본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%83%9D%EB%AA%85%EA%B3%BC%ED%95%99%EA%B8%B0%EC%88%A0%EB%8C%80%ED%95%99
최신순
조회순
허원도 교수, 빛만 비춰도 유전자 발현 조절하는 효소 개발
〈 허 원 도 교수 〉 우리 대학 생명과학과 허원도 교수 연구팀(기초과학연구원 인지 및 사회성 연구단)이 살아있는 생쥐의 머리에 빛만 비춰도 생쥐 뇌 유전자 발현을 제어할 수 있는 시스템을 개발했다. 매우 약한 빛에도 반응하도록 유전자 재조합 효소를 설계해 원하는 위치와 타이밍에 효소를 활성화할 수 있다. 많은 시간과 재원이 소요되는 유전자 변형 실험 모델을 만들지 않아도 특정 유전자 발현을 유도할 수 있어 활용이 매우 클 것으로 기대된다. 이번 연구결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 19일자 온라인 판에 게재됐다. 연구팀이 개발한 Flp 유전자 재조합 효소는 빛에 민감하게 반응해 활성화된다. 수술이 아닌 LED 빛을 쏘는 비침습성(non-invasive) 방식만으로도 유전자의 발현을 유도할 수 있어 물리적․화학적 손상에 의한 부작용도 최소화할 수 있다. Flp 유전자 재조합 효소는 말 그대로 유전자를 자르고 재조합하는 기능을 지녀 유전자 형질 전환 실험모델을 만드는 등 다방면으로 활용됐다. 광유전학 기술에 응용하려는 시도가 있었으나 빛 없이도 스스로 조립(auto-assembly)돼버려 제어가 어려웠다. 뇌 속으로 빛을 직접 전달하려면 광섬유를 집어넣는 수술 과정도 필요했다. 연구팀이 개발한 광활성 Flp 유전자 재조합 효소(이하 PA-Flp 단백질)는 비활성화 상태에서도 빛을 받으면 결합되면서 활성화된다. 연구진은 단백질 공학을 통해 기존에는 잘 알려지지 않았던 Flp 재조합 효소를 활성화하는 위치를 찾는 힌트를 얻어 PA-Flp 단백질을 설계했다. PA-Flp 단백질의 발현 정도는 적색 형광단백질을 붙여 쉽게 알아볼 수 있도록 만들었다. PA-Flp 단백질은 매우 적은 양으로도 반응하는 민감도를 지녔다. 연구진은 기억을 관장하는 쥐의 뇌 해마 부위에 PA-Flp 단백질을 넣은 뒤 약 30초 동안 LED를 머리 부분에 비추는 실험을 진행했다. 그 결과 생쥐 뇌의 깊은 조직 영역에 도달하는 매우 적은 양의 빛으로도 PA-Flp 단백질이 활성화된 것을 확인했다. 생쥐에게 쏜 빛은 1-2mW/mm2로 실생활에서 사용하는 휴대폰의 손전등 혹은 발표 시 이용하는 레이저 포인터 정도의 세기다. 연구진은 물리적 손상을 전혀 일으키지 않는 비침습성 방식으로도 유전자 발현을 조절하는데 성공한 것이다. 또한 연구진은 행동을 재현하고 검증하는 실험에 나섰다. 해마보다 더 깊숙한 곳에 있는 내측 중격(~3.5mm) 뇌 내측 중격(medial septum): 기억의 중추 역할을 담당하는 해마와 연결된 부위에는 칼슘 채널이 존재하는데 이 칼슘 채널의 발현이 억제되면 물체를 탐색하는 능력이 증가한다는 기존의 연구에 착안하여 실험을 설계했다. 연구진은 내측 중격에 PA-Flp 단백질을 도입하고 LED 빛을 쏘자 칼슘 채널의 발현이 억제됨을 확인했다. 실제 PA-Flp 단백질이 활성화된 실험군은 물체를 탐색하는 능력이 대조군에 비해 훨씬 커져 물체 주변으로 더 많은 움직임을 기록했다. 이번 연구는 빛으로 원하는 타이밍에 유전자를 자르고 재조합하는 효소를 개발해 향후 광유전학에 응용가치가 클 것으로 기대된다. 특정 유전자가 변형된 실험모델을 제작하는데 오랜 시일과 연구비가 투입되는데 반해 이 기술을 활용하면 빛만 쏘는 방식으로도 원하는 유전자를 쉽고 빠르게 조절할 수 있기 때문이다. 또한 광섬유를 심는 별도의 수술 없이도 연구자가 사용하기 간편하고 비용도 저렴하다. 허원도 교수는 “실험쥐의 생리학적 현상에 영향을 줄 수 있는 물리적, 화학적 자극이 거의 없이 LED로 원하는 특정 유전자 발현을 조절할 수 있는 것이 큰 장점이다”라며 “향후 다양한 뇌 영역을 탐구하는데 널리 활용될 것으로 기대한다”고 밝혔다. □ 그림 설명 그림1. PA-Flp 단백질 작동원리 및 발현 그림2. 물체 탐색 능력이 증가함을 실험으로 확인
2019.01.21
조회수 8635
허원도 교수, 변화무쌍 스위치 단백질 관찰하는 바이오센서 개발
〈 허 원 도 교수 〉 우리 대학 생명과학과 허원도 교수 연구팀(기초과학연구원 인지 및 사회성 연구단)이 신호전달 스위치단백질의 활성을 모니터링하는 새로운‘바이오센서’를 개발하고 살아있는 생쥐의 신경세포 활성화를 관찰하는데 성공했다. 이번 연구를 통해 암세포의 이동과 신경세포 활성화 등 다양한 세포 기능에 관여하는 신호전달 스위치 단백질의 변화무쌍한 과정을 실시간으로 볼 수 있을 것으로 기대된다. 이번 연구결과는 국제 학술지 ‘네이처 커뮤니케이션즈’(Nature Communications)에 1월 14일자 온라인 판에 게재됐다. 세포의 신호전달 스위치 단백질은 스위치가 켜지면 기계가 작동하듯 활성화 여부로 세포의 기능을 제어한다. 대표적인 신호전달 스위치단백질인 small GTPase은 세포의 이동, 분열, 사멸과 유전자 발현 등에 관여한다. 핵심 단백질인 small GTPase를 제어할 수 있다면 세포의 기능도 조절할 수 있어 많은 연구팀들이 연구주제로 삼고 있다. 허원도 교수 연구팀이 그간 연구 노하우를 바탕으로 개발한 새로운 바이오센서는 small GTPase 활성의 모든 변화 과정을 실시간으로 볼 수 있는 도구다. 