-
세포 내 단백질분해 복합체 조립과정 규명
- 바이오 투과전자현미경을 사용한 고해상도 3차원 구조분석 성공 -
- “신규 항암제 개발에 커다란 도움 될 것” -- 네이처(Nature) 5월 5일자 게재 -
단백질분자도 전자현미경을 이용해 관찰하고, 고해상도 3차원 구조를 분석하는 것이 가능해졌다.
우리 학교 의과학대학원 김호민 교수가 바이오 투과전자현미경을 이용해 세포 내 단백질의 분해를 담당하는 프로테아좀(proteasome) 복합체의 고해상도 구조를 규명했다.
이번 연구는 세계 최고 권위 학술지 ‘네이처(Nature, IF= 36.28)’ 5월 5일자 온라인판에 게재됐다.
우리 몸은 단백질의 생성과 소멸을 통해 세포 내 여러 가지 작용을 조절하고, 항상성을 유지한다. 프로테아좀 복합체는 폐기물 처리시설처럼 세포 내부에 있는 필요 없는 단백질들을 적절한 시기에 없애주면서 생체 조절의 핵심기능을 맡고 있다.
그러나 프로테아좀 복합체에 돌연변이가 생기면 사람에게 발생하는 주요 질병인 암, 퇴행성 뇌질환, 면역질환 등으로 이어질 수 있다.
현재 혈액암의 일종인 다발성 골수종의 치료제로 사용되고 있는 벨케이드(Velcade)가 바로 이 프로테아좀의 기능을 억제해 암세포 분열을 억제하는 항암제인데, 보다 더 약효가 좋고 부작용이 적은 항암제 및 질병치료제 개발을 위해 프로테아좀 복합체 관련 연구가 20년 이상 꾸준히 진행되고 있다.
30여개의 단백질이 모여서 만들어진 프로테아좀 복합체의 경우 크기가 매우 크고 구조가 복잡하기 때문에 기능을 이해하기 위한 3차원 구조 분석에 많은 어려움을 겪어왔다.
연구팀은 기존에 널리 사용되던 단백질 구조분석기술인 단백질결정학 기술 대신, 바이오 투과전자현미경 안에 얼려진 단백질샘플을 넣고 수백 장의 사진을 찍은 후 여러 각도에서 찍힌 단백질 사진을 고성능 컴퓨터를 이용해 분석함으로써 프로테아좀 복합체의 3차원 구조를 규명하는데 성공했다.
이 기술은 단백질결정학을 이용한 방법 보다 적은 단백질 샘플로 분석이 가능하며, 크기가 아주 큰 복합체 분석에 용이하다는 장점이 있다.
김호민 교수는 이번 연구에 대해 “프로테아좀 복합체 조립과정 이해 및 3차원 구조 규명은 생체 내 단백질 소멸 조절 과정에 대한 이해를 높일 뿐 아니라 이를 활용한 신약 개발이 활발히 이루어 질 것”이라고 말했다.
또 “국내 처음으로 도입된 바이오 투과전자현미경을 이용한 고해상도 단백질 구조분석은 기존의 단백질 결정학 기술로 접근이 어려웠던 매우 큰 단백질 복합체의 구조 분석을 가능케 할 것”이라며 “단백질결정학 기술과 바이오 투과전자현미경기술을 상호보완적으로 사용한다면 향후 여러 단백질복합체 3차 구조 연구에 큰 시너지효과를 가져올 수 있을 것으로 기대된다”고 말했다.
이번 연구는 KAIST 김호민 교수가 미국 캘리포니아대학 샌프란시스코 캠퍼스에서 박사 후 연구원으로 있을 당시부터 수행해 온 연구로 이판 쳉(Yifan Cheng) 교수의 지도를 받았으며, 하버드대, 콜로라도대와 공동으로 수행됐다.
그림1. 바이오 투과전자현미경으로 찍은 얼려진 상태의 단백질 샘플(프로테아좀 복합체) 사진
그림2. 바이오 투과전자현미경 이미지 분석을 통한 단백질 3차 구조
2013.05.06
조회수 15293
-
고효율 유기박막태양전지 개발
- 플라즈모닉 현상 이용해 유기박막태양전지 광효율 20% 향상 -- 효율 증가원인 규명해 응용분야 발전 기대 -
금속나노입자의 플라즈모닉 효과를 이용해 유기박막태양전지의 효율을 크게 높일 수 있는 기술이 개발됐다.
우리 학교 EEWS 대학원 이정용 교수 연구팀이 유기박막태양전지의 효율을 20% 증가시킬 수 있는 기술을 개발하고, 플라즈모닉 현상으로 인한 효율 증가의 원인을 처음으로 규명했다.
이 기술은 유기박막태양전지 제작 방법에 상관없이 추가로 효율을 20% 높일 수 있어 유기박막태양전지의 상용화를 크게 앞당길 수 있을 것으로 기대된다.
현재 양산중인 실리콘 반도체 기반 태양전지는 아직까지는 경제성이 낮다. 이에 따라 이를 대체하기위해 보다 저렴하게 제작할 수 있다고 알려진 유기박막태양전지의 효율을 높이기 위한 연구가 전 세계적으로 많이 수행되고 있다.
유기박막태양전지는 고분자 유기물 기반으로 제작된 태양전지로 가볍고, 유연하며, 저렴한 비용으로 제작이 가능해 차세대 태양전지로써 각광받고 있다. 그러나 빛을 흡수할 수 있는 층이 수십 나노미터(nm) 수준으로 매우 얇기 때문에 낮은 광변환 효율을 나타내 상용화에 어려움을 겪고 있었다.
이 교수 연구팀은 기존 유기박막태양전지에 10~100nm로 다양한 크기의 금속나노입자를 적용해 유기박막태양전지의 광흡수율을 증가시킴으로써 광변환 효율이 6.4%에서 7.6%로 약 20% 향상되는 결과를 얻었다. 또 7.9% 태양전지는 8.6%로 향상된 결과를 나타냈다.
금속나노입자를 유기박막태양전지에 적용해 효율이 증가하는 것을 규명한 연구가 이전에 수행된 적은 있지만 효율증가의 원인은 정확하게 밝혀지지 않았다.
