-
꿈의 신소재인 그래핀의 결정면 관찰 신기술 개발
(왼쪽부터) 정현수 박사과정생, 김윤호 박사, 김대우 박사과정생
- 네이처 나노테크놀로지誌 발표,“그래핀 상업화를 위한 핵심 난점 해결”-
꿈의 신소재로 잘 알려진 그래핀의 결정면*을 간편하면서도 더 넓게(대면적으로) 관찰할 수 있는 새로운 기술이 국내 연구진에 의해 개발되었다.
※ 결정면(crystal face) : 결정의 외형을 나타내는 평면으로 격자면과 평행인 면
정희태 석좌교수(한국과학기술원, 교신저자)가 주도하고 김대우 박사과정생, 김윤호 박사(공동1저자), 정현수 박사과정생(제3저자)이 참여한 이번 연구는 교육과학기술부와 한국연구재단이 추진하는 WCU(세계수준의 연구중심대학)육성사업과 중견연구자지원사업의 지원을 받아 수행되었고, 연구결과는 나노과학 분야의 권위 있는 학술지인 ‘Nature Nanotechnology’ 온라인 속보(11월 20일)에 게재되었다. (논문명: Direct visualization of large-area graphene domains and boundaries by optical birefringency)
정희태 교수 연구팀은 LCD에 사용되는 액정의 광학적 특성*을 이용해, 그래핀 단결정의 크기와 모양을 대면적에 걸쳐 쉽고 빠르게 시각화할 수 있는 기법을 개발하였다. 특히 그래핀의 단결정을 시각화함으로써, 단결정에서 얻을 수 있는 이론값에 가장 가까운 전기전도도를 직접 측정하는 쾌거를 이루었다.
※ 광학적 특성 : 어느 물질에 빛을 통과시키거나 반사시킬 때 생기는 특성
그래핀은 가장 우수한 전기적 특성이 있으면서 투명하고, 기계적으로도 안정하면서 자유자재로 휘어지는 차세대 전자소재이다. 그러나 현재 제조되고 있는 그래핀은 다결정성을 지니고 있어, 단결정일 때보다 상당히 낮은 전기적․기계적 특성을 보인다. 이것은 그래핀의 특성이 결정면의 크기와 경계구조에 큰 영향을 받기 때문인 것으로 알려져 왔다.
따라서 우수한 특성을 갖는 그래핀을 제조하기 위해서는 그래핀 결정면의 영역(도메인)과 경계를 쉽고 빠르게 관찰하는 것이 향후 그래핀의 물성을 크게 향상하고 상업화하기 위해 꼭 필요한 핵심기술이다.
연구팀은 그래핀을 쉽게 대면적에서 관찰할 수 있는 기법을 개발하여 그래핀 상용화분야에서 원천기술을 획득하게 되었고, 그래핀을 이용한 투명전극, 플렉시블 디스플레이, 태양전지와 같은 전자소자 응용연구에도 한 걸음 다가설 수 있게 되었다.
정희태 석좌교수는 “이번 연구는 우리나라가 보유한 세계 최고의 액정배향제어기술*을 토대로, 대면적에 걸쳐 그래핀의 결정면을 누구나 쉽게 관찰할 수 있는 방법을 제시하였다는 점에서 큰 의미가 있다.
이것은 학계와 산업계의 가장 난제 중 하나인 대면적에서의 그래핀 특성평가에 큰 전환점이 되어 양질의 그래핀 제조에 큰 도움을 줄 것이고, 그래핀을 이용한 미래형 전자소자 개발에 한걸음 다가갈 수 있을 것”이라고 연구의의를 밝혔다. ※ 액정배향제어기술 : 액정의 방향을 일정하게 만드는 기술
(좌) 그래핀 결정면을 따라 배향된 액정분자 배향 모식도 (우) 편광현미경으로 관찰된 실제 그래핀 결정면의 모습
2011.11.28
조회수 19516
-
꿈의 신소재 ‘그래핀’ 활용한 차세대 메모리 소자 개발
[그림] 기존 실리콘 기반 전하포획방식 플래쉬 메모리 소자에 그래핀 전극이 도입된 모식도
- Nano Letters지 발표,“기존 생산라인을 그대로 이용하여 바로 양산할 수 있는 차세대 플래시 메모리 소자”-
금속 전극을 그래핀*으로 대체하면 기존의 플래시 메모리** 소자의 성능과 신뢰도가 획기적으로 개선된다는 사실이 국내 연구진에 의해 규명되었다.
조병진 교수(한국과학기술원)가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 중견연구자지원사업(도약연구)과 미래기반기술개발사업의 지원으로 수행되었고, 연구결과는 나노과학 분야의 권위 있는 학술지인 ‘Nano Letters"지에 온라인 속보(11월 22일)로 게재되었다.
(논문명 : Graphene Gate Electrode for MOS Structure-based Electronic Devices)
특히, 이번 연구성과는 그래핀이 먼 미래의 반도체 소자가 아닌 현재 양산 중인 반도체 소자에도 바로 활용할 수 있는 소재인 점을 증명한 첫 사례라는 점에서 그 의미가 크다.
