본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A0%84%EA%B8%B0%EB%B0%8F%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99
최신순
조회순
최경철 교수, 직물위에 유기발광다이오드(OLED) 형성 기술 개발
〈 학술지에 게재된 표지논문 〉 옷처럼 편하게 입으면서도 디스플레이 기능을 수행할 수 있는 OLED 기술이 개발됐다. 우리 대학 전기및전자공학부 최경철 교수 연구팀이 직물 기판 위에 유기발광다이오드(OLED)를 형성해 웨어러블 디스플레이를 실현할 수 있는 원천기술을 개발했다. 연구팀의 직물 OLED는 다층 박막봉지 기술(Thin-film Encapsulation)을 적용한 상태에서도 유연함을 잃지 않았고 1천 시간 이상의 동작 수명을 유지했다. ㈜코오롱글로텍과 공동으로 진행된 이번 연구는 나노전자 기술 분야 국제 학술지 ‘어드밴스드 일렉트로닉 머티리얼즈(Advanced Electronic Materials)’ 11월 16일 표지논문으로 선정됐다. 플라스틱 기판을 기반으로 한 유연 디스플레이는 플라스틱 기판이 얇을수록 뛰어난 유연성을 보인다. 하지만 얇게 만들수록 쉽게 찢어지는 문제가 발생하고 내구성이 약해지게 된다. 반면 직물은 씨실과 날실로 이뤄진 구조로 전체 직물은 두껍지만 여러 가닥의 수 마이크로미터 두께의 섬유들이 엮여있어 매우 유연하면서도 뛰어난 내구성을 갖는다. 연구팀은 이 점에 주목해 직물 OLED 형성 기술을 연구했다. 일반 옷감에 쓰이는 직물은 표면이 거칠고 온도 상승에 따라 부피가 팽창하는 열팽창계수(Coefficient of Thermal Expansion)가 커 열 증착 과정을 거치는 OLED 소자 형성 과정에서 문제가 발생한다. 연구팀이 개발한 평탄화 공정은 이러한 문제를 해결했다. 직물의 유연한 성질을 잃지 않으면서도 유리 기판과 같이 평평한 형태의 직물을 구현했다. 또한 이 평탄화된 직물은 동일 두께의 플라스틱 기판보다 더 유연했다. 연구팀은 평탄화 된 직물 위에 진공 열 증착 공정으로 OLED를 형성했고 OLED를 보호하기 위해 수분과 산소의 침투를 막는 다층 박막봉지 기술을 적용했다. 다층 박막봉지 기술이 적용된 직물 OLED는 1천 시간 이상의 동작 수명과 3천 500시간 이상의 유휴 수명을 갖는 것으로 확인됐다. 결과적으로 플라스틱보다 유연하면서 소자의 신뢰성까지 보장할 수 있는 디스플레이 소자를 구현했다. 연구팀은 이번 연구 결과가 산업적으로 플라스틱 OLED에서 진보된 패브릭 기판의 OLED 기술을 제시할 것이라고 예상했다. 최 교수는 “플라스틱보다 유연하면서 뛰어난 신뢰성을 보인 직물 OLED는 옷처럼 편한 웨어러블 디스플레이를 구현할 수 있을 것이다”며 “작년 실 한 올마다 OLED를 구축했던 성과에 이어 보다 실현 가능한 기술을 개발했다는 데 의미가 있다”고 말했다. 김우현 박사와 권선일 박사과정이 공동 1저자로 참여한 이번 연구는 산업통상자원부의 산업기술혁신사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 제작된 직물 기판 위에 형성된 OLED 구동 사진 그림2. 직물 위에 형성된 OLED 구조 그림3. 단면 SEM 사진