연구팀은 유기박막태양전지에 도입된 금속나노입자의 플라즈모닉 빛 전방 산란 특성으로 인해 크기가 커질수록 효율이 증가하다가 약 70nm 크기에서 가장 큰 효율 향상을 보이는 것을 이론 및 실험적으로 증명했다.
이정용 교수는 이번 연구에 대해 “금속나노입자의 플라즈모닉 산란 특성을 조절한 광공학 설계의 가능성을 확인했다”며 “저렴한 용액 공정으로 나노입자를 합성 및 적용했기 때문에 대면적 태양전지 모듈 제작에도 쉽게 적용이 가능하다”고 말했다.
이 교수는 또한 “이번 연구로 밝혀낸 기술을 이용하면 유기박막태양전지의 상용화를 앞당기는데 큰 기여를 할 수 있을 것”이라고 밝혔다.
이정용 교수가 주도하고 백세웅 박사과정 학생이 참여한 이번 연구 성과는 세계적 학술지 네이처의 자매지인 ‘사이언티픽 리포트(Scientific Reports)’의 4월 25일자 온라인판에 게재됐다.
그림1. 기존 유기박막태양전지(검은 사각형)과 금속나노입자를 도입한 유기박막태양전지(빨강 원)의 전류밀도–전압 특성 곡선. 광변환 효율이 6.4% -> 7.6%, 7.8% -> 8.6%로 증가한 것을 알 수 있다.
그림2. 유기박막태양전지의 구조 및 도입된 약 70나노미터 수준의 은 나노입자의 전자현미경 사진.
2013.04.29
조회수 16480
-
휴대용 음향카메라 개발
- 세계 3대 디자인 공모전 ‘레드 닷 디자인 어워드’ 수상 -
우리 학교 산업디자인학과 배석형 교수가 ㈜에스엠인스트루먼트 및 ㈜현대자동차와 공동으로 개발한 세계 최초의 ‘휴대용 음향카메라’가 세계 3대 디자인 공모전 중 하나인 레드 닷 디자인 어워드(Red Dot Design Award)의 제품디자인 부문 수상작으로 선정됐다.
자동차 운전자라면 한번쯤 원인을 알 수 없는 소음 때문에 골머리를 앓은 경험이 있을 것이다. 자동차를 비롯한 공업제품에서 비정상적인 소음이 발생하면 설계의 오류나 부품의 마모, 파손 등 다양한 문제가 있을 수 있는데 소음이 발생하는 위치를 사람의 청각으로 정확하게 찾아내기는 쉽지 않다.
이러한 상황에서 유용하게 쓰일 수 있는 장치가 음향카메라다. 열 감지 카메라가 온도의 분포를 색으로 표현하듯이 음향카메라는 마이크로폰 배열을 이용해 측정한 소리의 분포를 색으로 표현해 소음원의 위치를 보여준다.
하지만 기존의 음향카메라는 크고 무거울 뿐만 아니라 조립 및 설치 방법이 복잡하고 삼각대 위에 고정된 상태로만 사용할 수 있어 설치가 어려운 좁은 공간이나 자동차의 바닥면 등은 측정이 불가능한 경우가 많았다.
이번에 개발된 휴대용 음향카메라는 가로 39cm × 세로 38cm, 무게 1.78kg으로 크기와 무게가 기존 제품에 비해 각각 40%, 30%에 불과해 사용자가 자유롭게 들고 움직이면서 측정대상을 탐색할 수 있다.
다섯 가닥의 나선형으로 배치된 30개의 마이크로폰과 고해상도 카메라는 공업제품의 개발 및 수리 과정에서 중요한 350Hz~12kHz 주파수 대역의 소음의 분포를 이미지와 합성해 사용자에게 직관적으로 보여주며 동영상으로 저장할 수도 있다.
새로 개발된 제품은 기존의 제품과는 달리 일체형으로 측정에 앞서 마이크로폰을 조립하는 불편을 해소했다.
가운데 손잡이는 인체공학적으로 설계되어 사용자가 한 손으로도 음향카메라의 무게를 안정적으로 지탱할 수 있다. 또 받침대 역할을 하기도 하는 양 옆의 손잡이는 두 손을 이용해 다양한 방식으로 음향카메라를 잡을 수 있도록 설계되어 좁은 공간이나 바닥면 등도 사용자가 무리한 자세를 취하지 않고 측정할 수 있다.
현대자동차 남양연구소 이강덕 NVH 연구위원은 “지난 2월부터 휴대용 음향카메라를 신차 개발단계에서 다양하게 활용하고 있다”며 “한 손으로 들 수 있을 만큼 작고 가볍기 때문에 기존의 음향카메라로는 비추기 어려웠던 부분도 자유롭게 탐색할 수 있고 혼자서도 사용할 수 있어 작업 과정이 크게 향상됐다”고 말했다.
배석형 교수는 국제 디자인 공모전 수상과 관련해 “첨단 기술에 디자인 요소를 효과적으로 결합한 점을 인정받았다”며 “과학기술에 대한 수준 높은 이해가 가능한 KAIST 산업디자인학과의 역량을 보여준 좋은 사례”라고 말했다.
한편, 소음진동 전문기업 ㈜에스엠인스트루먼트는 지난 2006년 KAIST 창업보육센터에서 시작, 2년 만에 독자적인 기술력을 확보해 자립했으며 끊임없는 변화와 혁신을 통해 국가 소음진동 기술 발전에 기여하고 있다.
그림1. 레드 닷 디자인 어워드에서 수상한 휴대용 음향카메라 SeeSV-S205
그림2. 휴대용 음향카메라를 이용해 소음이 발생하는 위치를 찾는 모습
그림3. 휴대용 음향카메라를 이용해 자동차의 소음을 측정한 이미지
2013.04.04
조회수 17179
-
단백질의 생체분자 인식 메커니즘 규명
- “단백질이 생체분자를 인식하고 결합하는 기작을 규명해 50년 동안의 수수께끼 풀었다” - - 생명현상의 이해와 효능이 높은 치료제 개발에 활용 가능성 기대 -
우리 학교 생명과학과 김학성 교수가 서울대학교 물리학과 홍성철 교수와 공동으로 단백질이 생체 내 분자를 인식하고 결합하는 메커니즘을 규명했다.
연구 결과는 생명과학분야의 권위지인 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)’ 3월 18일자 온라인 판에 발표됐다.