광유전학과 결합해 다양한 방식으로 관찰이 가능하고 민감도가 커 생체 내 두꺼운 조직 안에서 벌어지는 수 나노미터(nm) 크기의 변화까지도 정밀하게 볼 수 있다는 게 특징이다. 고감도 성능을 이용하면 살아있는 동물의 암세포 전이 및 뇌 속 신경세포의 구조변화를 관찰할 수 있어 향후 강력한 이미징 기술이 될 것으로 기대된다. 일반적으로 small GTPase의 활성을 관찰하는 데엔 형광 공명 에너지전달(FRET) 방식을 이용했다. 하지만 FRET 방식은 광유전학과 광 파장이 겹쳐 정작 관찰해야 할 세포신호의 변화는 보기가 어려웠다. 또 민감도가 낮아 동물 모델에 적용하는 것도 제한적이었다. 연구팀은 단백질 공학 기술로 5가지 종류의 small GTPase 단백질의 바이오센서를 개발하고 두 가지 파장(488nm, 561nm)에서 관찰이 가능한 바이오센서를 개발, 이를 동시에 분석하는데 성공했다. 연구진이 개발한 바이오센서는 기존 바이오센서가 청색광을 활용하는 광유전학 기법의 파장과 겹치는 문제를 효과적으로 극복해 세포의 이동방향을 살피면서 동시에 공간적 기능도 분석할 수 있는 장점이 있다. 연구팀은 유방암 전이 암세포에 바이오센서를 발현시키고, 광유전학 기술로 암세포 이동 방향을 조절하자 small GTPase 단백질이 활성화됨을 확인했다. 이 과정에서 암세포의 이동 방향이 변할 때, 세포 내 small GTPase가 이리저리 움직이며 활성화하는 모습을 실시간 이미징하는데 성공했다. 연구진은 small GTPase의 활성을 실시간으로 탐지해 추후 암치료물질을 탐색하는 등 다방면의 기술 접목이 가능할 것으로 전망한다. 더 나아가 IBS 연구진은 미국 막스 플랑크 플로리다 연구소(Max Plank Florida Institute)의 권형배 박사 연구팀과 공동연구를 진행했다. 연구진은 공 위를 달리는 실험으로 깨어있는 생쥐인 실험군과 마취된 대조군의 뇌 영역의 운동 피질의 신경세포에서의 small GTPase단백질의 활성을 비교하는데 성공했다. 살아있는 쥐에서 수 나노미터 단위의 신경세포 수상돌기 가시 수상돌기 가시에서 실시간으로 변화하는 small GTPase 단백질의 활성을 관찰한 것은 이번이 처음이다. 이번에 개발된 바이오센서는 시냅스처럼 수 마이크로미터 단위의 미세한 구조에서도 목표한 단백질을 관찰할 수 있을 만큼 민감도가 크다. 실험쥐의 운동행동과 같은 생리학적 현상에 지장을 주지 않는 자연스러운 상태에서 뇌 영역을 바로 실시간으로 관찰할 수 있어 뇌 관련 연구에도 다양하게 적용될 수 있다. 연구를 이끈 허원도 교수는 “이번 연구는 small GTPase 단백질을 생체 내에서 관찰하기 위한 기존의 바이오센서들의 기술적 한계를 극복하는데 성공했다”며 “특히 청색 빛을 활용한 광유전학 기술과 동시에 적용할 수 있어 다양한 세포막 수용체와 관련된 광범위한 세포신호전달연구와 뇌인지과학연구에 접목이 가능할 것으로 기대된다”고 말했다. □ 그림 설명 그림1. small GTPase 바이오센서 개발 그림2. small GTPase 바이오센서를 이용해 유방암 전이 암세포 관찰 그림3. 운동 행동 중인 생쥐 실시간 관찰
2019.01.15
조회수 10547
박수형 교수, 간암 복합면역치료 적용 가능성 확인
〈 박 수 형 교수 〉 우리 대학 의과학대학원 박수형 교수와 서울아산병원 황신, 송기원 교수 공동연구팀이 간암 환자의 탈진(exhausted)된 종양 침투 면역세포 구성의 차이에 따른 간암 환자군을 구분하는 데 성공했다. 이번 연구를 통해 간암 환자의 새로운 면역치료법 적용 가능성을 확인함으로써 향후 맞춤 의학의 근거를 제시할 수 있는 기반이 될 것으로 기대된다. 특히 이번 연구는 서울아산병원 임상 연구팀과 KAIST 의과학대학원이 동물 모델이 아닌 임상을 통해 새 면역 항암 치료법을 위한 협업을 진행한 것으로 중개 연구(translational research)의 우수 모델로 평가받는다. 김형돈 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘소화기학(Gastroenterology)’ 12월 4일 자에 게재됐다. 암이 발생하면 인체는 암세포를 제거하기 위해 면역세포인 ‘T세포’를 활성화하는데, 종양은 T세포의 기능을 억제하기 위한 환경을 구성한다. 이때 침투한 T세포들은 ‘피디-1(PD-1)’ 단백질과 같은 면역 관문 수용체를 세포 표면에 발현하면서 활성이 저하되고 탈진된 상태가 된다. ‘PD-1 억제제’로 대표되는 면역 관문 억제제는 PD-1 신호에 의해 저하된 T세포의 활성을 회복시키는 역할을 한다. 암세포는 생존을 위해 면역세포로부터 몸을 숨기는데, 면역 관문 억제제는 암세포가 숨는 데 도움을 주는 PD-1, PD-L1의 작용을 차단함으로써 면역세포가 정상적으로 암세포를 공격할 수 있게 되는 것이다. 그러나 면역 관문 억제제는 약 2~30%의 환자에게만 효능이 있고 70% 이상의 환자에게는 효과가 없어 면역항암제의 치료 효능을 높이기 위한 연구가 계속되고 있다. 연구팀은 간암 환자의 탈진한 T세포 중에서 PD-1 단백질을 많이 발현하는 T세포가 그렇지 않은 T세포에 비해 면역세포의 기능이 더 많이 저하돼 있고, PD-1 이외의 다양한 면역 관문 수용체를 동시에 발현하는 것을 발견했다. 특히 간암 환자 중에서 약 절반 정도의 환자만이 PD-1을 많이 발현하는 탈진 T세포를 갖고 있으며, 이러한 환자들이 복합 면역 관문 억제제에 의해 T세포의 기능이 효과적으로 회복됨을 확인했다. 이번 결과를 통해 복합 면역 관문 억제제의 대상이 되는 환자군을 제시함으로써 효과적인 면역 치료를 효율적으로 적용하는 데 기여할 것으로 예상된다. 박 교수는 “이번에 새롭게 제시된 환자군은 현재 적용 중인 면역 관문 억제제 치료의 반응을 예측할 수 있는 바이오 마커로서 유용하게 활용될 수 있다”라며 “복합 면역 관문 억제제가 특정 환자에게만 효능이 있음을 제시해 맞춤 의학의 근거가 될 수 있다는 임상적 의의를 갖는다”라고 말했다. 이번 연구는 보건복지부 첨단의료기술개발 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. PD-1 발현에 따른 각 세포군의 특징적인 유전자 발현 양상 그림2. PD-1을 과발현하는 세포군의 존재 유무에 따른 특징적인 두가지 환자군