2016.11.22
조회수 18658
최정우, 조병진, 김상욱 교수, 3차원 그래핀 기반 평판 스피커 개발
우리 대학 전기 및 전자공학부 최정우, 조병진 교수, 신소재공학과 김상욱 교수 공동 연구팀이 3차원 그래핀 에어로젤을 이용해 전기 에너지로부터 박막의 진동 없이 소리를 발생시킬 수 있는 초박형 열음향 스피커를 개발했다. 이번 연구 결과는 나노 분야 학술지 ‘에이씨에스 에이엠아이(ACS AMI : ACS advanced Materials & Interfaces)’ 8월 17일자 온라인 판에 게재됐고 9월 9일자 IEEE 스펙트럼을 통해 외신에 소개됐다. 이번 연구는 김충선 박사과정, 이경은 박사과정, 기계공학과 이정민 박사가 공동 저자로 참여했다. 열음향 스피커란 얇은 도체에 교류 전기 신호를 인가함으로써 발생되는 열의 파동을 통해 공기의 진동을 발생시키는 원리로 소리를 낼 수 있는 스피커이다. 기존의 다이내믹 스피커와 다르게 매우 얇고 유연하게 만들 수 있다. 또한 박막의 진동 없이 소리를 발생시킬 수 있고 모든 방향으로 동일한 위상의 소리가 발생되기 때문에 어떠한 구조물에 붙이더라도 감쇄 없이 소리를 발생시킬 수 있는 장점이 있다. 열음향 스피커는 열을 발생시키는 도체의 열용량이 작을수록 효율이 높아져 그래핀 등의 얇은 박막이 스피커 구현의 적합한 재료로 여겨진다. 그러나 매우 얇은 나노 박막들을 지지하기 위한 기판에 의한 열 손실은 열음향 스피커의 효율을 감소시키는 문제점으로 지적됐다. 연구팀은 수 나노미터의 그래핀으로 이루어진 삼차원 그래핀 에어로젤 구조를 열음향 스피커에 적용시켜 그래핀의 열용량은 유지하면서 기판으로의 열 손실은 최소화된 삼차원 그래핀 열음향 스피커를 제안했다. 김상욱 교수 연구팀에서 개발한 이 삼차원 그래핀 구조는 산화 그래핀 용액을 동결 건조하고 열처리해 환원 및 도핑하는 간단한 과정을 통해 얻어질 수 있어 대량 생산이 가능하고 원하는 모양대로 가공이 가능하다. 최정우, 조병진 교수 공동 연구팀은 삼차원 그래핀이 최적의 효율로 소리를 발생시키기 위한 조건 및 구조를 이론적, 실험적으로 규명했다. 그리고 이를 사용해 어레이 형태의 스피커를 제작했고 현재까지 보고된 이차원 및 삼차원 열음향 스피커에 비해 향상된 음압 레벨을 보임을 입증했다. 제 1저자인 김충선 박사과정은 "이번 연구를 통해 대량 생산이 가능한 삼차원 그래핀 에어로젤로 손쉽게 제작이 가능한 열음향 스피커를 개발했다"며 "교내의 다양한 주제로 연구중인 그룹들이 가지고 있는 기술의 융합이 성과를 내는 데 큰 도움이 됐다"고 말했다. 이번 연구는 삼성미래기술 육성센터 및 한국연구재단 창의연구지원사업 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 16개의 삼차원 그래핀 에어로젤로 구성된 어레이 열음향 스피커 그림2. 제작 과정 및 삼차원 그래핀 에어로젤의 특성
2016.09.30
조회수 13592
최양규 교수, 5단 나노선 통한 D램-플래시 융‧복합메모리 개발