* 그래핀(Graphene) : 흑연의 표면층을 한 겹만 떼어낸 탄소나노물질로, 높은 전도성과 전하 이동도를 갖고 있어 향후 응용 가능성이 높아 꿈의 신소재로 불림
** 플래시 메모리(Flash Memory) : 전원이 공급되지 않아도 저장된 정보를 계속 유지하는 컴퓨터 기억장치의 일종으로, 스마트폰, 노트북, 디지털 카메라 등 전자장치에 폭넓게 사용됨
조병진 교수 연구팀은 기존의 실리콘 기반의 반도체 소자(전계효과 트랜지스터*)에서 금속 게이트 전극을 그래핀 전극으로 대체하면, 미래의 반도체 시장에서 요구하는 성능과 신뢰도를 확보할 수 있다는 사실을 밝혀냈다. 이 기술은 기존의 반도체 제조 공정에서 크게 바뀌는 부분이 없어서 머지않아 양산에 적용할 수 있다.
* 전계효과 트랜지스터(field effect transistor) : 전압(게이트 전압)으로 전류(드레인 전류)를 제어하는 형식의 가장 일반적이고 광범위하게 쓰이고 있는 반도체 소자
최근 그래핀의 우수한 전기적 특성을 활용하여 초고속 반도체, 신개념 로직 반도체* 등을 구현하기 위해 전 세계적으로 활발히 연구되고 있지만, 10~20년 후에나 상용화될 수 있는 기초․원천연구가 대부분이다.
※ 로직(Logic) 반도체 : 기억 기능을 하는 메모리 반도체와는 달리 데이터를 연산․처리하는 반도체
또한 지금까지 그래핀을 현재 세계 반도체 시장의 핵심 주류인 실리콘 기반 전자소자의 한 부분으로서 적용한 적은 없었다.
현재 국내외 기업에서는 20나노미터* 이하 급에서 사용될 것으로 예상되는 전하포획방식**의 플래시 메모리 소자를 연구 개발 중이다. 하지만 이 방식의 플래시 소자는 데이터 보존 특성이 시장의 요구조건(멀티비트 동작 시 섭씨 150도에서 10년 이상 데이터 보존 등)을 아직 충족시키지 못해 현재까지 대량으로 상용화되지 못하고 있다.
* 나노미터(nano meter) : 10억분의 1미터로, 1나노미터는 대략 성인 머리카락 굵기의 10만분의 1
** 전하포획 플래시(Charge Trap Flash) 메모리 : 전하를 기존의 도체가 아닌 부도체 물질에 저장하는 방식으로, 새로운 반도체 나노공정을 이용해 개발한 비휘발성 메모리
그러나 이번 성과는 현재 국내외 기업들이 집중적으로 연구개발하고 있는 전하포획방식의 플래시 메모리 소자에 그래핀 전극을 사용하면, 데이터 보존 특성이 바로 시판할 수 있는 성능과 신뢰도로 크게 개선(데이터 10% 손실시간 기준으로 기존 소자에 비해 10,000배 개선)될 뿐만 아니라, 데이터 씀과 지움 간의 전압차이가 70%나 개선되는 등 20나노미터이하의 플래시 메모리 소자의 상용화에 가장 큰 기술적 장벽을 극복할 수 있음을 실험으로 증명하였다.
이것은 그래핀이 세상에서 존재할 수 있는 가장 얇은 단원자층 물질이고 신축성과 유연성이 뛰어나, 기존의 금속 전극과는 달리 전극 아래에 위치한 게이트 유전막에 기계적 스트레스를 발생시키지 않기 때문인 것으로 확인되었다. 또한 이번 연구를 통해 그래핀이 갖는 큰 일함수*도 데이터 보존 특성을 향상시킬 수 있는 또 다른 장점으로 파악되었다.
※ 일함수(Work function) : 물질 내에 있는 전자 하나를 밖으로 끌어내는데 필요한 최소의 일(에너지)
조병진 교수는 “이번 연구결과는 새로운 나노기술을 기존의 반도체기술에 융합하여 기존 기술의 한계를 극복한 대표적인 예로서, 그래핀이 먼 미래만의 소재가 아닌 지금 또는 바로 다음 세대 반도체 핵심 소자에 즉시 적용될 수 있음을 보여주는 첫 사례이다. 또한 이번 연구결과를 응용해서 그래핀을 플래시 메모리 소자뿐만 아니라 자동차 전자제어장치, 군사용 및 의료 시스템 등 반도체 소자의 신뢰성이 특별히 중요한 분야에 폭넓게 활용될 수 있을 것으로 기대한다”고 밝혔다.
조병진 교수와 함께 이번 연구에 함께 참여한 연구팀, (뒷줄 왼쪽부터) 신우철 학생, 박종경 학생, 송승민 학생
2011.11.21
조회수 20117
-
박인규 교수, 전기제어와 온도차를 이용한‘나노분자 제어기술’개발
- ▲나노센서 개발 ▲분자조작 ▲세포자극 등 공학기술 전반에 활용 가능 -- 나노 레터스(Nano letters) 10월 호 게재 -
우리 학교 기계공학과 박인규 교수 연구팀이 최근 나노미터(10억분의 1미터) 크기 공간에서 전기제어와 온도차를 이용해 나노분자를 제어하는 원천기술 개발에 성공했다고 19일 밝혔다.