2018.12.12
조회수 8586
전상용, 이대엽, 임성갑 교수, 암 줄기세포 제작 원천기술 개발
우리 대학 생명과학과 전상용, 이대엽 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 특수 고분자박막을 이용해 3차원 암 줄기세포 스페로이드(spheroids)를 손쉽게 제작할 수 있는 세포배양 플랫폼을 개발했다. 연구팀은 ‘개시제를 이용한 화학 기상 증착법’을 이용한 고분자 박막을 형성해 암 줄기세포를 제작하는 데 성공했다. 이번 연구를 통해 암 줄기세포 기초 연구 및 약물 개발 플랫폼의 원천 기술을 제공할 수 있을 것으로 기대된다. 최민석, 최윤정 박사, 유승정 박사과정이 공동 1 저자로 참여한 이번 연구는 미국 암학회(AACR) 대표 국제학술지인‘암 연구(Cancer Research)’ 10월 24일자 온라인 판에 게재됐다.(논문명 : Polymer thin film-induced tumor spheroids acquire cancer stem cell-like properties) 암 줄기세포는 항암제에 대한 내재적 저항성을 가져 암의 전이와 재발에 깊이 관여하고 있다. 그러나 종양 안에 극히 일부 존재하기 때문에 지금까지는 다양한 암 줄기세포의 대량 확보가 어려워 암 연구 및 약물 개발에 제약이 있었다. 생체 내에서 암은 3차원 조직 덩어리 형태로 존재하므로 암 줄기세포를 스페로이드 형태로 배양하는 연구가 필요하다. 연구팀은 ‘개시제를 이용한 화학 기상 증착법(iCVD : initiated chemical vapor deposition)’을 이용해 세포배양 기판 위에 특정 고분자 (pV4D4)박막을 형성했다. 그 위에 다양한 암세포를 배양한 결과 암세포들이 고분자박막 표면으로부터 자극을 받아 서로 뭉치면서 3차원 스페로이드 형태를 만들었고, 이와 동시에 항암제에 대한 저항성을 가진 종양 암 줄기세포로 변화하는 것을 확인했다. 연구팀은 이러한 ‘표면자극 유도 암 줄기세포(Surface stimuli-induced cancer stem cell-like cell)’를 고효율로 손쉽게 대량 배양하는 데 성공했다. 연구팀은 이번 연구에서 특정 고분자 박막에서 배양된 표면 자극 유도 암 줄기세포 스페로이드가 약 24시간 안에 형성되며 분석결과 암 줄기세포 관련 유전자의 양이 배양시간에 따라 증가함을 발견했다. 연구팀이 개발한 플랫폼을 통해 형성된 암 줄기세포 스페로이드는 실제 항암제를 처리했을 때 뛰어난 약물저항성을 지니고 있음을 확인했다. 또한 종양 동물모델에서 비교그룹에서는 보이지 않았던 다른 장기로 암이 전이되는 것을 확인했다. 연구팀은 전체염기서열분석(Whole-genome sequencing)을 통해 표면 자극 유도 암 줄기세포와 실제 암 환자 암 줄기세포와의 유사성을 확인했다. 전상용 교수는 “이미 시판되고 있는 다양한 종류의 암 세포주들 뿐만 아니라 환자에서 유래한 생체 내 환경과 유사한 3차원 스페로이드 형태로 양질의 암 줄기세포를 고효율로 손쉽게 대량 배양할 수 있는 원천 기술을 개발했다”라며 “향후 암 줄기세포 기초 연구 및 약물 개발의 패러다임을 바꿀 수 있을 것으로 기대한다”라고 말했다. 또한 “나아가 암 줄기세포 제작용 플랫폼 소재에 대한 원천 기술 확보를 통해 거대한 암 관련 의료시장에서의 경제적인 부가가치 창출도 가능할 것으로 기대한다”라고 말했다. 이번 연구는 삼성전자 미래기술육성재단의 지원을 받아 수행됐다. 재단에서는 이 연구의 중요성을 높이 평가해 올해 9월부터 후속 과제 사업을 통해 3년 연장 지원을 결정했다. □ 그림 설명 그림1. 3차원 암줄기세포 스페로이드 형성 모식도 그림2. 형성된 암줄기세포를 이용하여 약물 저항성 확인
2018.11.28
조회수 12105
고현용 연구원, 뇌전증 동반하는 소아 뇌종양 근본원인 밝혀
〈 고 현 용 연구원 〉 우리 대학 의과학대학원 고현용 연구원(지도교수 : 이정호 교수)이 난치성 뇌전증(간질 발작)을 일으키는 소아 뇌종양의 근본 원인과 뇌전증 발생의 원리를 규명해 새로운 치료법을 제시했다. 이번 연구 결과를 통해 수술 치료에 어려움이 있는 소아 뇌종양 기반의 난치성 뇌전증 치료에 큰 기여를 할 수 있을 것으로 기대된다. 고현용 박사과정이 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 메디슨(Nature Medicine)’ 9월 17일자 온라인 판에 게재됐다. (논문명: 비라프 체성 돌연변이가 소아뇌종양의 본질적 뇌전증 발생에 기여함; BRAF somatic mutation contributes to intrinsic epileptogenicity in pediatric brain tumors) 소아 뇌종양은 성인 뇌종양에 비해 난치성 뇌전증이 빈번하게 동반되는 특징을 갖고 있다. 그러나 소아 뇌종양에서 특이적으로 난치성 뇌전증이 발생하는 원인에 대해서는 밝혀진 바가 없으며 현존하는 항 뇌전증 약물에 반응하지 않기 때문에 환자의 치료에 많은 어려움을 겪고 있다. 