우리 대학 전기 및 전자공학부 최양규 교수와 이병현 박사과정이 나노선의 5단 수직 적층 기술을 통해 D램과 플래시 메모리 동작이 동시에 가능한 융합메모리 반도체 소자를 개발했다. 이번 연구 결과는 나노 분야 학술지 ‘나노 레터스(Nano Letters)’ 8월 31일자 온라인 판에 게재됐다. 메모리 반도체는 정보화 기술 사회의 핵심 기기로서 국내 반도체 산업의 주력 제품이다. 메모리 반도체 분야는 크게 D램과 플래시 메모리로 양분되는데 이는 각 메모리가 가진 고유 특성 때문이다. D램은 빠른 동작속도를 자랑하지만 휘발성 메모리이기 때문에 안정적 정보 저장을 위해 전력이 많이 소모된다. 반면 플래시 메모리는 D램에 비해 느린 동작속도가 문제점으로 지적된다. 연구팀은 D램과 플래시 메모리 기능이 하나의 트랜지스터 안에서 동시에 동작하는 전면-게이트 실리콘 나노선 구조 기반의 융합 메모리 소자를 제안했다. 그러나 이 구조는 트랜지스터의 소형화에 따른 나노선 면적 감소로 인해 동작 전류도 같이 감소됐고 이는 메모리 소자 성능의 저하로 이어졌다. 문제 해결을 위해 연구팀은 전면-게이트 실리콘 나노선을 수직으로 5단까지 쌓았다. 이러한 5단 수직 집적 실리콘 나노선 채널을 보유한 융합 메모리소자는 단일 나노선 기반의 메모리 소자와 대비해 5배의 향상된 성능을 보였다. 이 연구를 통해 시스템 레벨에서 칩 사이즈의 소형화 및 전력 효율의 개선, 패키징 공정 단순화를 통한 제작비용 절감 등이 가능하다. 시스템 안에서 칩 간의 간섭효과를 줄여줌으로써 시스템 전체 속도 향상에도 기여가 가능해 융합 메모리의 실효성이 높아질 것으로 기대된다. 또한 수직 집적 나노선 구조는 말 그대로 위쪽으로 채널이 쌓여있기 때문에 단일 구조와 달리 면적이 증가되지 않아 집적도 향상에도 기여할 수 있다. 이러한 수직 집적은 지난 해 최양규 교수 연구팀에서 개발된 일괄 플라즈마 건식 식각 공정을 통해 이뤄졌다. 이병현 연구원은 이 기술을 통해 작년 비 메모리 반도체 소자 개발에 성공했고, 이번 연구를 통해 고성능 융합 메모리 소자를 개발했다. 최양규 교수는 “이번 연구를 통한 메모리 반도체의 제작 공정과 성능의 개선 및 높은 실효성이 기대된다”며 “궁극적으로는 메모리 반도체의 소형화를 계속 이어나갈 것으로 예상한다”고 말했다. 이병현 연구원은 “나노종합기술원의 강민호 박사를 포함한 관련 엔지니어들의 적극적 기술 지원이 큰 도움이 됐다”고 말했다. 이번 연구는 미래창조과학부 글로벌프론티어사업 스마트IT융합시스템 연구단과 미래유망융합파이오니아 사업의 씨모스(CMOS) THz 기술 융합 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 전자 현미경 사진 및 투과 전자 현미경 사진 그림2. 고성능 융합메모리에 대한 요약 모식도
2016.09.21
조회수 11517
유승협 교수, 열차단과 전기생산 동시에 가능한 태양전지 개발
〈 유 승 협 교수 〉 우리 대학 전기 및 전자공학부 유승협 교수와 성균관대 화학공학부 박남규 교수 공동 연구팀이 열을 차단하는 동시에 전기도 생산할 수 있는 반투명 태양전지 기술을 개발했다. 이는 다층 금속 박막 기반의 투명전극을 이용한 기술로써 가시광선은 투과하고 적외선(열선)은 선택적으로 반사한다. 동시에 전기도 생산하기 때문에 에너지를 효율적으로 사용하면서 낮은 실내 온도를 유지할 수 있다. 자동차 선팅이나 건물 창호 등에 다방면으로 이용 가능할 것으로 기대된다. 