박 교수가 이번에 개발한 기술은 ▲고밀도 전자회로 패터닝 ▲고성능 다중물질 나노센서 개발 ▲단백질·유전자 조작 ▲ 세포조작 및 자극 등 다양한 분야에 응용될 것으로 기대된다.
기술적 한계로 나노미터 크기의 섬세한 분자제어가 어려워 개발이 더뎠던 초소형‧휴대형 센서 개발에도 커다란 변화를 가져올 것으로 예상된다.
연구팀은 나노패터닝 공정으로 고밀도·고정렬 나노와이어를 만들어 각각의 와이어에 전기를 제어하고 빠르게 온도를 조절해 화학반응 제어를 실현했으며 이를 통해 나노분자를 정밀하고 신속하게 조절가능하다는 것을 실험으로 입증했다.
박인규 교수는 “이 기술은 나노공간에서 선택적이고 개별적인 온도조절로 바이오 분자조작, 선택적 회로집적 등에 응용돼 화학센서의 성능향상, 초소형 센서 개발 등 IT/ET 융합기술 발전에 크게 기여할 수 있을 것”이라고 말했다.
이번 연구는 교육과학기술부의 일반연구자사업 및 HP 오픈 혁신 연구 프로그램(HP Open Innovation Research Program)을 통해 수행됐으며, 연구결과는 세계적 권위의 나노기술 학술지인 ‘나노 레터스(Nano Letters)’ 10월 3일자 온라인 판에 게재됐다.
한편 , 이번 연구에는 KAIST 박 교수를 비롯해 김춘연 기계공학과 박사과정 학생, 한국표준연구원 이광철 박사, HP의 지용 리(Zhiyong Li), 스탠 윌리암스(Stan Williams) 박사가 참여했다.
o 그림 1 : 나노와이어를 선택적 온도조절한 후 반응 이미지를 촬영한 모습
o 그림 2 : 나노크기 공간에서 선택적 온도조절을 통한 화학물질 반응/조작 예시, 예1) 고분자 경화, 예2) 나노물질 합성
2011.10.19
조회수 15567
-
박정영 교수, 핫전자 태양전지 원천기술 개발
- Nano Letters 발표, “에너지 손실을 최소화한 핫전자 태양전지 개발 가능성 열어”-
태양광을 흡수하여 생성되는 핫전자 태양전지 원천기술이 국내 연구진에 의해 개발되었다.
우리 학교 EEWS 대학원 박정영 교수(41세, 교신저자, 지속가능한 에너지공학기술사업단 해외학자)가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 WCU(세계수준의 연구중심대학)육성사업과 중견연구자지원사업의 지원을 받아 수행되었고, 연구결과는 나노과학 분야의 권위 있는 학술지인 ‘Nano Letters’ 온라인 속보(9월 14일)에 게재되었다. (논문명 : Surface Plasmon-Driven Hot Electron Flow Probed with Metal-Semiconductor Nanodiodes)
박정영 교수팀은 태양광을 흡수하여 생성되는 핫전자와 표면플라즈몬의 상관관계를 규명하였다.
박 교수팀은 금속박막과 산화물 반도체로 이루어진 나노다이오드를 이용해 빛에 의해 표면에 여기된 핫전자를 검출하고, 나노다이오드 금속박막의 표면처리를 통해 수십 나노미터 크기의 나노섬 형태로 변형하였는데, 이러한 나노섬은 표면플라즈몬을 보여준다.
연구팀은 나노다이오드에 검출된 핫전자를 측정하여 표면플라즈몬에 의한 핫전자의 증폭을 관찰하였다. 이는 표면플라즈몬이 핫전자의 생성을 극대화시키고, 이 원리는 태양전지의 효율을 높이는데 활용될 수 있다.
이 연구에는 EEWS 대학원의 이영근 석사과정생 (제 1저자)와 정찬호 박사과정생 (제 2저자) 이 참여하였다.
박정영 교수는 “핫전자를 정확히 이해하고 측정하는 것은 에너지 손실과정을 근본적으로 이해할 수 있도록 도와준다는 점에서 표면과학 및 에너지공학에서 매우 중요하다. 이번 핫전자 원천기술의 개발은 핫전자를 이용한 고효율 에너지 전환소자 개발에 응용이 될 수 있다”고 연구의의를 밝혔다.
<그림>표면플라즈몬에 의해서 증폭된 핫전자의 측정을 위한 나노다이오드의 구조
2011.10.06
조회수 19983
-
생체삽입형 바이오센서 기술 개발
-유연한 GaN LED 기술로 암을 진단-
인간의 주름진 뇌에 부착하거나, 혈관 및 척추를 감싼 유연한 LED에서 발생된 빛으로 질병을 진단하거나 치료할 수 있는 일들이 현실로 가까워지고 있다.
우리 학교 신소재공학과 이건재 교수팀이 최근 질화물 반도체 발광다이오드(GaN-LED)를 유연한 기판 위에 구현해내고 LED에서 발생되는 빛이 암의 항원-항체반응에 의하여 감도 차이가 일어나는 것을 확인함으로써 전립선암 항체를 검출하는 실험에 성공했다.