연구팀은 소아 뇌종양 환지 뇌 조직 및 동물 모델의 분자 유전학적 분석을 통해 태아의 뇌 발달과정 중 신경 줄기 세포에 ‘비라프 (BRAF V600E)’라는 돌연변이가 발생하면서 난치성 뇌전증이 동반된 소아 뇌종양이 발생하는 것을 규명했다. 연구팀은 뇌전증이 동반된 소아 뇌종양 중 하나인 신경절 교세포종 환자의 종양 조직을 분자 유전학적으로 분석한 결과 비라프 유전변이가 태아 뇌 발달 과정 중 발생함을 확인했다. 이 변이를 동물 모델에서 구현해 신경절 교세포종의 병리 양상을 재현하고 발작을 관찰해 소아 뇌종양 기반의 뇌전증 치료용 동물 모델을 최초로 확립했다. 이를 이용해 면역 염색 분석과 전사체 분석을 실시했다. 소아 뇌종양에서 발생하는 난치성 뇌전증이 신경세포에 존재하는 비라프 변이로 인해 발생하고, 교세포에 존재하는 변이는 종양 덩어리를 형성하는데 중요한 역할을 하는 것을 확인했다. 특히 현재 임상에서 항암제로 사용되고 있는 비라프의 저해제를 동물 모델에 주입해 난치성 뇌전증 치료 효과를 확인했다. 1저자인 고현용 연구원은 “소아 뇌종양 환자의 경 줄기 세포에서 발생한 특정 돌연변이가 난치성 뇌전증 발생에 핵심적 역할을 한다는 것을 국내 연구진이 최초로 발견해냈다는 것에 큰 의미가 있다”며 “소아 뇌종양으로 인해 발생한 난치성 뇌전증의 근본 원인을 규명해 과적 치료의 가능성을 처음으로 보여준 것이다”고 말했다. 연구팀은 교원창업기업(소바젠, 대표 김병태)을 통해 소아 뇌종양 기반의 난치성 뇌전증 치료약 개발에 나설 예정이다. 이번 연구는 연세대학교 의과대학 세브란스 병원 김동석, 김세훈, 강훈철 교수 연구팀과 공동 연구 및 서경배과학재단, 보건복지부 세계선도과학자육성사업의 지원을 통해 수행됐다. □ 그림 설명 그림1. 수술전 (PreOP) 과 수술후 (PostOP) 의 신경절 교세포종의 MRI사진과 이형성이 동반된 신경세포가 있는 병리 조직 사진 그림2. BRAF V600E 돌연변이가 발생하여 뇌전증 동반 소아 뇌종양을 유발하는 과정 모식도
2018.09.18
조회수 10748
김학성 교수, 빛에 의해 스위치처럼 작동하는 단백질 개발
〈 김 학 성 교수 〉 우리 대학 생명과학과 김학성 교수 연구팀이 빛으로 결합력을 제어할 수 있는 결합 단백질을 개발해 빛을 이용한 세포 신호전달 제어에 새 방법을 제시했다. 이는 제한적이었던 기존 광 제어 기술의 한계를 극복해 다양한 세포신호 전달 제어에 활용할 수 있을 것으로 기대된다. 허우성, 최정민 박사가 주도한 이번 연구는 앙케반테 케미(Angewandte Chemie) 6월 27일자 온라인 판에 게재됐다. 빛을 이용한 세포의 신호전달 조절은 물리, 화학적 방법보다 비 침습적이고 빠르기 때문에 신호전달 연구에 효과적으로 활용 가능하다. 그러나 지금까지는 자연에 존재하는 광 스위치 단백질에 의존했기 때문에 이 단백질들을 각각의 신호전달 조절에 맞도록 다시 설계해야 하는 복잡하고 힘든 과정으로 인해 응용이 극히 제한됐다. 최근에는 합성된 광스위치 분자를 단백질에 결합시켜 빛에 따라 그 기능을 조절하려는 연구가 진행됐다. 그러나 이 경우 빛에 따라 스위치처럼 작동하는 단백질의 설계방법이 단백질 종류에 따라 다르고 복잡하다는 한계가 있었다. 연구팀은 LRR(Leucine-rich repeat) 단백질을 기반으로 아조벤젠 유래 광 스위치 분자를 합리적 방법으로 단백질 모듈에 결합시켰다. 이를 통해 빛으로 단백질의 구조변화를 유도해 표적에 대한 결합력을 조절했다. 또한 빛에 의한 상피세포 성장인자 수용체(EGFR, epithelial growth factor receptor)에 대한 결합력 조절이 가능한 단백질을 개발하고, 이를 이용해 세포 내 EGFR 신호 전달을 빛으로 조절할 수 있음을 증명했다. 연구팀은 LRR 모듈로 구성된 단백질의 구조 특성을 기반으로 광스위치 분자를 반복 모듈 사이에 결합시켜 빛으로 표적에 대한 결합력이 효과적으로 조절되는 단백질의 합리적 설계 방법을 개발했다. 이는 다양한 표적에 대해 결합하는 LRR 단백질에 광범위하게 적용할 수 있는 기반 기술로, 빛을 이용한 세포 내 다양한 신호 전달 조절에 활용할 수 있는 새로운 단백질 창출 방법을 제시한 것이다. 이번 연구는 한국연구재단의 글로벌연구실사업(GRL)과 중견연구자지원사업을 통해 수행됐다. □ 그림 설명 그림1. LRR 단백질 기반으로 합리적 설계를 통해 광스위치 단백질 개발 및 이를 이용한 세포 신호전달 조절
2018.08.13
조회수 11188
한진희 교수, 공포에 대한 선천적 반응 결정 신경회로 규명
〈 한진희 교수, 장진호 박사 〉 “생쥐 실험을 통해 포식자의 냄새 자극에 대한 본능적 공포 반응을 결정하는 전두엽-편도체 뇌신경회로를 발견했습니다. 공포에 대한 선천적인 반응이 뇌 속에 어떤 식으로 코딩됐는지를 보여주며 공황장애, 외상 후 스트레스 장애 등의 불안 및 공포 뇌질환 치료 기술에 활용될 것입니다.” 우리 대학 생명과학과 한진희 교수와 한국뇌연구원(KBRI) 뇌신경망연구부 박형주 박사 공동 연구팀이 동물의 공포에 대한 선천적인 행동 반응이 발생하게 만드는 뇌신경회로를 발견하고 그 원리를 밝혔다. 장진호 박사가 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7월 16일자 온라인 판에 게재됐다. 골목의 모퉁이를 돌아설 때 갑자기 튀어나온 자동차 때문에 깜짝 놀라며 얼어붙는 듯이 몸이 저절로 멈춘 경험은 한 번쯤은 겪어봤을 것이다. 이는 ‘동결(freezing)’이라 불리는 대표적 공포 반응이다. 만약 자동차 앞에서 몸이 멈추지 않았다면 큰 사고로 이어졌을 수 있다. 