단백질이 생체분자를 인식하고 결합하는 메카니즘을 밝혀낸 이번 연구로 인해 단백질의 조절기능을 보다 정확하게 파악할 수 있게 돼 앞으로 복잡한 생명현상을 이해하는데 핵심적인 역할을 할 것으로 기대된다.
이와 함께 단백질의 생체분자 인식은 각종 질병의 발생과도 밀접하게 연관돼 있어 향후 효능이 높은 치료제 개발에도 기여할 것으로 전망된다.
핵산, 단백질 등으로 알려진 생체분자는 생물체를 구성하거나 생물의 구조, 기능, 정보전달 등에도 꼭 필요한 물질이다.
특히, 단백질은 생체분자를 특이적으로 인지하고 결합하면서 모든 생명현상을 조절해 생명현상을 유지하는데 가장 중요한 역할을 한다. 단백질의 생체분자 인식에 오류가 발생하면 비정상적 현상으로 각종 질병이 유발되기도 한다.
연구팀은 단백질이 다양한 구조를 갖는데 구조적으로 가장 안정한 ‘열린 구조’와 상대적으로 불안정한 ‘부분 닫힘 구조’를 반복한다는 점에 주목했다.김 교수 연구팀은 단백질의 생체분자 인식 메커니즘을 설명하기 위해 생체분자가 결합하면서 단백질의 구조가 변하는 현상을 단 분자 수준에서 실시간으로 분석했다.
연구결과 생체분자는 가장 안정된 구조의 단백질을 주로 선호하며 결합과 동시에 단백질을 가장 에너지 수준이 낮은 안정된 구조로 변화시킨다는 사실을 세계 최초로 규명했다.
이와 함께 생체분자는 불안정한 ‘부분 닫힘 구조’에도 결합해 단백질 구조를 변화시킨다는 사실도 밝혀냈다.
연구팀의 이번 결과는 단백질의 생체분자 인식 메커니즘을 설명하기 위해 현재까지 제안된 모델인 단백질이 생체분자와 결합하면서 구조가 변한다는 ‘유도형 맞춤 모델’과 단백질의 다양한 구조 중에서 최적의 하나만을 선택적으로 인지한다는 ‘구조 선택 모델’에 대해 처음으로 실험을 통해 완벽히 입증해 낸 것으로 학계는 평가하고 있다.
김학성 교수는 이번 연구에 대해 “생체분자가 존재하는 경우 단백질의 구조 전환 속도가 변하는 현상을 단 분자 수준에서 분석해 단백질의 생체분자 인식 메카니즘을 처음으로 직접 증명한 것”이라며 “생물 교과서에 50년 동안 가설로만 인식되어지던 것을 세계 최초로 실험으로 증명해 풀리지 않을 것만 같았던 수수께끼를 풀어냈다”고 의의를 밝혔다.
그림1. 열린 구조와 부분적으로 열린 구조를 갖고 있는 단백질이 생체분자를 인지하고 결합하는 양상
그림2. 단백질의 다양한 구조 중에서 가장 안정한 상태인 열린 구조(open form)에 생체분자(ligand) 가우선적으로 결합해 더욱 안정한 완전히 닫힌 구조(closed form)로 변함. 또한 단백질의 불안정한 구조(partially closed form)에도 생체분자가 결합해 완전히 닫힌 구조로 변하게 함.
2013.03.21
조회수 16022
-
휘어지는 대용량 반도체 원천기술 개발
- KAIST 김상욱 교수, 세계 최고의‘분자조립’기술력 활용해 휘어지는 대용량 반도체 원천기술 확보 -
우리 학교 신소재공학과 김상욱 교수 연구팀이 원하는 형태로 분자가 스스로 배열하는 ‘분자조립’ 기술을 활용해 유연한 그래핀 기판 위에 양산중인 반도체 패턴의 최고 수준인 20nm(나노미터)급 초미세 패턴을 구현하는데 성공했다.
이번 기술 개발로 향후 유연하게 휘어지면서도 많은 양의 데이터를 저장할 수 있는 반도체를 구현할 수 있어 고성능 플렉시블 전자기기 개발에 도움이 될 것으로 학계는 기대하고 있다.
이와 함께 연성소재의 특성을 이용해 초미세 패턴을 형성하기 어려운 3차원 굴곡진 기판에서도 자유롭게 구현하는데 성공, 다양한 응용소자에 활용할 수 있는 것은 물론 화학 반응으로 물질을 섞어주기만 하면 원하는 형태로 스스로 배열해 고가의 장비가 필요하지 않아 반도체 제작비용이 훨씬 저렴해질 것으로 전망된다.
이번 연구의 핵심 기술인 ‘분자조립’이란 플라스틱, 액정, 생체분자 등과 같이 딱딱하지 않고 유연한 연성소재의 고분자를 원하는 형태로 스스로 배열하게 해 기존에 만들기 어려웠던 작은 나노구조물을 효율적으로 만드는 기술이다. 마치 물과 기름이 서로 섞이지 않는 것과 같이 서로 다른 두 고분자가 상분리되어 섞이지 않는다는 점을 이용하는 것이다.
연구팀은 기계적 물성이 우수하고 원하는 기판에 쉽게 옮길 수 있는 그래핀 위에 ‘블록공중합체’라는 분자조립기술을 통해 초미세 패턴을 형성한 후, 이를 3차원 기판 혹은 PET(폴리에틸렌테레프탈레이트), PDMS(폴리디멜틸실론산) 등과 같은 플렉시블 기판에 옮겨 자유롭게 3차원 혹은 플렉시블 기판에 구조물을 구현했다.
김상욱 교수는 이번 연구에 대해 “지금까지 발표된 휘어지는 반도체는 온도에 취약한 플라스틱 기판을 사용해 극한 공정조건을 극복해낼 수 없어 상용화에 어려움이 많았다”며 “이번 기술은 기계적 물성이 우수한 그래핀을 회로 기판으로 적용하는 데 성공한 획기적인 연구성과”라고 말했다.
김 교수는 이어 “이번 연구에 대해 세계적으로 많은 관심을 받아 3월 20일 열리는 미국 물리학회에서 초청 강연을 할 예정”이라며 “이번에 개발한 원천기술을 바탕으로 후속 연구를 진행해 반도체 회로와 같이 복잡한 회로의 설계에 도전할 것”이라고 포부를 밝혔다.