이번 연구를 계기로 유연한 LED에서 발생하는 녹색, 파란색, 그리고 자외선 영역까지의 다양한 파장의 강한 빛을 이용하면 신경세포를 자극할 수 있어 질병을 치료하는 데에도 응용될 수 있을 것으로 기대된다.
질화갈륨(GaN)은 적은 에너지로 높은 효율의 빛을 낼 수 있는 반도체로 현재 LED TV, 조명 등 산업 전반에 쓰이고 있으나 깨지기 쉬운 성질을 갖고 있다.
연구팀은 딱딱한 기판에서 성장된 얇은 고효율 GaN-LED를 유연한 플라스틱 기판에 전사하고, 생체 친화적인 재료를 사용한 바이오센서를 개발해 인체와 유사한 조건에 적용할 수 있게 했다.
이건재 교수는 “인체에 삽입된 유연한 LED는 인간 생명 연장과 건강한 삶의 중요한 과제를 해결할 수 있는 흥미롭고 새로운 분야로 꿈같은 일들이 실현될 수 있을 것”이라고 말했다.
이번 연구결과는 나노 분야의 세계적인 석학이자 최고 권위자인 미국 조지아 공대 왕종린(Wang, Zhong Lin) 교수가 편집장으로 있는 "나노 에너지(Nano Energy)" 9월호 온라인 판에 게재됐다.
관련 연구는 2009년부터 국내외에 다수의 특허가 출원․등록되었고, 지난 3월에는 KAIST를 대표하는 브랜드 과제로 선정되기도 했다.
한편, 이 교수는 논문의 공동책임으로 참여한 ETRI 성건용 박사팀과 생체이식형 라벨프리(Label-Free) LED 바이오센서에 대해 후속 연구를 계속 진행하고 있다.(끝)
<관련 동영상>
생체 친화적이고 유연한 GaN-LED가 빛을 내는 동영상 http://www.youtube.com/watch?v=miqc-o8fOkw
<그림설명>구부러지는 유연한 GaN-LED에서 푸른빛이 발생되고 있다.
2011.09.20
조회수 12802
-
스마트 나노센서를 이용한 신약 효능 분석기술 개발
- 사람 몸속에서의 효능을 실시간 모니터링 할 수 있어 - - 나노-바이오-영상-분자화학 등이 융합 -
KAIST가 신약 효능을 분석하는 새로운 기법의 기술을 개발했다.
우리 학교 생명과학과 이상규 박사가 생체나노입자를 사람세포에 적용해 살아있는 세포에서 신약의 효능을 실시간으로 모니터링 하는 기술을 개발했다.
이 기술을 이용하면 사람 몸속에서도 신약의 효능을 보다 정확하게 파악할 수 있을 것으로 기대된다.
지금까지는 신약 후보물질을 몸속으로 투여하고 세포를 추출한 후 효과를 분석했다. 그러나 세포를 용해한 후 세포의 기능이 정지된 상태에서 분석함으로써 예상치 못했던 부작용으로 대부분의 후보물질이 탈락하게 된다. 이 때문에 엄청난 비용과 노력을 들이더라도 신약개발을 성공하기가 매우 어려웠다.
연구팀은 수많은 나노입자가 서로 연결되면 커다란 복합체를 형성할 수 있다는 아이디어에 착안했다. 나노입자를 세포 내부에 적용해 본 결과 실제로 살아있는 세포 안에서 나노입자 간의 결합을 통해 복합체가 빠르게 형성되는 것을 확인했다.
형성된 복합체는 나노센서 역할을 하게 돼 약물이 세포 내에 투여되는 과정에서 약물 타겟과의 결합을 실시간으로 관찰할 수 있었다.
연구팀은 이 나노센서 기술을 ‘스마트한 눈(InCell SMART-i)’이라고 명명했다. 살아있는 세포 안에서 일어나는 신약의 효능작용을 한 눈에 볼 수 있기 때문이다.
이상규 박사는 “이 기술은 나노-바이오-영상-분자화학 등이 융합된 차세대 원천기술로 신약개발에 효과적으로 적용 가능한 매우 중요한 기술”이라며 “신약물질의 직접 개발을 원하는 기업으로 기술이 이전돼 상용화가 멀지 않았다”고 말했다.
한편, KAIST 생명과학과 이상규 박사와 리온즈신약연구소(주) 김태국 박사가 개발한 이 기술은 최근 세계적인 화학지인 ‘앙게반테 케미(Angewandte Chemie International Edition)’ 지 9월호에 주목받는 논문(Hot Paper)으로 선정됐다.
그림1. 사람 세포 내에 도입된 스마트 나노 센서가 약물과 약물 타겟 간의 결합에 따라 세포 내에 스팟(같은 나노클러스터)을 형성하고 이를 실시간으로 탐지해 낼 수 있는 원천기술의 모식도
그림2. 약물타겟 A 또는 B가 발현되어 있는 사람세포에 약물을 처리하면 세포 내에서 약물과 약물타겟이 서서히 결합되면서 스마트 나노센서에 의해 이러한 스팟 (같은 나노클러스터) 형태로 실시간으로 센싱-감지된다. 따라서 살아 있는 사람세포 안에서 신약의 효능작용을 실시간으로 마치 비디오를 보는 것처럼 라이브로 모니터링 할 수 있는 나노-바이오-영상-분자화학 등이 융합된 차세대 원천기술이다.