이번 연구 성과는 에너지 분야 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 7월 20일자 표지 논문으로 선정됐다.(논문명: Empowering Semi-Transparent Solar Cells with Thermal-Mirror Functionality) 태양전지는 지붕 위에 설치하는 청색의 사각 패널 뿐 아니라 건물이나 차량 유리창에 적용할 수 있는 반투명 모양으로도 발전될 수 있다. 하지만 빛을 흡수해 전기를 생산하는 태양전지의 속성 상 빛을 투과시키는 태양전지의 반투명한 특성은 효율을 감소시킬 수밖에 없다. 또한 기존의 상용화된 결정질 실리콘 기반의 태양전지는 반투명하게 제작이 어렵다는 한계를 갖는다. 연구팀은 문제 해결을 위해 차세대 태양전지 재료로 주목받는 유, 무기 복합물로 이뤄진 페로브스카이트를 광전변환 재료로 이용했다. 그리고 양면에 투명 전극을 사용해 반투명한 태양전지를 구현했다. 이 때 한쪽 면의 투명 전극은 연구팀이 수년 간 전자소자에 적용해온 ‘절연층-금속-절연층’ 구조의 금속 기반 다층 박막을 사용했다. 금속은 통상적으로 빛이 투과되기 어렵다. 하지만 연구팀은 수십 나노미터 두께의 얇은 박막으로 제작한 뒤 그 위에 반사를 줄이는 굴절률이 높은 절연층을 적층하는 방법으로 투명한 전극을 구현했다. 또한 투명 전극 각 층의 두께를 세밀하게 조절해 사람의 눈에 보이는 가시광선 대역의 빛은 투과시키고, 눈에 보이지 않는 대역의 빛은 반사되도록 설계했다. 이를 통해 차량용 선팅 필름과 비슷한 수준인 7.4% 평균 가시광선 투과율을 갖는 동시에 13.3%의 광전변환효율을 보이는 반투명 태양전지 제작에 성공했다. 연구팀은 적외선 반사를 최대화해 태양광의 열선을 효과적으로 반사시키는 기능을 더했다. 선팅 필름 제품의 태양열차단 성능은 총태양열에너지차단율(Total Solar Energy Rejection : TSER) 지수로 평가되는데 연구팀의 반투명 태양전지는 고가 선팅 필름 제품과 동등한 수준인 89.6%의 우수한 TSER 값을 보였다. 다수의 선팅 필름 제품들이 흡수를 통해 태양빛을 차단하기 때문에 태양빛에 노출 시 필름 자체의 온도가 올라간다. 반면 연구팀의 태양전지는 반사를 통해 열을 차단해 빛에 노출돼도 온도가 거의 올라가지 않아 태양전지의 안정성 향상 측면에서도 유리할 것으로 기대된다. 유 교수는 “열 차단 기능성 반투명 태양전지는 추가적 광학 설계를 통해 색 조절도 가능하고 궁극적으로는 필름형으로도 제작 가능해 기존 차량 및 건물의 유리창을 멋있고 스마트하게 업그레이드할 수 있을 것이다”며 “태양전지가 친환경 에너지를 생산하는 것에서 더 나아가 새로운 부가가치를 갖출 때 기존보다 더 큰 시장을 개척할 수 있을 것이다”고 말했다. 김호연, 하재원 박사과정 학생과 성균관대 김희선 학생이 공동으로 참여한 이번 연구는 KAIST 기후변화연구허브 사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 게재된 저널의 표지논문 그림 그림2. 태양전지 사진 그림3. 열화상 사진 그림4. 모식도
2016.08.01
조회수 14110
유승협 교수, 효율성과 유연성 갖춘 OLED 기술 개발