이처럼 포식자나 위험한 물체와 맞닥뜨렸을 때 적절한 공포 반응을 나타내는 것은 사람과 동물이 위협으로부터 살아남을 가능성을 높여주는 역할을 한다. 이처럼 정상적인 공포, 불안 반응은 인간과 동물의 생존을 위해 필수적인 기능이다. 그러나 뇌신경학자들은 공포 반응을 조절하는 신경회로의 이면에 주목한다. 극도의 스트레스나 지속적인 생존의 위협에 노출된 사람들에게서 공포 반응을 조절하던 두뇌 회로가 고장난 듯 기능 이상을 보이는 현상이 존재하기 때문이다. 최근 미디어를 통해 익숙해진 공황장애, 외상 후 스트레스 장애 등이 이러한 기능 이상으로 인해 발병한다. 위와 같은 질환을 앓는 사람들은 수개월 이상의 상담 및 약물 치료를 통해야만 과호흡, 통제되지 않는 불안감, 불면증 등의 증상을 극복한 후 일상에 복귀할 수 있다. 이러한 이유로 뇌신경회로가 올바르게 작용하는 원리를 이해해야만 질환의 효율적인 치료가 가능하다. 한 교수 연구팀은 전측대상회 피질(ACC, anterior cingulate cortex)라는 전두엽의 기능에 주목했다. 신체적인 고통에 반응하고 통증 정보를 처리하는 뇌 영역으로 알려진 전측대상회 피질은 복잡한 두뇌 중에서도 가장 고도의 연산 기능을 수행할 수 있는 전전두엽 피질(PFC, prefrontal cortex)의 일부를 차지하고 있다. 그 동안 전두엽 뇌 영역이 학습을 통해 획득하는 후천적인 공포 조절 기능을 담당한다는 사실이 동물 실험 등으로 규명됐지만 선천적 공포조절 기능은 알려진 바가 없었다. 핵심 실험을 수행한 1저자인 장진호 박사는 작은 발상의 전환을 언급했다. “교수님이 학습된 공포 반응이 아닌 본능적 공포 반응을 통해 실험을 해보자는 독특한 제안을 하셨습니다. 해외 연구진들도 전전두엽 피질 두뇌 회로가 공포 반응을 조절하는 원리는 연구하지만, 포식자에 대한 본능적 반응에는 아무도 주목하지 않았습니다. 데이터 해석에 어려움을 겪고 있었는데 발상의 전환 이후 놀라운 데이터를 꾸준히 얻을 수 있었습니다.” 연구팀은 빛을 이용해 실시간으로 뉴런의 활성을 조절하는 광유전학 기술을 생쥐의 전측대상회 피질에 적용했다. 생쥐들을 포식자인 여우의 냄새에 노출시킨 상태에서 전측대상회 피질 영역을 억제, 자극해 반응 변화를 살폈다. 전측대상회 피질 영역의 뉴런을 억제하자 여우 냄새에 대한 동결 공포 반응이 크게 증폭됐고, 반대로 전측대상회 피질 영역을 자극했을 때는 공포 반응이 감소했다. 또한 전측대상회 피질 자극은 트라우마 기억에 대한 학습된 공포 반응도 강하게 억제하는 효과를 보였다. 연구팀은 전측대상회 피질 영역 내에서 편도체로 연결을 맺은 일부 뉴런들의 성질을 규명했다. 한 교수는 회로망 연구의 중요성을 설명했다. “두뇌 영역에는 전혀 다른 기능의 뉴런들이 공존하고 있으며 이들은 각기 다른 하위 영역으로 연결을 보내는 경우가 많습니다. 뇌 영역의 기능을 올바로 이해하기 위해 회로망에 따라 뉴런의 종류를 구분해야 하는 이유입니다.” 연구팀은 먼저 다양한 신경망 추적(neuronal tracer) 기법을 활용해 전측대상회 피질의 하위 연결망을 탐색했다. 그 중 공포 반응의 출력에 중요한 뇌구조로 잘 알려진 배외측 편도체핵(BLA, basolateral nucleus of amygdala)에서 전측대상회 피질의 주요 연결망을 관찰했다. 한국뇌연구원의 박형주 박사 연구팀은 전기 생리학 방법을 이용해 전측대상회 피질-배외측 편도체핵 연결망이 단일 시냅스 흥분성 연결로 구성됨을 증명했다. 연구팀은 나아가 전측대상회 피질-배외측 편도체핵 하위 연결망이 전측대상회 피질과 동일한 선천적 공포 조절 기능을 수행함을 규명했다. 이 하부 회로를 억제시키자 여우 냄새에 대한 공포 반응이 증가됐고, 같은 회로를 자극시키자 공포 반응이 감소했다. 또한 코요테, 들쥐(들쥐는 생쥐를 잡아먹는 포식자이다)를 사용한 보강 실험을 통해 전측대상회 피질-배외측 편도체핵 회로의 선천적 공포 행동 조절 기능을 명확히 규명했다. 한 교수는 “선천적 위협 자극에 대한 공포 행동반응을 코딩하고 있는 뇌 속 핵심 신경회로를 발견했다는 점에서 매우 중요한 학술적 의미가 있습니다. 향후 전측대상회 피질 신경회로를 표적으로 하는 외상 후 스트레스 장애 치료기술 개발의 근거가 될 것입니다”고 말했다. 이번 연구는 뇌과학 원천기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. ACC 영역의 활성 조절에 의한 본능적 공포 반응 증폭 및 감소
2018.08.07
조회수 12807
이정호 교수, 이주호 박사, 악성 뇌종양의 근본적 원인 밝혀
〈 이 주 호 박사 〉 악성 뇌종양인 교모세포종은 미디어에서 주요 소재로 나올 만큼 인간에게 치명적인 질병으로 일반 대중에게 낯설지 않은 질병이다. 실제로 악성 뇌종양으로 인한 미국 암 관련 사망률은 4위에 달하며 미국의 에드워드 케네디, 존 매케인 상원의원 등이 이 질병으로 사망했거나 투병 중이다. 우리 대학 의과학대학원 이정호 교수 연구팀이 세브란스병원 신경외과 강석구 교수와의 공동 연구를 통해 악성 뇌종양인 교모세포종 돌연변이 발생이 암 부위가 아닌 암에서 멀리 떨어진 뇌실하영역에서 발생한다는 사실을 규명했다. 이는 교모세포종 발병의 원인이 암 발생 부위일 것이라는 기존의 학설을 뒤집는 연구 결과로, 악성도가 가장 높은 종양인 교모세포종의 치료법 개발에 새로운 방향을 제시할 것으로 기대된다. 또한 그동안 암 조직만을 대상으로 이뤄진 암 연구가 암의 기원이 되는 조직에 대한 연구로 발전하면서 교모세포종 뿐 아니라 다른 암에 대해서도 치료의 실마리를 찾을 수 있는 기반이 될 것으로 보인다. 