2011.09.05
조회수 16855
-
KAIST 무선충전전기자동차, CNN 방영
우리 학교에서 개발한 무선충전전기자동차가 지난 8월 29일 미국 CNN방송의 "Eco Solutions"라는 프로그램에 방영됐다.
CNN은 올 7월 19일 서울대공원에서 상용서비스를 시작한 KAIST 무선충전전기자동차가 기존 디젤 "코끼리열차"에 비해 매연과 소음이 없는 친환경 전기자동차로 방문객들로부터 커다란 호응을 받고 있다고 소개했다.
CNN 링크 : http://edition.cnn.com/CNNI/Programs/eco.solutions/index.html
YouTube 링크 : http://www.youtube.com/watch?v=QLzmFFqPJfo
2011.09.04
조회수 10712
-
맞춤형 인산화 단백질 생합성 성공
- 사이언스誌 발표,“각종 질병원인 규명, 신약개발의 새로운 장을 열다”-
세포내 신호전달체계를 재설계하여 세균으로부터 맞춤형 인산화 단백질을 생산하는 기술이 세계 최초로 국내연구진에 의해 개발되었다.
이번 연구는 교육과학기술부의 “글로벌프론티어사업(탄소순환형 차세대 바이오매스 생산/전환 기술연구단)”의 지원을 받아 우리 학교 화학과 박희성 교수 주도로 수행되었다.
단백질 인산화는 생체 내에서 일어나는 단백질 변형의 일종으로, 세포내 신호전달과 그 결과 발생하는 세포의 생장․분열․사멸을 결정하는 중요한 역할을 한다.
예를들어, 성장세포가 성장호르몬 등 외부의 자극을 받으면 세포내 단백질에 인산이 첨가되고(단백질 인산화) 인산화된 단백질이 다른 단백질을 인산화 시키는 일련의 신호전달 과정을 거쳐 세포분열을 일으키게 된다.
인산화 과정에서 인산화 단백질에 돌연변이가 발생하면 세포의 정상적인 신호전달이 손상되고 세포의 무한 분열을 초래하여, 암을 포함한 각종 질병의 직접적인 원인이 된다.
이러한 인산화 과정은 매우 복잡하고 다이내믹하게 진행되므로, 세포내 신호전달의 극히 일부만 알려져 있고, 지금까지 단백질의 인산화를 조절할 수 없었다. 이 때문에 질병 원인 규명 연구와 신약개발에 많은 어려움을 겪고 있다.
박 교수는 예일대 Soll 교수팀과 공동연구를 통해 세균의 단백질 합성관련 인자들을 재설계하고, 진화방법으로 리모델링하여 인산화 아미노산(단백질 구성인자)을 단백질에 직접 첨가하는 기술을 개발하여 맞춤형 인산화 단백질을 생산하는데 성공했다.
연구팀은 이 기술을 이용하여 다양한 암을 유발시키는 단백질로 알려진 MEK1 인산화 단백질 합성에도 성공할 수 있었다.
박 교수는 “이번 연구를 통해서 단백질의 인산화 조절과 인산화 단백질의 대량 생산이 가능해 졌다.”며, “인산화 단백질을 통해 암을 포함한 각종 질병의 원인규명 연구와 차세대 암치료제 개발연구가 체계적이고 실질적으로 이루어질 것으로 기대된다.” 고 연구의 의의를 밝혔다.
연구결과는 생명과학분야 최고권위지인 사이언스誌 2011년 8월호 (8월26일자)에 게재됐다.
1. 세포의 단백질 생합성 기구 재설계 및 리모델링
○ 세균의 단백질 생합성 기구들(중합효소, 아미노산, tRNA)을 재설계하고, 자연계 모방 진화기술로 새로운 확장인자를 개발한 결과 얻어진 인공기능 세포의 그림이다. DNA로부터 단백질이 생합성 되는 과정이 보여주고 있으며, 특히 새롭게 설계된 단백질 합성기구와 자연계 모방 진화기술로 개발된 확장인자의 모식도가 나타나 있다.
2. 재설계된 세포를 이용한 맞춤형 인산화 단백질 생산
○ 그림1에서 제조된 재설계 인공기능 세포를 활용하여 복잡한 세포내 인산화과정 없이 인산화 아미노산을 단백질의 특정한 위치에 직접 첨가하는 방법으로 맞춤형 인산화 단백질을 생합성하는 그림이다. 세포내 신호전달에서 가장 중요한 역할을 하면서 돌연변이시 다양한 암을 유발시키는 인산화 단백질로 알려진 MEK1의 생합성을 보여주고 있다.
2011.08.26
조회수 12796
-
고성능 플렉시블 디스플레이 기술 개발
- 금속 나노입자 펨토초레이저 소결공정을 이용한 극미세 금속패턴 제작 -- 세계적 학술지 ‘어드밴스드 머티리얼즈’ 7월호 게재 -
국내 연구진이 플렉시블 디스플레이 전자소자 제작을 위한 차세대 금속 나노패터닝 기술개발에 성공했다.