〈 유 승 협 교수 〉 우리 대학 전기및전자공학부 유승협 교수와 POSTECH 신소재공학과 이태우 교수 공동 연구팀이 손상 없이 반복적으로 휘어지면서 우수한 효율을 갖는 플렉서블 유기발광다이오드 (OLED) 기술을 개발했다. 그래핀, 산화티타늄, 전도성 고분자를 복합 전극으로 활용하는 이 기술로 효율 극대화와 우수한 유연성을 동시에 얻을 수 있어 향후 편의성과 활용도를 높일 수 있을 것으로 기대된다. 최성율 교수, 김택수 교수가 공동 연구팀으로 참여하고 이재호 박사과정 학생, POSTECH 한태희 박사와 박민호 박사과정 학생이 공동 1저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 2일자 온라인 판에 게재됐다. 현재 플렉서블 OLED 기술은 엣지형 스마트폰, 커브드 OLED 텔레비전 등에 사용되지만 플렉서블 OLED를 곡면 형태로 휘게 만든 후 고정 시키는 방식으로만 적용되고 있다. 반복적 휨이 가능한 플렉서블 OLED의 구현을 위해선 소재 및 관련 기술의 지속적 발굴이 중요하다. 특히 반복적으로 휘어질 때 각 구성 요소들이 깨지거나 손상되지 않도록 하는 것이 매우 중요하다. 그래핀은 얇은 두께를 통한 우수한 유연성 및 전기적 특성, 광학적 투명성을 갖는다. 이 특성들은 OLED에 주로 사용되는 산화물계 투명전극의 쉽게 깨지는 현상을 극복할 수 있는 기술로 각광받고 있다. 그러나 플렉서블 OLED가 주로 쓰이는 웨어러블 기기는 배터리 용량이 제한적이기 때문에 유연성과 동시에 OLED의 효율을 함께 확보하는 것이 중요하다. OLED는 일반적으로 공진현상(Resonance)(용어설명) 현상을 활용해 발광 효율을 향상시킬 수 있다. 공진현상을 일으키기 위해서는 일정량 이상의 빛 반사가 발생하는 투명 전극이 필요한데 그래핀만을 투명전극으로 사용하면 반사가 적어 광 효율이 낮다는 한계가 있다. 연구팀은 위의 유연성 및 효율성 문제를 해결하기 위해 기존의 그래핀에 산화티타늄(TiO2)과 전도성 고분자 형태를 결합한 복합 전극층을 개발했다. 이 구조에서 각각의 전극 층은 서로의 단점을 보완해주는 협력적 역할을 해 공진 효과를 극대화한다. 연구팀이 개발한 복합전극 층은 산화티타늄의 높은 굴절률과 전도성 고분자의 낮은 굴절률이 함께 활용된다. 이를 통해 전극으로부터의 유효 반사율을 높여줘 공진현상이 충분히 활용될 수 있다. 또한 전도성 고분자의 낮은 굴절률은 표면 플라즈몬의 손실로 인한 효율 감소까지 줄여준다. 기존 27.4%의 양자효율에서 1.5배 향상된 40.5%의 외부양자효율을 보이는 OLED를 구현했다. 이는 동일 발광재료를 이용해 보고된 그래핀 기반 OLED 중 가장 높은 효율이다. 효율을 향상시키는 구조를 도입하면 유연성 등의 다른 특성이 나빠지는 트레이드 오프 현상이 종종 발생한다. 연구팀은 산화티타늄 막이 구부러질 때 깨짐을 방해하는 자체 특성이 있어 기존 산화물 투명전극보다 4배 높은 변형에도 견디는 것을 확인했다. 이를 이용해 유연성 저하를 최소화하고 성능 극대화에 성공했다. 연구팀의 플렉서블 OLED는 곡률 반경 2.3mm에서 1천 회 구부림에도 밝기 특성이 변하지 않아 높은 성능과 유연성을 동시에 확보할 수 있음을 증명했다. 유 교수는 “분야를 넘어선 융합연구가 아니었다면 이번 연구는 불가능했을 것이다”며 “이번 연구 성과가 플렉서블, 웨어러블 디스플레이나 인체 부착형 센서용 플레서블 광원의 성공에 중요한 기틀을 제공할 것이다”고 말했다. 