의과학대학원 졸업생 이주호 박사가 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처(Nature)’ 8월 1일자 온라인 판에 게재됐다. 교모세포종은 가장 예후가 좋지 않은 종양이다. 암 발생의 근본적인 원인에 대한 이해가 부족해 수술을 하더라도 재발 가능성이 매우 높기 때문이다. 수술만으로 치료가 불가능해 항암치료, 방사선치료, 표적항암제 등을 병행하지만 아직도 그 치료법이 명확하지 않다. 이정호 교수 연구팀은 암 발생 부위가 아닌 종양과 떨어져 있는 뇌실하영역이라는 곳에 주목했다. 교모세포종이 수술 이후에도 재발률이 높다는 점에서 원인이 다른 곳에 있을 것이라고 판단한 것이다. 이 교수는“교모세포종은 종양을 떼어내도 1~2년 후에 재발률이 높다. 암은 돌연변이인데 돌연변이가 발생하는 곳이 종양이 아닌 다른 부위라고 생각했고 그곳이 바로 뇌실하영역(subventricular zone : SVZ)이라는 사실을 밝혀냈다”고 말했다. 연구팀은 2013년부터 2017년 사이에 수술을 한 뇌종양 환자 28명을 대상으로 종양조직 외에 수술 중 제거되는 종양조직, 정상조직, 뇌실주변의 조직 3가지를 조합해 분석했다. 딥 시퀀싱, 단일세포시퀀싱 등을 통해 교모세포종의 시작이 뇌실하영역에서 발생한 낮은 빈도의 종양을 유발하는 돌연변이에 의한 것임을 밝혔다. 특히 유전자 편집 동물 모델을 통해 뇌실하영역에서 돌연변이가 생기면 이 돌연변이를 가진 세포가 뇌실하영역을 떠나 뇌의 다른 부위로 이동해 교모세포종이 되는 사실 또한 확인했다. 돌연변이 세포가 마치 불꽃놀이처럼 곳곳으로 퍼진 뒤 시간이 지나자 다른 부위에서 종양으로 진화한 것이다. 연구팀은 KAIST 교원창업(소바젠, 대표 김병태)을 통해 이번 연구결과를 바탕으로 뇌실하영역의 세포가 교모세포종으로 진화되는 과정을 막기 위한 치료약 개발에 나설 예정이다. 1저자인 이주호 박사는 “암 중 예후가 가장 좋지 않은 교모세포종에 대한 발암의 비밀을 국내 연구진이 풀어냈다는 것에 큰 의미가 있다”며 “악성 뇌종양의 연구와 치료의 획기적 전환점을 최초로 증명하고 제시한 것이다”고 말했다. 이정호 교수는 “암 중 가장 예후가 좋지 않은 교모세포종의 원인을 파악하고 동물 모델 제작까지 성공했다는 점에서 큰 의미가 있다. 환자에게서 찾은 것을 동물에 그대로 반영했기 때문에 여기서 치료를 할 수 있다면 임상까지 가능할 것이다.”고 말했다. 이정호 교수 연구팀은 후천성 뇌 돌연변이에 의한 난치성 뇌전증의 원리와 치료법을 최초로 규명한 바 있다. 이를 토대로 글로벌 제약회사와 함께 임상 2상이 진행될 정도로 난치성 뇌질환의 진단 및 치료법 개발을 세계적으로 리드하고 있다. 이 교수는 한국인으로서는 처음으로 난치성 뇌전증의 유전 병리학적 진단 기준을 세우는 세계 뇌전증학회 핵심 위원으로 참여해 국제 기준을 제정 중이다. 이번 연구는 서경배과학재단, 보건복지부 세계선도의과학자육성사업, 한국연구재단, 보건산업진흥원 사업을 통해 수행됐다. □ 그림 설명 그림1. 교모세포종의 발암의 시작을 불꽃놀이에 비유한 그림 그림2. 동물 실험을 통해 뇌실하영역이 발암의 시발점임을 증명
2018.08.02
조회수 16971
김준 교수, 난치성 유전질환인 섬모병증 치료제 후보 발굴
〈 김준 교수, 김용준 박사과정 〉 우리 대학 의과학대학원 김준 교수가 연세대학교 생명공학과 권호정 교수 연구팀과의 공동 연구를 통해 난치성 유전질환인 섬모병증의 치료제 후보를 개발했다. 이번 연구 결과는 섬모병증 치료제 개발을 위한 기반이 될 것으로 기대되며 유사한 난치성 유전질환에 대한 저분자 화합물 약물 개발 플랫폼으로도 활용 가능할 것으로 예상된다. 김용준 박사과정이 1저자로 참여하고 정인지, 김성수, 정유주 연구원이 공동 저자로 참여한 이번 연구는 의, 과학 분야 국제 학술지 ‘저널 오브 클리니컬 인베스티게이션(Journal of Clinical Investigation)’ 7월 23일자 온라인 판에 게재됐다.(논문명 Eupatilin rescues ciliary transition zone defects to ameliorate ciliopathy-related phenotypes) 세포 소기관인 일차섬모는 배아가 발생하는 과정에서 세포 간 신호전달에 관여하고 망막 광수용체 세포가 기능하는 역할을 하는 등 인체에 중요한 기관이다. 섬모병증은 이러한 섬모의 형성에 필수적인 유전자들의 돌연변이로 인해 발생되며 소뇌발달 및 신장 이상, 망막 퇴행 등의 증상을 보인다. 현재 섬모병증을 치료하는 약물은 개발되지 않았다. 섬모병증 뿐 아니라 기능손실 유전자 돌연변이가 원인이 되는 대부분의 희귀유전질환은 유전자 치료를 제외하고는 치료 약물의 개발이 이뤄지지 않았다. 연구팀은 문제 해결을 위해 섬모병증 원인의 하나인 CEP290 유전자 돌연변이를 유전자 편집기법으로 모사한 세포를 구축한 뒤 화합물 라이브러리 스크리닝 기법을 통해 섬모병증에서 나타나는 섬모형성 부진 현상을 극복할 수 있는 천연 저분자 화합물을 발굴했다. 발굴된 화합물은 CEP290 단백질과 복합체를 이뤄 섬모형성과 기능에 관여하는 단백질(NPHP5)에 작용하는 것으로 밝혀졌다. CEP290 단백질이 유전자 돌연변이로 인해 만들어지지 않는 경우 NPHP5 단백질도 정상적으로 작용하지 못하는데 이 화합물은 NPHP5의 기능을 정상화시켜 복합체가 담당하던 기능의 일부를 회복함을 확인했다. 또한 연구팀은 발굴한 화합물을 섬모병증 증상을 갖는 동물 모델에 주입했고 망막 퇴행 현상을 지연시키는 효과를 입증했다. 1저자인 김용준 박사과정은 “이번 연구는 기능손실 유전자 돌연변이로 인해 발생하는 유전질환도 저분자 화합물 약물로 치료가 가능함을 규명했다는 의미를 갖는다”고 말했다. 김준 교수는 “발굴된 후보약물의 효과를 동물실험을 통해 확인했기 때문에 인체에서의 효과 또한 증명하는 후속 연구를 진행할 예정이다”고 말했다. 이번 연구는 보건복지부 희귀질환연구센터지원사업, 한국연구재단 바이오의료기술개발사업, 글로벌연구실 사업의 지원으로 수행됐다. □ 그림 설명 그림1.섬모형성 이상을 회복시키는 약물 발굴 그림2. 발굴된 약물에 의해 섬모병증 모델 생쥐의 망막퇴행이 지연되는 효과 확인