한편, 교육과학기술부 글로벌프론티어사업 다차원 스마트 IT 융합시스템 연구단의 지원을 받아 수행된 이번 연구결과는 재료분야 세계적 학술지 ‘어드밴스드 머터리얼스(Advanced Materials)’ 3월 6일자에 실렸다.
그림1. 제작공정
1. 스핀 코딩이라는 도포법을 사용해 그래핀 박막을 형성
2. 그래핀 박막 위에 블록공중합체를 형성
3. 블록공중합체을 식각 또는 패턴 전사법을 통해 나노 구조를 형성4. 그래핀을 전사층으로 활용해 다양한 기판에 나노 구조를 형성
그림2. 블록공중합체 분자조립기술
블록공중합체 분자조립기술은 물과 기름이 서로 섞이지 않은 것과 같이 서로 다른 두 고분자가 섞이지 않는다는 점을 이용한 기술이다. 물과 기름의 경우, 서로 섞이려고 하지 않는 물질이기 때문에, 물과 기름은 혼합하게 되면, 물을 물끼리 어울려 덩어리 지고, 기름은 기름끼리 어물려 덩어리가 지게 된다. 하지만, 물과 기름이 서로 떨어질 수 없게끔 결합이 되어 있다고 가정하면, 다른 현상이 예상된다. 동일하게 물은 물끼리 있으려 하고 기름은 기름끼리 있으려고 하지만, 물 옆에는 결합된 기름이 있게 된다. 따라서 물과 기름의 거대한 두 덩이리가 형성되는 것이 아니라, 매우 미세하게 물과 기름이 번갈아가면서 형성되게 된다. 동일하게 블록공중합체에서는 화학적으로 서로 다른 고분자가 공유 결합이라는 쉽게 깨지지 않은 결합을 통해 연결되어 있다., 따라서, 결합된 물과 기름에서와 동일하게 미세한 크기의 상분리가 일어나게 된다. 이러한 구조의 크기는 대개 고분자의 크기에 의해 결정되면, 머리카락 크기의 1/10000 수준으로 매우 미세하며 주기적인 패턴을 형성하게 된다. 패턴의 형태는 서로 다른 고분자의 비율에 따라 구, 원통형, 판형 등으로 나타난다.
그림3. 플렉시블 기판 상에 옮겨진 금 나노 구조체
2013.03.12
조회수 17277
-
플라즈몬 디스플레이 상용화기술 개발
- 나노 표면 플라즈몬 기술 이용해 투과율 향상 기대 -
- 대면적 OLED, LCD에 상용화 가능한 컬러필터 기술 -
플라즈몬 효과를 이용해 디스플레이 컬러필터를 상용화 할 수 있는 공정기술이 KAIST와 고려대학교 연구진에 의해 개발됐다.
우리 학교 전기및전자공학과 최경철 교수와 고려대학교(총장 김병철) 전기전자전파공학부 주병권 교수 공동 연구팀이 나노 표면에서 발생하는 플라즈몬 효과를 이용한 디스플레이 컬러필터를 상용화할 수 있는 설계 및 공정기술을 개발했다.
컬러필터는 LCD나 OLED와 같은 디스플레이와 디지털 카메라에 사용되는 CMOS 이미지 센서 등에서 색상을 표현하는 핵심부품이다. 현재 상용화중인 컬러필터는 투과율이 20~30%대로 알려져 있는데, 플라즈몬 효과를 이용하면 투과율을 기존보다 40%이상까지 끌어올려 전력효율을 약 2배 향상시킬 수 있다는 연구 성과들이 최근 보고됐다.
최근 발표된 플라즈몬 필터는 마이크로미터(㎛) 크기의 극소 면적에만 구현할 수 있었던 한계가 있었다. 그러나 이번 연구에서는 레이저 간섭 리소그래피 기술을 이용해 2.5㎝크기까지 구현해냈다. 기존에 상용화중인 레이저 기술을 적용한 공정기술로 플라즈몬 컬러필터를 이용한 디스플레이를 양산할 수 있는 단계까지 올라왔다는 게 학계와 산업계의 평가다.
향후 이 기술을 이용해 투과율을 40%이상 끌어올려 저전력 플라즈몬 디스플레이를 양산하는게 연구팀의 목표다.
이와 함께 레이저 광의 간섭현상을 통해 나노 구조를 형성하는 기술인 레이저 간섭 리소그래피 기술을 이용해 나노 패턴을 대면적에 구현함과 동시에 컬러필터의 특성을 최적화하면서 공정에서 발생하는 에러를 보완할 수 있는 설계방법을 제시했다.
레이저 간섭 리소그래피 기술을 적용해 연구팀이 제시한 공정은 기존 컬러필터 양산기술의 공정이 복잡한 단점을 극복해 저렴하게 만들 수 있을 것으로 기대된다.
도윤선 박사과정 학생은 이번 연구에 대해 “그동안 공정 비용, 시간, 수율 측면에서 플라즈몬 현상을 산업적으로 이용하는데 한계가 있었다”며 “연구팀이 제시한 컬러 필터 기술은 설계 및 공정의 간소화를 통해 시간이 단축되고 비용이 적게 들어 염료 및 안료기반 컬러필터 기술을 대체할 수 있을 것”이라고 말했다.
고려대학교 전기전자전파공학부 박정호 박사과정 학생은 “이번 연구는 레이저 간섭 리소그래피 기술을 이용해 TV화면 등 대면적에 적용이 가능하다”며 “기판의 종류에 구애받지 않아 차세대 나노 공정 기술에 폭넓게 활용될 것으로 기대된다”고 말했다.
KAIST 전기및전자공학과 도윤선 박사과정 학생과, 고려대학교 전기전자전파공학부 박정호 박사과정 학생이 주도한 이번 연구 성과는 나노 기술 분야 저명 학술지 ‘어드밴스드 옵티컬 머터리얼스(Advanced Optical Materials)’ 2013년 2월호 표지논문으로 게재됐고, 6건의 관련 특허를 출원했다.