이번 연구는 한국연구재단 공학연구센터 사업의 일환인 차세대 플렉서블 디스플레이 융합센터 (CAFDC), 글로벌 프론티어 소프트 일렉스토닉스 연구단, KAIST 그래핀 연구센터, 산업통상자원부의 IT R&D 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 그래핀 복합 전극층 기반 OLED의 동작사진 그림2. 산화티타늄 (TiO2)-그래핀-전도성 고분자 복합 전극 기반 플렉시블 OLED 구조 모식도
2016.06.03
조회수 15079
동작 인식 증강현실 스마트 안경 개발
〈 유 회 준 교수 〉 우리 대학 전기 및 전자공학과 유회준 교수 연구팀이 동작 인식이 가능한 증강 현실 전용 초저전력 스마트 안경 ‘케이 글래스 3(K-Glass 3)’를 개발했다. 유 교수 연구팀은 2014년 증강현실을 기반으로 한 케이 글래스 1, 2015년 시선추적이 가능한 케이 글래스 2에 이어 동작 인식이 가능한 3번째 버전의 케이 글래스 3를 발표했다. 이번 연구는 지난 달 31부터 5일간 미국 샌프란시스코에서 열린 국제고체회로설계학회(ISSCC)에서 발표됐다. 케이 글래스 3의 핵심 기술은 스테레오 카메라 시스템이다. 이를 통해 사용자가 가상 키보드를 타이핑하거나 가상 피아노 연주를 하는 등의 증강 현실을 체험할 수 있다. 기존 안경형 스마트 기기에서는 텍스트 전송을 위한 UI/UX(사용자 인터페이스 및 경험)가 없어 텍스트에 익숙한 사용자들에게 유용할 것으로 기대된다. 최근 대기업에서 발표되는 증강현실 기기들은 복잡한 알고리즘 처리를 위한 컴퓨터가 추가로 요구되고, 가상 아이콘 클릭 등의 심화 동작을 인식하기 위한 전용 센서를 필요로 한다. 이는 평균 3와트(W) 이상의 많은 전력을 소모시켜 스마트폰 대비 20%에 불과한 스마트 안경 시스템에서 사용하기엔 부적합하다. 그러나 케이 글래스 3의 스테레오 카메라 시스템은 복잡한 스테레오 비전 알고리즘을 초저전력 프로세서 내에서 평균 20mW의 효율로 가속하기 때문에 24시간 이상 동작 가능하다. 이는 연구팀이 저전력 딥러닝 전용 멀티코어를 모바일 기기에서 가속할 수 있도록 개발해 전용 프로세서 내에 집적했기 때문에 가능했다. 딥러닝 멀티코어는 총 7개의 고성능 코어로 구성돼 있고 사용자 동작 인식을 33ms 이내의 빠른 속도로 가속해 편리함을 증가시켰다. 또한 동작을 탐지해 사용하지 않을 때는 작동을 멈춰 초저전력으로 가속할 수 있다. 연구팀은 스마트 안경 시장이 스마트폰을 대체하기 위해선 저전력, 소형화는 물론 편리하고 직관적인 유저 인터페이스 및 경험(UI/UX) 개발이 필수적이라고 말했다. 이에 유 교수는 “케이 글래스 3는 기존 안경형 디스플레이(HMD)가 지원하지 않는 편리하고 직관적인 UI를 결합해 하나의 저전력 시스템으로 구현하는 데 성공했다”며 “미래 스마트 모바일 IT 분야에서 혁신적 변화를 주도할 것이다”고 말했다. 박성욱 박사과정 학생이 주도한 이번 연구는 유저 인터페이스 및 경험 개발 기업인 UX Factory와의 협업을 통해 진행됐다. □ 그림 설명 그림1. 착용 이미지 그림2. 케이글래스 3 실제사진 그림3. 케이글래스 3를 통해 구현한 가상키보드,가상피아노
2016.02.25
조회수 12517
