생명과학과 생명공학 분야 연구에 매우 널리 활용될 것이며, 특히 대사공학과 합성생물학 연구에서 유용할 것이다”라고 말했다.
KAIST 산학협력단 배중면 단장은 “본 원천기술에 대해 이미 해외 기업들이 관심을 표명하며 기술이전계약을 제안하고 있으므로 2년 이내에 기술이전이 이루어질 것으로 본다“고 밝혔다.
2013.08.09
조회수 14890
-
순수한 그래핀의 양자점 개발 성공
- 수 나노미터 직경의 완전히 순수한 그래핀 양자점 개발 -- “바이오센서, 광센서, 바이오 이미징 등 다양한 분야로 응용 가능” -
우리 학교 생명화학공학과 서태석(42) 교수와 물리학과 조용훈(48) 교수 공동 연구팀은 흑연 나노입자를 이용해 순수한 그래핀 양자점을 개발하는데 성공하고 그래핀 양자점에서의 방출되는 형광 빛의 원인을 밝혔다.
연구결과는 나노분야의 권위 있는 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 7월 19일자 표지논문(Back Cover)으로 게재됐다.
이번에 개발된 그래핀 양자점은 흑연으로 제작돼 인체에 무해한 친환경 소재라는 점에서 바이오센서, 광센서, 바이오 이미징 등 다양한 응용 분야에 적용할 수 있을 것으로 기대된다.
그래핀 양자점은 수 나노미터 이하의 직경을 갖고 있으며, 가시광 영역의 형광을 방출하는 특징이 있다.
기존 그래핀 양자점은 대부분 산화된 그래핀 양자점을 다시 환원하는 방식으로 제작했다. 따라서 그래핀 양자점 구조에 존재하는 순수한 탄소 결합과 산소 결합에 의한 형광 특성이 혼합돼 있어 발광의 근원을 정확하게 구분하기 어려웠다. 또 복잡한 화학적 방법으로 제작해 생산성이 떨어졌다.
연구팀은 그래핀 양자점의 정확한 발광 원인을 규명하기 위해 수 나노미터 크기의 흑연 나노입자를 이용해 순수한 그래핀 양자점을 산화반응 과정 없이 제작했다. 또 일반적으로 사용되고 있는 산화 과정을 흑연 나노입자에 적용해 산화 그래핀 양자점을 간단하게 제작하는 방법도 개발했다.
연구팀은 개발된 순수한 그래핀 양자점과 산화 그래핀 양자점으로부터 각각 파란색과 녹색 형광의 빛을 방출하는 것을 확인했는데, 이 두 종류의 양자점들은 산소 결합의 유무에 근본적 차이가 있다는 것을 밝혔다.
이와 함께 다양한 광분석 기법을 이용해 순수한 그래핀 양자점의 파란색 형광 현상이 벤젠 형태의 탄소 결합에 의한 것임을 규명하고, 산화 그래핀 양자점의 녹색 발광이 그래핀에 결합된 다양한 산소 기능기에 의한 것임을 규명했다.
서태석 교수는 “순수한 그래핀 양자점의 개발과 발광 특성 분석을 통해 기존에 뚜렷하게 설명되지 않았던 그래핀 양자점에서의 파란색 형광 빛의 원인을 밝혀냈다”고 이번 연구의 의의를 밝혔다.
KAIST 생명화학공학과 페이 리우(Fei Liu), 물리학과 장민호(제1저자) 박사과정 학생이 서태석, 조용훈 교수의 지도를 받아 수행한 이번 연구는 환경융합 신기술개발사업과 KAIST 나노융합연구소의 그래핀 연구센터 지원으로 수행됐다.
서태석 교수(왼쪽), 조용훈 교수(오른쪽)
2013.08.07
조회수 16250