2013.03.06
조회수 16991
-
무선충전 전기열차 원천기술 개발
- KAIST, 철도연과 공동으로 60kHz 무선전력전송 원천기술 개발 성공 -
우리 학교와 한국철도기술연구원(이하 철도연, 원장 홍순만)은 대용량 고주파(60kHz, 180kW) 무선전력전송 원천기술을 세계 최초로 확보(2012년 12월)하고, 13일 오전 10시 충북 오송에 위치한 철도연 무가선트램시험선에서 대전력 무선급전 단위모듈시험을 공개했다.
이 기술은 지난 2011년 KAIST가 개발한 무선충전전기버스로 검증된 20kHz 급집전 기술을 크게 발전시킨 것으로 3배 이상의 전력전송 밀도를 향상시켰으며, 집전모듈의 크기와 무게 감소, 급전과 집전장치의 제작비 절감 등 경제성을 높여 무선급전시스템 상용화에 성큼 다가섰다.
그동안 소규모의 전기를 사용하는 버스만을 움직일 수 있었던 무선전력전송기술은 60kHz 대전력 무선전력전송기술의 확보로 대전력이 필요한 철도시스템, 항만과 공항 하역장비 등 물류이송시스템은 물론 전송효율 증대로 기존 무선급전 시장이었던 휴대폰, 노트북 등 휴대기기 및 가전제품, 로봇분야, 레저분야 등에도 광범위하게 활용될 것으로 보인다.
대전력 무선전력전송기술을 철도에 적용할 경우 열차가 비접촉 방식으로 전력을 공급받기 때문에 급전장치의 마모가 없어 유지보수 비용이 절감된다. 또한 전신주 등 전차선 설비가 필요하지 않아 철도부지 소요면적이 줄어들고, 터널단면적도 크게 축소돼 건설비를 낮출 수 있다. 높은 속도에서도 팬터그래프와 전차선 간에 이선문제와 소음문제 등이 해결돼 레일형 초고속열차 개발도 가속화될 것으로 보인다.
KAIST와 철도연은 이번에 성공한 대전력 무선전력전송기술을 올해 무가선트램(5월경)과 차세대도시철도 및 고속열차(9월경)에 적용해 시험할 계획이다.
무선급전기술이 성공적으로 진행될 경우 독일 봄바디어(Bombardier)사의 프리모베(Primove)를 뛰어넘는 세계 최고 수준의 기술을 확보하게 된다.
※ 독일 봄바디어 프리모베 열차
- 아우크스부르크 시험선 총 800m 중 275m에 무선급전시스템설치 운영 중 20kHz, 200kW 용량, 최고속도 50km/h
KAIST 서남표 총장은 “KAIST가 개발한 무선급전버스에 이어 철도까지 움직일 수 있는 대용량 무선전송기술개발에 성공함으로써 무선급전시스템의 완결판을 만들 수 있게 돼 기쁘다”고 전했다.
KAIST 조동호 교수는 “2009년 무선충전전기버스 기술개발 시작 당시 관련부품의 기술 수준 한계로 20kHz 공진주파수를 이용하는 등 많은 고비가 있었으나 한국철도기술연구원과 협력해서 60kHz 대용량 급진전원천기술을 개발할 수 있었고, 향후 철도에 적용할 수 있는 가능성을 증명한 것”이라고 밝혔다.
철도연 홍순만 원장은 “무선전력전송기술은 철도 건설시 철도부지 소요면적이 줄어들고, 터널단면적 축소 등으로 인한 건설비 절감을 비롯해, 전차선이 없어 도시미관이 개선되고, 유지보수비가 절감되는 등 철도시스템 전반에 대한 패러다임을 바뀔 것으로 기대한다”며 “계속해서 좀 더 용량이 큰 대전력 기술 개발과 상용화 추진을 통해 첨단의 새로운 미래철도 기술을 개발하고, 해외시장 진출을 위한 기술경쟁력 강화에도 기여할 것”이라고 전했다.
2013.02.13
조회수 13925
-
이산화탄소 포집 효율을 획기적으로 향상시킨 물질 개발
- 질소대비 CO2 선택성 300배 증가, 네이처 커뮤니케이션즈 게재 -
우리 학교 WS 대학원의 자페르 야부즈 교수, 알리 조스쿤 교수, 정유성 교수 공동연구팀이 질소대비 이산화탄소 선택성을 300배 높인 세계 최고 수준의 CO2흡수제를 개발했다.
최근 전 세계적으로 기후변화 대응을 위한 현실적 대안으로 이산화탄소를 포집하여 저장․처리하는 CCS*기술의 중요성이 부각되고 있다.
* CCS : Carbon Capture and sequestration
현재 이산화탄소를 포집하는 기술로는 액상흡수제를 이용한 습식포집기술, 고체 흡수제를 이용한 건식포집기술, 필름과 같은 얇은 막을 이용하는 분리막 포집기술이 있다.
발전소, 제철소와 같이 이산화탄소 대량 배출원에 적용하게 되는 동 기술은 고온과 다량의 수분이 존재하는 극한조건하에서도 포집효율이 낮아지지 않는 것이 연구개발의 핵심과제이다.
기존에 연구되었던 건식흡수제인 MOF(Metal Organic Framework)나 제올라이트의 경우는 수분 조건에서 불안정하거나 합성이 비싸다는 단점이 존재하였다.
연구팀이 이번에 개발한 흡수제는 건식흡수제로서 ‘아조-코프(Azo-COP)’라고 명명하였는데 값비싼 촉매 없이도 합성이 가능하여 제조비용이 매우 저렴하며, 고온 및 수분 조건에서도 안정한 특성을 나타내었다.
코프(COP)는 간단한 유기분자들을 다공성 고분자형태로 결합시킨 구조체로 동 연구팀이 처음으로 개발한 건식 이산화탄소포집물질이다.
연구팀은 이물질에 ‘아조(Azo)’라는 기능기를 추가로 도입함으로써 질소를 배제하고 혼합기체 중에서 이산화탄소만을 선택적으로 포집하도록 하였다.
‘아조(Azo)"기를 포함하는 아조-코프(Azo-COP)는 일반적 합성방법을 통해 쉽게 제조하였으며, 값비싼 촉매대신 물과 아세톤 등의 용매를 사용해 불순물도 쉽게 제거함으로써 제조비용을 대폭 낮출 수 있었다.