우리 학교 기계공학과 고승환·양동열 교수팀이 공동으로 연구한 이번 성과는 기존의 광식각 증착공정을 이용하지 않고 수백나노의 고정밀도 금속 패턴을 펨토초레이저 스캐닝공정을 이용해 단일 디지털 공정으로 제작하는 기술을 개발했다.
이 기술을 이용하면 다양한 기판에서 고정밀 패터닝이 가능해져 유기 전자소자 기술 등과 결합하게 되면 성능과 집적도가 우수하면서도 자유자재로 휘어질 수 있는 고성능 플렉시블 전자소자나 디스플레이 등이 실현될 수 있을 것으로 기대된다.
일반적으로 집적도가 높은 전자소자 제작을 위해서는 고비용의 노광 혹은 광식각 공정이나 고진공 전자빔 공정을 통한 금속 패턴의 제작이 필수적이다. 최근에는 잉크젯 및 롤투롤(Roll to Roll) 프린팅 기술을 이용해 직접 금속 패턴 제작이 시도되고 있다. 그러나 공정 특성상 1㎛(마이크로미터, 100만분의 1미터) 이하의 정밀도 달성에는 한계가 있어 고집적·소형화에 불리했다.
연구팀은 3~6nm(나노미터, 10억분의 1미터) 크기의 녹는점이 낮은 은 나노 입자와 열확산을 최소화할 수 있는 금속 나노입자 펨토초레이저 소결공정 (Femtosecond laser selective nanoparticle sintering, FLSNS)을 개발했다. 더불어 유리, 웨이퍼, 고분자 필름 등 다양한 기판위에 1㎛이하의 고정밀도 금속 패턴을 단일 공정으로 제작할 수 있는 기술도 개발해, 이 기술을 이용해 최소 정밀도 380nm 선폭의 극미세 금속패턴 제작에 성공했다.
연구팀은 개발된 금속 패터닝 기술을 KAIST 전기 및 전자공학과 유승협 교수팀과의 협력을 통해 유기 전계효과 트랜지스터 제작공정에 적용해, 차세대 플렉시블 전자소자 제작에 활용될 수 있는 가능성을 제시했다.
고승환 교수는 “고가의 진공 전자빔 공정을 통해서만 제작 가능했던 기존의 디지털 직접 나노패터닝 기술을 비진공, 저온 환경에서 구현함으로써 전자빔 공정을 대체할 수 있을 뿐만 아니라 향후 다양한 플렉시블 전자소자 제작으로 적용될 수 있을 것으로 기대된다”고 말했다.
이번 연구결과는 한국연구재단의 나노원천기술개발 및 신진연구 사업지원, 지식경제부의 협동사업지원을 받아 수행됐으며, 재료과학기술 분야의 세계적 권위의 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 7월호에 게재됐다.
※ 용어설명금속 나노패터닝 : 고밀도로 집적된 전기/전자회로 구현을 위해서는 1㎛이하의 선폭을 갖는 고정밀도 금속패턴 구현 기술이 필요하다. 이에 따라 기존의 방법이 아닌 새로운 패터닝 공정에 관한 다양한 연구가 수행 중에 있다.
광식각 증착공정 : 미세 패턴 제작으로 널리 사용되어지고 있는 공정으로 빛에 반응하는 재료에 대해 선택적으로 빛을 조사하여 미세 패턴을 제작하고 원하는 물질을 고온, 진공 조건하에서 증착하는 공정으로 기존의 디스플레이, 반도체 제작 공정으로 이용되고 있다.
유기 전계효과 트랜지스터 : 전자기기 구동회로의 핵심소자인 트랜지스터는 전류의 흐름을 선택적으로 조절하는 역할을 한다. 트랜지스터의 구성에는 전류가 흐르는 채널로서 반도체가 필수적인데, 통상적으로는 고온처리가 필요한 실리콘 (Si)이 쓰이고 있다. 유기 전계효과 트랜지스터는 채널 물질로 박막의 유기반도체가 쓰이는 것으로서, 상대적으로 낮은 온도에서 플라스틱과 같은 다양한 기판에 제작 가능하여 유연한 전자 소자 제작에 이상적이며, 궁극적으로 소자 제작이 인쇄 방법으로 구현 될 경우 저비용 전자소자 제작에도 활용 가능할 것으로 예상되고 있다.
펨토초 레이저(femtosecond laser) : 긴 시간 동안 일정한 출력으로 레이저를 방출하는 연속형 레이저와는 달리 짧은 시간 동안만 레이저를 방출하는 것을 펄스형 레이저라고 한다. 이러한 펄스형 레이저의 방출 시간을 천조분의 1초, 즉 10-15초 까지 낮춘 것이 펨토초 레이저이다. 이러한 매우 짧은 펄스폭은 레이저가 조사되는 재료 내부에 열이 확산하는 시간(10-12s, 피코초)보다 짧기 때문에 가공시 열영향부가 작아 정밀 가공에 응용할 수 있다.