5단 수직 적층 반도체 트랜지스터 개발
우리 대학 전기 및 전자공학부 이병현 연구원(지도교수 최양규)과 나노종합기술원(원장 이재영) 강민호 박사가 실리콘 기반의 5단 수직 적층 반도체 트랜지스터를 개발했다. 그리고 반도체 트랜지스터를 이용한 비휘발성 메모리 개발에 성공했다. 이번 연구는 나노 분야 학술지 ‘나노 레터스(Nano letters)’ 11월 6일자 온라인판에 게재됐다. 반도체 트랜지스터 분야는 모든 전자기기의 핵심 구성요소로 국내 산업과 경제 발전에 큰 영향을 끼쳤다. 세계적 추세에 따라 치열한 소형화를 통해 생산성과 성능의 향상을 거듭했으나 최근 10나노미터 시대에 접어들며 제작 공정의 한계 및 누설전류로 인한 전력소모 문제가 커지고 있다. 학계 및 산업계는 문제 해결을 위해 전면-게이트 실리콘 나노선 구조를 개발했다. 이는 누설전류 제어에 가장 효과적인 구조로 저전력 트랜지스터 개발에 이용됐다. 그러나 이 역시 소형화에 따른 나노선 면적 감소로 성능 저하의 한계가 있었다. 연구팀은 전면-게이트 실리콘 나노선을 수직으로 5단으로 쌓아 문제를 해결했다. 이 5단 적층 실리콘 나노선 채널을 보유한 반도체 트랜지스터는 단일 나노선 기반의 트랜지스터보다 5배의 향상된 성능을 보였다. 또한 수직 적층 나노선 구조는 말 그대로 위로 쌓기 때문에 단일 구조와 달리 면적이 증가되지 않아 집적도 향상에도 기여할 수 있다. 나노선 수직 적층은 개발된 ‘일괄 플라즈마 건식 식각 공정’ 방식을 통해 이뤄졌다. 이 공정은 고분자 중합체를 이용해 패턴이 형성될 영역에 미리 보호막을 친 뒤 등방성 건식 식각을 통해 나노선 구조를 형성하는 기술이다. 수직 적층 나노선 구조는 이 기술의 연속 작용을 통해 확보한 결과물이다. 이 기술은 지속적 소형화로 인해 기술적 한계에 부딪힌 반도체 트랜지스터 분야에 새로운 돌파구를 제시할 것으로 기대된다. 관련 연구가 이전부터 진행됐지만 더 간단한 공정기술을 이용해 가장 많은 나노선 채널의 적층에 성공했기 때문에 비용절감 및 제작 시간 단축, 반도체 트랜지스터의 성능 향상으로 인한 상용화 등에 크게 기여할 것으로 예상된다. 연구팀은 건식 식각 공정 기술이 기존 방법보다 간단하고 안정적으로 수직 적층 실리콘나노선 구조 제작을 가능하게 함으로써 고성능 트랜지스터 개발에 응용 가능할 것이라고 밝혔다. 이병현 연구원과 강민호 박사는 “이번 기술 개발은 미래창조 국가 나노기술 인프라 기관 나노종합기술원의 훌륭한 반도체 연구 기반과 김진수 부장 포함 관련 연구진들의 우수한 공정 능력이 뒷받침돼 가능했다”고 소감을 말했다. 이번 연구는 글로벌프론티어사업 스마트IT융합시스템 연구단의 지원을 받아 수행됐다. 연구를 주도한 이병현 연구원은 우리 대학 최양규 교수 지도하에 박사과정을 수행 중이며, 삼성전자 메모리 사업부의 책임 연구원으로 재직 중이다. □ 그림 설명 그림1. 일괄 플라즈마 건식 식각 공정 과정의 모식도. 그림2. 서로 다른 방향에서 단면을 관찰한 주사 전자 현미경 사진 및 투과 전자 현미경 사진
2015.11.24
조회수 12801
섬유 유기 발광 디스플레이 제작 기술 개발