특히, 아조-코프(Azo-COP)는 이산화탄소와 화학적 결합이 아닌 약한 인력을 통해 결합함으로써 흡착제 재생 에너지 비용을 혁신적으로 낮출 수 있으며,
350℃ 정도의 극한 조건에서도 안정해 이산화탄소 포집제로서 활용은 물론 더욱 가혹한 환경의 다양한 분야에서 포집 물질로 활용될 것으로 기대된다.
해당성과는 교과부 산하 (재)한국이산화탄소포집및처리연구개발센터(센터장 박상도) 및 KAIST EEWS 기획단의 지원으로 이루어졌다.
자페르 야부즈 교수와 알리 조스쿤 교수는“Azo-COP를 CO2, N2 분리 실험에 적용한 결과 포집 효율이 수백배 향상됐다”며 “이 물질은 촉매가 필요 없고, 수분 안정성, 구조 다양성 등 우수한 화학적 특성으로 인해 앞으로 이산화탄소 포집을 비롯한 많은 분야에 활용될 것으로 기대한다”고 밝혔다.
한편, 이번 연구 결과는 세계적 학술지인 ‘네이처’ 자매지 ‘네이처 커뮤니케이션즈’ 1월 15일자로 게재됐다.
2013.02.01
조회수 19822
-
합성 조절 RNA를 이용한 세포공장 기술 개발
- 네이쳐 바이오테크놀로지 온라인판 게재.“화학 산업을 대체할 생물 산업 발전의 새로운 전략으로 기대” -
우리 학교 생명화학공학과 이상엽 특훈교수팀이 합성 조절 RNA 기술을 활용하여 세포공장*을 효율적이고 대규모로 구현하게 하는 새로운 기술을 개발했다. * 세포공장(Biofactory) : 세포의 유전자를 조작하여 원하는 화합물을 대량으로 생산하도록 만드는 미생물 기반의 생산 시스템
화석연료 고갈과 석유화학제품 사용에 의한 환경오염 등 인류가 직면한 문제를 해결하기 위해 친환경적이고 지속가능한 바이오산업이 대두되고 있으며 특히 바이오에너지, 의약품, 친환경 소재 등을 생산할 수 있는 세포공장 개발기술이 전 세계적으로 주목받고 있다.
우수한 세포공장 개발을 위해서는 원하는 화합물을 생산하는 유전자 선별과 높은 생산 효율의 미생물을 찾는 과정이 병행되어야 하나 기존의 연구방식은 미생물의 유전자를 하나씩 조작하여 복잡하고 많은 시간이 소요되는 문제가 있었다.
우리 학교 나도균 박사와 유승민 박사가 참여한 이상엽 특훈교수 연구팀은 위와 같은 기술적 한계를 극복하기 위해 합성 조절 RNA를 제작하고 이를 활용하는 새로운 기술을 개발하였다.
특히 합성 조절 RNA를 이용한 이 기술은 기존 방식과 달리 균주 특이성이 없어 수개월이 소요되던 실험을 수일로 단축시킬 수 있어 획기적이다.
연구팀은 합성 조절 RNA 기술을 활용하여 의약 화합물의 전구체로 사용되는 타이로신(tyrosine)*과 다양한 석유화학 제품에 활용되는 카다베린(cadaverine)** 생산에 도입하여 세계 최고의 수율로 생산(각 21.9g/L, 12.6g/L)하는 세포공장을 개발하는데 성공하였다.
* 타이로신(tyrosine) : 스트레스를 다스리고 집중력 향상 효과가 있는 아미노산 ** 카다베린(cadaverine) : 폴리우레탄 등 다양한 석유화학 제품에 활용되는 기반물질
이상엽 교수는 “합성 조절 RNA기술로 다양한 물질을 생산하는 세포공장 개발이 활발해 질 것이며 석유에너지로 대표되는 화학 산업이 바이오 산업으로 변해 가는데 촉매제 역할을 할 것으로 기대된다”라고 연구 의의를 밝혔다.“
이번 연구는 글로벌프론티어사업(지능형 바이오 시스템 설계 및 합성 연구단(단장 김선창))의 지원으로 수행되었으며 연구결과는 세계적 학술지인 네이처 바이오테크놀로지 온라인 판에 1월 20일 게재되었다.
2013.01.21
조회수 17849
-
가구단위 실내 위치인식 기술 개발
한동수 교수
- 10m 이내로 위치 파악할 수 있어 구글 WPS(35~40m) 보다 월등히 우수 -- 기존에 설치된 무선랜 중계기를 사용해 적은 비용으로도 전 세계 구축 가능 -
GPS 신호가 도달하지 않는 실내 스마트 폰의 위치를 가구단위로 정확하게 알아내는 기술이 개발됐다. 이 기술이 상용화되면 실내에서 위급한 상황에 처해있는 사람의 위치를 추적하거나, 분실한 스마트 폰을 되찾는데 큰 도움이 될 것으로 기대된다.
우리 학교 전산학과 한동수 교수 연구팀이 무선랜 신호정보를 이용해 실내에 있는 스마트 폰의 위치를 오차거리 10m 이내로 파악하는 기술을 개발했다.
이 기술은 실내에서 수집된 무선 랜 신호정보와 스마트 폰 사용자의 주소정보를 활용했다. 이미 설치된 무선 랜 신호 중계기를 이용하기 때문에 매우 적은 비용으로 전 세계를 대상으로 서비스를 제공할 수 있다.
통상적으로 스마트 폰을 잃어버렸을 경우 통신사에 문의하면 위치를 알려준다. 하지만 기지국을 통한 실내 위치인식은 500~700m 범위의 오차가 있기에 분실한 스마트 폰을 되찾기는 거의 불가능하다.
또 최근에는 주택가에 납치된 상황에서 경찰에 도움을 요청했으나 피해자의 위치를 곧바로 찾지 못해 살해당하는 안타까운 사건이 발생했다.
이러한 실내 위치인식에 대한 한계를 KAIST 한동수 교수 연구팀이 해결한 것이다.한동수 교수는 먼저 스마트 폰 사용자의 무선 랜 신호정보 특성을 파악하는 데 주력했다.