2018.07.30
조회수 12213
전상용 교수, 건선,아토피 치료용 펩타이드 개발
우리 대학 생명과학과 전상용 교수 연구팀이 피부 전달을 통해 건선을 치료할 수 있는 펩타이드 치료제를 개발했다. 연구팀은 수 년 전 발견한 펩타이드를 나노입자로 제작해 피부를 통해 전달함으로써 동물 모델에서 건선을 치료하는 데 성공했다. 김진용 박사가 1저자로 참여한 이번 연구는 나노분야 국제 학술지 ‘에이시에스 나노(ACS Nano)’ 6월 27일자 온라인 판에 게재됐다.(논문명 :Nanoparticle-Assisted Transcutaneous Delivery of a Signal Transducer and Activator of Transcription 3-Inhibiting Peptide Ameliorates Psoriasis-like Skin Inflammation) 건선은 대표적인 만성 염증성 피부질환으로 전 세계 성인의 약 3%가 앓고 있는 자가 면역질환 중 하나이다. 최근 건선의 원인에 STAT3라는 단백질이 핵심 역할을 한다는 사실이 밝혀졌다. 연구팀은 수 년 전 STAT3라는 단백질의 기능을 저하시킬 수 있는 펩타이드를 최초로 발견해 항암 치료제로 개발한 바 있다. 그러나 건선 피부는 각질층이 매우 두껍기 때문에 피부를 통해 펩타이드를 투과시켜 표적 약물 치료를 하는 데에는 기술적인 한계가 존재했다. 연구팀은 이번 연구에서 길이가 서로 다른 두 개의 인지질과 STAT3 억제 펩타이드가 특정 조건에서 약 30나노미터 크기의 매우 작은 원반 모양의 나노입자를 안정적으로 형성함을 발견했다. 연구팀은 특수 지질성분으로 이뤄진 제형(劑形)을 통해 수십 나노미터 크기의 원판형 나노입자로 이뤄진 STAT3 억제용 펩타이드를 제조했다. 연구팀이 개발한 STAT3 억제 펩타이드는 건선 피부를 가진 동물 모델에 투여했을 때 뛰어난 항염증 효과를 보였고, 건선 발병의 핵심 요소인 각질세포의 과증식과 염증성 싸이토카인인 IL-17 등의 분비를 막는 역할을 했다. 연구팀은 의과학대학원 김필한 교수와의 공동 연구를 통해 펩타이드가 피부 속으로 얼마나 깊이 투과되는지 관찰했고, 이를 통해 나노입자가 각질층을 통과해 진피층 상부까지 전달됨을 확인했다. 전상용 교수는 “STAT3 억제 앱타이드가 난치성 염증성 피부질환인 건선에 대해 우수한 치료 효과를 보이는 바이오 신약 후보물질이 될 수 있음을 확인했다.”며 “효율적인 피부 전달이 가능한 시스템을 구축했다는 점에서 큰 의미가 있으며 향후 임상 적용이 될 것으로 기대한다”고 말했다. 이번 연구는 한국연구재단의 글로벌연구실사업과 바이오의료기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 앱타이드-지질 나노복합체의 건선 유발 생쥐 귀 모델에서의 치료효능 평가 그림2. 앱타이드-지질 나노복합체의 건선 유발 생쥐모델에서의 피부투과 효능 평가
2018.07.17
조회수 15654
이정호 교수, 박상민 연구원, 후천적 뇌 돌연변이로 인한 뇌발달 장애 원인 규명
〈 박 상 민 연구원 〉 우리 대학 의과학대학원 이정호 교수 연구팀이 후천적인 뇌 돌연변이로 인한 뇌전증(간질) 및 자폐증 환자에게 나타나는 신경 세포 이동 장애 증상이 발생하는 원리를 규명했다. 연구팀의 이번 연구 결과는 후천적 뇌 돌연변이로 인한 뇌 발달 장애 환자의 치료에 기여할 수 있을 것으로 기대된다. 박상민 석박사통합과정이 1저자로 참여한 이번 연구 결과는 신경생물학 분야 국제 학술지 ‘뉴런(Neuron)’ 6월 21자에 게재됐다. (논문명: ‘Brain somatic mutations in MTOR disrupt neuronal ciliogenesis, leading to focal cortical lamination’) 이정호 교수 연구팀은 후천적인 뇌 돌연변이가 뇌전증과 자폐증을 유발할 수 있고, 이 돌연변이로 인해 신경 세포 이동 장애 증상이 발생한다는 사실을 이전 연구에서 증명한 바 있다. 그러나 이 신경 세포의 이동 장애가 발생하는 근본적인 원리에 대해서는 완벽하게 밝혀내지 못했다. 연구팀은 난치성 뇌전증 및 자폐증과 밀접하게 연관된 대뇌 피질 발달장애 환자의 뇌 조직에서 엠토르(mTOR) 유전자의 후천적인 뇌 돌연변이가 발생함을 확인했다. 이를 반영한 동물 및 세포 모델을 이용해 대뇌 피질 발달 이상의 원리를 연구했다. 그 결과 엠토르(mTOR) 돌연변이를 가진 신경 세포에서 세포 소기관인 일차 섬모의 생성 기능이 망가져 있음을 확인했고 이것이 환자에게서 발견되는 신경 세포 이동 장애의 원리임을 밝혔다. 엠토르(mTOR) 유전자가 OFD1이라는 단백질을 적절하게 제거하는 역할을 수행해야 하지만 엠토르(mTOR)에 돌연변이가 발생함으로써 OFD1 단백질이 과하게 축적됐고 그것이 신경 세포 이동의 장애 현상으로 이어진 것이다. 연구팀은 돌연변이를 가진 신경 세포에서 과하게 축적돼 일차 섬모 생성을 방해하는 역할인 OFD1 단백질의 발현을 억제시킴으로써 일차 섬모의 생성을 회복시켰다. 