그림1. 선택적 금속 나노입자 펨토초 레이저 소결 공정
그림2. 극미세 금속 패턴
2011.08.02
조회수 20136
-
탄소나노튜브로 물이 스스로 빨려 들어가는 현상 원인 규명
- PNAS 발표, “효율성을 극대화한 차세대 해수 담수화막 활용 가능 기대”-
지금까지 현상만 알려졌을 뿐 그 원인이 정확히 설명되지 못했던, 물을 싫어하는 탄소나노튜브* 안으로 물이 스스로 빨려 들어가는 ‘반직관적 실험 현상’이 국내 연구진에 의해 규명되었다.
*) 탄소나노튜브 : 각 탄소가 3개의 다른 탄소와 결합되어 있는 흑연의 탄소 원자 배열과 같은 모양(6각형의 벌집모양)을 가지면서, 원통형으로 말아서 튜브 형태로 만든 나노(10억분의 1미터) 구조체
우리 학교 EEWS 대학원 정유성 교수가 주도하고, 캘리포니아공대 윌리엄 고다드 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 WCU(세계수준의 연구중심대학)육성사업의 지원(지속가능한 에너지 공학기술사업단)을 받아 수행되었다.
이번 연구결과는 자연과학분야의 권위 있는 학술지인 ‘미국립과학원회보(PNAS)’ 7월 19일자에 게재되었고, 한 주간에 흥미로운 연구결과들을 별도로 소개하는 "This Week in PNAS", ’C&EN News" 및 "Nature Materials"의 "Research Highlights"에 선정되는 영예를 얻었다. (논문명 : Entropy and the driving force for the filling of carbon nanotubes with water)
정유성 교수팀은 물을 싫어하는 탄소나노튜브 안으로 물이 스스로 빨려 들어가는 반직관적인 실험현상의 원인이 물 분자 간의 수소결합 때문으로, 나노채널과 같은 제한된 나노공간에서는 물의 무질서도가 증가하기 때문에 발생한다는 사실을 분자동력학 계산을 통해 밝혀냈다.
일반적으로 분자가 자유로운 액체 상태에서 제한된 나노 크기에 갇힐 경우, 무질서도와 화학결합이 감소되면서 불안정한 상태가 될 것으로 예상했지만, 연구팀은 탄소나노튜브에 갇힌 물의 경우 제한된 공간에서 물 분자 간의 수소결합이 약해지면서 밀도가 낮아지고, 오히려 무질서도가 증가하여 더욱 안정되는 특이한 현상을 나타낸다는 사실을 확인하였다.
특히 연구팀은 1.1과 1.2 나노미터의 지름을 갖는 나노튜브에서는 실온(섭씨 25도)임에도 불구하고 물이 얼음과 같은 구조를 띄는 현상도 관찰하였다.
정유성 교수는 “이번 연구는 계산과학이 실험측정만으로 설명하기 어려운 나노크기의 제한된 공간에서 나타나는 다양한 현상을 규명한 좋은 예”라고 정의하고, ‘’기존의 역삼투압 막에 비해 탄소나노튜브 내에서는 물의 수송속도가 현저히 빨라 에너지 효율적인 차세대 해수 담수화막을 효율적으로 설계하는데 기여할 것”이라고 연구의의를 밝혔다.
2011.07.27
조회수 15888
-
미래의 석유화학산업, 바이오 리파이너리 시대가 온다
- KAIST 이상엽 특훈교수팀, 생명공학동향지 표지논문 게재 -
“바이오리파이너리”란 석유화학산업에서 원유의 정제를 통해 여러가지 제품을 생산하는 것과 같이, 해조류나 비식용생물자원과 같은 바이오매스(biomass)를 원료로 이용하여 여러 제품을 생산하고자 하는 개념이다.
“시스템 대사공학”을 통해 바이오매스로부터 다양한 화학물질 및 제품을 효과적으로 생산할 수 있는 새로운 기법과 전망이 국내 연구진에 의해 제시되었다.
우리 학교 이상엽 특훈교수팀이 수행한 이번 연구는 교육과학기술부 글로벌프론티어사업 차세대 바이오매스연구단의 지원을 받아 수행되었다. ※ 특훈교수 : 한국과학기술원(KAIST)에서 세계적 수준의 연구업적과 교육성과를 이룬 교수에 부여하는 호칭
그동안 기후변화, 자원고갈 등의 문제를 해결하기 위한 방안으로 바이오리파이너리에 대한 연구가 학계를 중심으로 활발히 진행되어 왔다.
특히, 연구자들은 과거 20년간 발전되어온 대사공학을 중심으로 미생물을 활용한 바이오매스의 활용가능성을 높여왔다.
그러나 아직 바이오매스로부터 여러 가지 바이오화학물질 및 소재들을 생산하기 위해서는 이들을 생산하는 미생물의 성능을 획기적으로 개선해야하는데, 기존의 대사공학연구는 주로 직관적인 방법으로 진행되어 많은 노력과 시간이 필요한 한계가 있었다.
이교수팀은 이러한 한계를 극복하기 위해 대사공학을 중심으로 시스템생물학, 합성생물학, 진화공학을 융합한 “시스템 대사공학”이라는 새로운 기술체계를 확립했다.
시스템 대사공학은 세포 기반의 각종데이터를 통합하여 생리 상태를 다차원에서 규명하고, 이 정보를 바탕으로 맞춤형 대사조절을 함으로써 고효율 미생물 균주를 개발하는 기술이다.