한 교수는 5명의 연구원을 대상으로 일주일간 스마트 폰에 기록된 무선 랜 신호 정보를 수집했다. 이들의 신호정보를 분석한 결과 가장 많은 시간 동안 집과 사무실에 있었다는 것을 확인했고, 신호정보의 특성을 분석해 집과 직장을 분류했다.
연구팀은 이 기술을 확인하기 위해 지난 7월부터 11월까지 5개월 동안 서울 인사동 민속촌, 대전 갤러리아 백화점 주변, 대전 어은동 아파트 단지, 대전 전민동 원룸 밀집지역 등 각각 특성이 다른 지역을 대상으로 위치추정 정확도를 측정했다.
그 결과 데이터를 수집한 양이 전체 가구 수의 50%를 넘어서면 10m 미만의 오차를 나타내, 도심 어느 환경에서나 가구단위로 정확하게 스마트 폰의 위치를 확인할 수 있었다. 게다가 실내에서는 몇 층에 있는지도 명확하게 구분됐다.
한동수 교수는 “도심에 설치된 수많은 무선 랜 중계기의 위치정보 없이도 스마트폰의 정확한 위치추정이 가능해졌다”며 “최근 구글이나 애플에서 개발한 WPS(Wi-Fi Positioning System)의 경우 35~40m의 오차를 좁히지 못하고 있어 이번에 개발된 기술이 월등히 우수하다”고 강조했다.
아울러 “스마트 폰 사용자의 집과 직장 주소 등의 개인정보가 필요한 만큼 보안에 대한 대비를 철저히 해야 할 것”이라며 “앞으로 위급한 상황에 대한 대처 등 스마트 폰 사용자에게 도움이 되는 일에 폭넓게 활용됐으면 좋겠다”고 덧붙였다.
그림1[대표도]. 실내위치인식 기술 활용 예
그림2. 무선 랜 기반 실내 위치인식 기술
- 스마트 폰 사용자의 무선 랜 신호정보를 수집한 뒤, 분류하고, 주소정보와 일치시켜 신호 DB를 구축한다.
- 스마트 폰 사용자의 위치를 분석하면 집 또는 직장에서 가장 많은 생활을 하며 이를 구분해 낼 수 있다.
2012.12.13
조회수 12670
-
힘세고 오래가는 리튬이온 배터리 개발
최장욱 교수
- 출력 향상으로 전기자동차 가속성능 획기적 향상 기대 -- 결정면 제어해 출력은 5배 이상, 수명은 3배, 고온 수명은 10배 이상 향상 -
나노기술을 이용해 고출력은 물론 수명이 훨씬 길어진 리튬이온 이차전지가 개발됐다.
우리 학교 EEWS 대학원 최장욱 교수 연구팀이 기존의 리튬이온 이차전지보다 출력은 5배 이상 높으면서도 수명은 3배 이상 길어진 리튬이온 이차전지 양극소재를 개발하는 데 성공했다.
그동안 배터리 성능이 모터의 출력을 따라가지 못해 내연기관 보다 가속 시 굼뜨는 단점이 있었던 기존 전기자동차에 이 배터리를 적용할 경우 가속성능이 획기적으로 개선될 것으로 관련업계는 기대하고 있다.
이와 함께, 차세대 지능형 전력망인 스마트 그리드와 전동 공구 등 고출력 배터리를 필요로 하는 분야에도 다양하게 활용될 수 있을 것으로 전망된다.
현재 가장 널리 상용화된 리튬이온 이차전지용 리튬-코발트계 양극소재는 비싼 가격, 강한 독성, 짧은 수명, 긴 충·방전 시간 등의 단점이 있다. 또 충·방전 시 발생하는 열에 취약, 대용량 전류밀도를 요구하는 전기자동차엔 적용이 어려웠다.
반면, 최장욱 교수 연구팀이 이번에 연구한 리튬-망간계 양극소재는 풍부한 원료, 저렴한 가격, 친환경성 등과 같은 장점을 갖고 있으며, 특히 고온 안정성이 뛰어나고, 높은 출력을 낼 수 있기 때문에 전기자동차용 전극 소재로 각광을 받고 있다.
순수 리튬망간계 양극소재는 수명이 평균 1~2년 정도에 불과할 정도로 매우 짧은 단점이 지적돼 왔다. 이는 망간이 전해액으로 녹아나오는 용출 현상에 기인하며, 이를 해결하기 위해 다양한 연구가 진행돼 왔지만 소재의 고유 결정구조로 인해 난제로 남아 있었다.
최 교수 연구팀은 망간산화물이 만들어지기 직전 나노소재를 합성하는 단계에서 반응온도를 조절해 결정면의 구조를 분석한 결과 220℃에서 망간이온의 용출이 억제되는 결정면과 리튬이온 이동을 원활하게 하는 면이 동시에 존재한다는 것을 발견했다.
각각의 결정면은 수명과 출력을 동시에 좋게 해 출력은 5배 이상 향상되면서 수명은 3배 이상 높아졌다. 게다가 기존에 가장 취약하다고 알려진 고온 수명 특성은 10배 이상 좋아지는 것을 확인했다.
최장욱 교수는 “배터리에 10 마이크로미터 수준의 덩어리 입자로 존재했던 리튬망간계 양극소재를 수백 나노 수준에서 결정면을 제어함으로써 출력과 수명을 모두 획기적으로 개선했다”며 “관련 기술에 대해 국내외 특허 출원을 완료했으며, 앞으로 기업과 연계해 2~3년 내 상용화할 계획”이라고 밝혔다.
이차전지의 세계적인 석학인 스탠포드 대학 추이 교수는 “이번 연구는 나노기술이 이차전지 분야를 획기적으로 발전시킬 수 있는 단적인 예를 보여준 사례”라고 평가했다.
한편, 최장욱 교수가 주도하고 김주성 연구원이 참여한 이번 연구 성과는 나노과학분야 세계적 권위지 ‘나노 레터스(Nano letters’)지 온라인판(11월 27일자)에 발표됐다.
그림1. 잘린 면을 갖는 스피넬 리튬망간산화물의 주사전자현미경 사진(좌)과 이 구조가 다른 구조에 비해 다른 구조와 비교 시 더 우수한 출력 특성을 보여 주는 배터리 데이터(우). 초록색이 잘린 면을 갖는 구조의 데이터이다.