이를 통해 신경 세포의 이동을 정상 수준으로 되돌렸다. 1저자인 박상민 석박사통합과정은 “후천적 뇌 돌연 변이로 인한 뇌 발달 장애 환자에서 관찰되는 대표적 증상인 신경 세포 이동 결함이 그동안 주목받지 않았던 일차 섬모라는 세포소기관의 생성으로 설명할 수 있다는 점을 발견했다”고 말했다. 연구팀은 이번 연구 결과를 바탕으로 후천적 뇌 돌연변이로 인한 뇌 발달 장애 환자의 새로운 치료제 개발을 위한 후속 연구를 진행 중이다. 이번 연구는 서경배 과학재단, 보건복지부 세계선도 의생명과학자 육성 사업, 질병중심 중개 중점 연구 사업을 통해 수행됐다. □ 그림 설명 그림1. 후천적 뇌 돌연 변이의 대뇌 피질 발달 장애 환자의 뇌 조직, 동물 모델에서 망가진 일차섬모 생성 그림2. 일차섬모 생성을 회복시킨 대뇌 피질 발달 장애 모델에서 신경 세포의 이동이 정상 수준으로 돌아옴
2018.06.25
조회수 10044
김대수, 이필승 교수, 소유욕을 만드는 뇌 신경회로 발견
“시상하부의 특정 신경을 자극했더니 생쥐가 장난감에 엄청난 집착을 보였습니다. 물건을 가지려는 욕구를 만들어내는 신경으로서 유용한 자원을 탐색하고 소유하려는 욕구를 이해하는데 중요한 발견입니다 ” 사람과 동물은 다양한 사물을 탐색하고 획득하고자 하는 욕구가 있다. 생존을 위한 먹이나 유용한 물건 획득을 위해서다. 세계적으로 열풍이 불었던 포켓몬 고 같은 게임에서 아이템 획득하는데 몰입하는 것도 같은 원리이다. 인간에게 이러한 욕구는 경제활동을 비롯한 다양한 행동의 동기가 된다. 그러나 물건에 대한 욕구는 본능이기에 쉽게 조절할 수 없을뿐더러 잘못된 습관이나 질환으로 이어질 수 있다. 부족함이 없어 보이는 유명인들도 물건을 습관적으로 훔치다가 낭패를 보는 사례를 접하곤 한다. 또한 쓸모없는 물건을 집안에 모으고 버리지 못하는 수집 강박증이나 쇼핑 중독에 빠지는 경우도 있다. 물건에 대한 과도한 집착은 정신 질환의 일종으로 분류돼 있지만 그 원인에 대해서는 정확히 밝혀진 바가 없었다. KAIST 생명과학과 김대수, 기계공학과 이필승 교수 연구팀은 전시각중추(MPA, Medial preoptic area)라 불리는 뇌의 시상하부 중 일부가 먹이를 획득 및 소유하려는 본능을 만들어낸다는 사실을 밝혔다. 또한 전시각중추 신경을 활용해 동물의 행동과 습관을 조절할 수 있는 기술을 개발했다. 연구팀은 한 쥐에게는 장난감을 갖고 놀게 하고 다른 쥐는 따로 물체를 주지 않은 뒤 뇌를 분석했다. 이 과정에서 MPA(전시각중추) 신경회로가 활성화됨을 발견했다. 그 후 광유전학을 이용해 빛으로 MPA를 자극하자 물체 획득을 위해 실험체가 집착하는 이상행동을 보이는 것을 확인했다. 연구팀은 MPA신경이 수도관주위 회색질(PAG, Periaqueductal gray)로 흥분성 신호를 보내 행동을 만들어낸다는 사실을 규명해 연구팀은 이것을 MPA-PAG 신경회로라 이름 지었다. 김대수 교수는 “쥐가 먹이가 아닌 쓸데없는 물체에 반응하는 놀이행동의 의미를 찾기가 쉽지 않았습니다. MPA-PAG 회로를 자극했을 때 귀뚜라미 등의 먹잇감에 대한 사냥행동이 증가하는 것을 발견했습니다. 이것은 물체를 갖고 노는 것이 먹이 등의 유용한 사물을 획득하는 행동과 동일한 신경회로를 통해 나타남을 의미합니다”고 설명했다. 어린동물이 물체를 가지고 노는 것이 사냥 등 생존에 유용한 기술을 획득하는 것과 깊은 관련이 있다는 발견이다. 연구팀은 MPA가 물건에 대한 집착과 소유욕과 밀접한 관련이 있음을 밝혀낸 뒤 이를 조절하는 기술 개발에 착수했다. 생쥐 머리위에 물체를 장착해 눈앞에서 좌우로 움직일 수 있도록 무선으로 조종하고 MPA-PAG 신경회로를 자극해 생쥐가 눈앞에 물체를 따라가도록 한 것이다. 이것은 고등동물인 포유류의 행동을 원하는 방향으로 조종한 기술로 연구팀은 미다스(MIDAS)라고 명명하였다. 이필승 교수는 “미다스 기술은 동물의 탐색본능을 활용하여 동물 스스로 장애물을 극복하며 움직이는 일종의 자율주행 시스템입니다. 뇌-컴퓨터 접속 기술의 중요한 혁신으로 생각합니다. 앞으로 국내에서도 이러한 연구들이 많이 시도될 수 있도록 지원이 있었으면 좋겠습니다.”고 말했다. 이번 연구는 신경과학과 시스템 공학이라는 접점이 부족해 보이는 두 분야가 만나 적극적인 논의를 통해 매우 모범적인 융합 연구의 사례라는 의미를 갖는다. 생명과학 전공 박세근 박사는 전시각중추가 물건에 집착하는 회로라는 것을 밝혔고, 기계공학 전공인 김대건 박사는 컴퓨터 프로그래밍과 동물 무선제어에 큰 기여를 했다. 공동연구의 중간역할을 한 정용철 박사과정은“서로 용어 조차 다른 신경 과학과 시스템 제어 공학이라는 전혀 다른 두 분야를 서로가 완벽히 이해해야만 했고, 이를 위해 팀원들과 함께 끊임없이 논의하고 연구했습니다. 그 시간이 가장 재미있는 과정이자 가장 큰 과제였습니다. 김 교수는 신경 회로 기능의 중요성을 다시 한 번 실감했을 뿐 아니라 우리 사회에 큰 영향을 끼칠 수 있을 것이라고 의의를 밝혔다. “수집 강박, 도벽, 게임중독 등을 치료할 수 있는 단서를 제공했다고 생각합니다. 이러한 지식을 통해 만들어진 뇌-컴퓨터 접속기술은 국방, 재난 구조 등에 활용될 것입니다.” □ 그림 설명 그림1. 소유욕을 이용해 포유동물 행동을 조절하는 MIDAS 시스템 모식도 그림2. 전시각 중추 신경회로가 소유행동을 나타내는 모식도
2018.03.15
조회수 14444
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
>
다음 페이지
>>
마지막 페이지 17