시스템 대사공학을 활용할 경우, 미생물을 게놈수준에서 동시다발적으로 관찰 및 조작이 가능하여 미생물의 성능 개선을 위한 시간과 노력을 획기적으로 줄이고 그 활용 가능성을 극대화 할 수 있다.
본 논문의 제1저자인 이정욱 박사는 “시스템 대사공학을 통해 미생물의 성능을 획기적으로 향상시키는 기법을 최근의 연구흐름을 중심으로 전망하고 제시하였으며, 향후 바이오리파이너리 연구에 폭넓게 활용될 것으로 기대된다.“고 연구의 의의를 밝혔다.
연구 결과는 세계적 학술지인 ‘생명공학동향(Trends in Biotechnology)‘지 8월호 표지논문으로 선정되었다.
2011.07.27
조회수 14984
-
KAIST 무선충전전기자동차 본격 운행!
- 서울대공원 코끼리전기열차 3대 상용운행 시작 -
- ‘주행 중 무선충전방식’ 기술 세계 최초로 상용화, 관련 기술 선도 기대 -
우리 학교가 개발한 무선충전 전기자동차(Open Leading Electric Vehicle, OLEV)가 서울대공원에서 본격적인 상용운행에 들어갔다.
우리 대학은 지난 19일 오전 11시 서울대공원 동물원 입구에서 KAIST 서남표 총장, 주대준 대외부총장 등 주요 보직자들과 서울시의회 환경수자원위원회 서영갑 부위원장 등 서울시 관계자들이 참석한 가운데 ‘서울대공원 코끼리전기열차 개통식’을 가졌다.
이 열차에는 KAIST가 개발한 무선충전 기술이 적용됐다. 도로 하부 5cm 밑에 특수 전기선을 매설해 자기장을 발생시킨 후 발생된 자기력을 차량이 무선으로 공급받아 이를 전기로 변환, 동력원으로 사양하는 친환경 전기차다.
지난해 3월 KAIST는 서울시와의 시범사업으로 과천 서울대공원에서 디젤기관으로 운행되고 있는 무궤도 코끼리 열차를 무선충전 전기열차로 교체했다. 경유를 연료로 운행해 매연과 소음이 심각했던 코끼리 열차가 친환경 전기자동차로 탈바꿈한 것이다.
이후 시험운행을 실시해 시스템 안정성 및 효율성 등에 대한 검증을 완료하고, 서울시는 3대의 무선충전 전기열차를 추가 제작했다. 이로써 서울대공원을 방문하는 시민들 뿐만 아니라 동물원에 있는 동물들에게도 쾌적한 환경을 제공할 수 있게 됐다.
서울시와 추진한 시범사업 이후 KAIST는 ▲무선으로 대용량의 에너지를 안전하게 전달할 수 있는 자기장을 형상화하는 기술(SMFIR)의 원천기술을 상용수준으로 끌어올리고, ▲자기장이 인체에 미치는 전자기장(EMF) 안전성을 충분히 확보했으며, ▲주파수 배분, 전기안전 검증 등 신기술 상용운행에 대한 법제도 기반을 마련해 서울대공원 코끼리전기열차의 상용운행의 길을 열었다.
앞으로 서울대공원을 달릴 코끼리전기열차는 주행 및 정차 중 무선으로 대용량의 에너지를 실시간 전달받기 때문에 별도의 충전이 필요 없으며, 비접촉 무선충전으로 감전의 위험에서 자유롭다.
또한, 서울대공원 무궤도열차 순환구간 2.2km 중 약 16% 구간에 급전인프라를 구축해 무제한 운행하므로 경제성이 뛰어나며, 대기오염 물질을 전혀 배출하지 않는 친환경 전기열차다.
전자파 안전성 부분에서는 국내에서 규정하고 있는 기준(62.5mG)을 만족하고, 공인시험기관으로부터 성적서도 확보한 상태이다.
KAIST 조동호 온라인전기자동차사업단장은 “KAIST가 세계최초로 개발한 무선으로 대용량 에너지를 안전하게 전달하는 원천기술(SMFIR)은 다양한 분야에 적용가능하다”며 “서울대공원 코끼리전기열차 상용운행을 시작으로 버스에 이어, 철도 항만 등의 수송시스템에 우리 기술을 접목하는 연구를 진행할 계획이고, 앞으로는 가전이나 휴대기기에 대한 연구도 진행할 생각”이라고 말했다.
서울대공원 코끼리전기열차 상용운행은 냄새와 먼지 없는 아름답고 쾌적한 공원 환경을 조성한다. 더불어 국내 최대의 종합테마공원인 서울대공원을 방문하는 수많은 어린이 및 청소년에게 세계 최초로 KAIST가 개발한 전기자동차 기술을 직접 체험할 수 있는 기회를 제공함으로써 또 하나의 과학 체험 교육의 장을 마련했다는 의의도 갖게 된다.
한편, KAIST 무선충전전기자동차는 2010년 미국 시사주간지인 타임(Time)지가 꼽은 세계 50대 발명품 가운데 하나로 선정된 바 있다.
2011.07.21
조회수 18951