그림2. 결정면 제어를 한 스피넬 리튬망간산화물의 개략도. 파란색 면 방향은 수명특성에 기여하며, 분홍색의 면은 출력 특성에 기여하도록 결정면이 디자인됐다.
2012.11.27
조회수 16548
-
유방암 세포의 자살을 유도하는 최적의 약물조합 발견
조광현 교수
- Science 자매지 표지논문 발표,“IT와 BT의 융합연구로 세포내 분자조절네트워크 제어를 통해 가능”-
국내 연구진이 대다수 암 발생에 직접 관여하는 것으로 알려진 암억제 유전자(p53)의 분자조절네트워크를 제어하여 유방암 세포의 사멸을 유도하는 최적의 약물조합을 찾아내, 향후 신개념 암치료제 개발에 새로운 단초를 열었다. 특히 이번 연구는 IT와 BT의 융합연구인 시스템 생물학 연구로 가능했다는 점에서 의미가 크다.
우리 학교 바이오및뇌공학과 조광현 석좌교수가 주도하고 최민수 박사과정생, 주시 박사, 정성훈 교수 및 시첸 박사과정생이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약/도전연구)과 기초연구실사업의 지원으로 수행되었다.
연구결과는 세계 최고 과학전문지인 ‘사이언스’의 첫 번째 자매지로서 세포신호전달분야의 권위지인 ‘Science Signaling’지 최신호(11월 20일자) 표지논문으로 선정되었고, 사이언스지의 ‘편집자의 선택(Editor"s Choice)’에 하이라이트 특집기사로 소개되는 영예를 얻었다. (논문명: Attractor Landscape Analysis Reveals Feedback Loops in the p53 Network That Control the Cellular Response to DNA Damage)
유방암은 미국이나 유럽 등 선진국에서 발병하는 여성암 중 가장 흔한 암으로, 40~55세 미국 여성의 사망원인 1위를 차지한다.
지난 10월 15일에는 영국 일간지 ‘데일리메일’이 2040년까지 유방암 환자 수가 현재의 3배가 넘는 168만 명으로 늘어나 일명 “유방암 대란”이 일어날 수도 있다는 충격적인 연구결과를 보도하기도 하였다.
우리나라 보건복지부 자료에 따르면, 국내에서도 미국 등과 같이 유방암 발병빈도가 매년 증가하는 추세인데, 이것은 서구식 식습관과 저출산, 모유수유 기피 등 생활패턴의 변화에 기인한 것으로 알려져 있다.
p53은 ‘유전자의 수호자’로도 잘 알려진 암 억제 단백질로서 33년 전 처음 발견된 후 지금까지 암 치료를 위해 집중적으로 연구되는 분자이다.
p53은 세포의 증식 조절과 사멸 촉진 등 세포의 운명을 결정하는데 중요한 역할을 한다. 우리 몸의 세포가 손상되거나 오작동하면, p53은 세포주기의 진행을 중단시켜 손상된 DNA의 복제를 억제하고, 손상된 세포의 복구를 시도한다. 이 때 만일 세포가 복구될 수 없다고 판단되면, p53은 세포가 스스로 자살하도록 유도한다.
그러나 암세포는 이러한 p53의 기능이 정상적으로 작동되지 않아 이를 인위적으로 조절하여 암 치료에 응용하려는 시도가 꾸준히 이어져왔다. 그러나 지금까지 임상실험에서는 기대와는 달리 효과가 미미하거나 부작용이 발생하는 등 여러 문제점들이 나타났다.
이는 p53이 단독으로 작동하는 것이 아니라 복잡한 신호전달 네트워크 속에서 다수의 양성과 음성 피드백(positive and negative feedbacks)에 의해 조절되고 있었으나, 지금까지 p53만을 단독으로 집중 연구했기 때문이다. 즉, 다양한 피드백 조절에 의해 p53의 동역학적(dynamics) 변화와 기능이 결정되므로, 네트워크 전체를 이해하고 제어하는 시스템 생물학적 접근이 반드시 필요하다.
조광현 교수가 이끈 융합 연구팀은 p53을 중심으로 관련된 모든 실험 데이터를 집대성하여 p53의 조절 네트워크에 대한 수학모형을 구축하였다.
또한 대규모 컴퓨터 시뮬레이션 분석을 통해 p53의 동역학적 변화 특성에 따른 세포의 운명(증식 또는 사멸) 조절과정을 밝혀내고 이를 효과적으로 제어할 수 있는 방법을 찾아냈다. 그리고 이 방법을 적용한 시뮬레이션 결과를 단일세포실험으로 검증하였다.
조광현 교수팀은 수많은 피드백으로 복잡하게 얽혀 있는 p53 조절 네트워크의 다양한 변이조건에 따른 컴퓨터 시뮬레이션 분석과 세포생물학실험으로, p53의 동역학적 특성과 기능을 결정하는 핵심 조절회로를 발견하고, 이와 같은 p53의 동역학적 특성 변화에 따라 세포의 운명이 달라질 수 있음을 규명하였다.
또한 유방암 세포의 네트워크 모형에서, 위의 분석결과로부터 찾아낸 핵심회로를 억제하는 표적약물(Wip1 억제제)과 기존의 표적항암약물(뉴트린, nutlin-3)을 조합하면 유방암 세포의 사멸을 매우 효율적으로 유도할 수 있음을 발견하였다. 그리고 실제 유방암 세포(MCF7)를 이용한 세포실험을 통해 직접 확인하였다.
조광현 교수는 “세포내 중요한 역할을 담당하는 분자들은 대부분 복잡한 조절관계 속에 놓여있기 때문에 기존의 직관적인 생물학 연구로 그 원리를 밝히는 것은 근본적인 한계가 있다. 이번 연구는 시스템 생물학으로 그 한계를 극복할 수 있음을 보여주는 대표적인 사례로, 특히 암세포의 조절과정을 네트워크 차원에서 분석하여 새로운 치료법을 개발할 수 있는 가능성을 제시하였다”고 연구의의를 밝혔다.
한편, 조 교수의 이번 연구 논문은 23일자 사이언스 편집자의 선택(Editors" Choice)으로 선정되는 영예를 얻기도 했다.
여러 양성 및 음성 피드백으로 복잡하게 구성된 p53 조절네트워크
2012.11.23
조회수 16874