최 경 철 교수 우리 대학 전기 및 전자공학부 최경철 교수 연구팀이 웨어러블 디스플레이에 적용할 수 있는 섬유 기반의 유기 발광 디스플레이 원천기술을 개발했다. 이 기술은 섬유 자체에 유기 발광 디스플레이를 제작할 수 있는 원천 기술로, 성과를 인정받아 나노 전자기술 분야 국제학술지인 ‘어드밴스드 일렉트로닉 머터리얼스(Advanced electronic materials)’ 7월 14일자 온라인 판에 게재됐다. 기존 웨어러블 디스플레이는 심미적 디자인 구현을 위해 옷 위에 부착하는 방식이다. 이 방법은 딱딱하고 유연하지 않아 실생활 적용이 어렵고, 직물의 특성을 유지하기 어렵다는 한계가 있었다. 연구팀은 문제 해결을 위해 평평한 기판 위에 유기 발광 디스플레이를 제조하는 기존 방식을 탈피했다. 대신 직물을 구성하는 요소인 섬유에 주목해 섬유 자체에 유기 발광 디스플레이를 제작했다. 이를 통해 섬유의 특성을 그대로 유지하면서도 디스플레이 기능을 살릴 수 있는 섬유 디스플레이를 구현했다. 이 기술의 핵심은 딥 코팅 공정법으로 실과 같은 3차원 형상의 기판을 용액에 담궜다 빼내며 일정한 유기물 층을 형성하는 방법이다. 이를 통해 기존 열 증착방식을 통해 제작이 어려웠던 원기둥 형상과 같은 3차원 기판에도 손쉽게 유기물 층을 형성할 수 있다. 또한 인출속도 조절을 통해 수십-수백나노 단위의 두께 조절이 가능하다. 이 기술은 두루마리 가공 기술(Roll to Roll)을 통한 연속 생산으로 저비용, 대량 생산이 가능해 섬유 기반 웨어러블 디스플레이의 상용화를 앞당길 것으로 기대된다. 최 교수는 “직물 구성 요소인 섬유에 유기발광 디스플레이를 제조할 수 있는 원천기술이다.”며 “웨어러블 디스플레이의 진입 장벽을 크게 낮출 것이다”고 말했다. 제 1 저자인 권선일 박사과정 학생은 “이 기술을 활용해 옷처럼 편안하게 입을 수 있는 웨어러블 디스플레이 제조가 가능할 것이다”고 말했다. □ 그림 설명 그림 1. 섬유 기반의 유기 발광 다이오드를 적용한 미래 웨어러블 디스플레이 개념도 그림 2. 딥 코팅 법을 이용한 섬유 기반의 유기 발광 다이오드 공정 모식도 그림 3. 제작된 섬유 기반의 유기 발광 다이오드의 사진
2015.08.05
조회수 9613
와이파이만 자동 감지해 다운로드하는 기술 개발
해외출장이 잦은 김 모 씨는 스마트폰에 영화를 다운받아 기내에서의 무료함을 달랜다. 그는 아침 회의에 들어가기 전 오후 5시까지만 다운을 완료하면 된다는 데드라인을 설정하고, 여러 일정을 마친 후 시간이 되자 기내에 탑승했다. 스마트폰을 확인하니 다운이 완료됐고, 자동으로 와이파이만 인식해 다운로드 했기 때문에 LTE 데이터는 전혀 소비되지 않았다. 우리 대학 전기및전자공학과 박경수, 이융, 정송 교수 연구팀은 와이파이와 이동통신 망의 단절을 자동으로 감지해 모바일 콘텐츠를 전달하는 기술 및 시스템을 개발했다. 이동통신 망에서 와이파이 망으로 데이터를 분산시키고 이양하는 것을 와이파이 오프로딩이라 한다. 이는 스마트폰에서 쉽게 볼 수 있는 기능이다. 그런데 현재의 와이파이 오프로딩은 원활하지 않아 자동적 시스템이 아닌 개인의 선택에 의해 이뤄지고 있다. 와이파이 망을 벗어나 이동하는 경우 연결이 단절되고 버퍼링이 발생해, 사용자들은 한 곳에서만 와이파이를 사용하거나 아예 해제하고 이동통신망을 이용하는 것이다. 원활한 오프로딩을 위해 관련 미래 표준을 만들고 있지만 LTE 망 통합 등의 변화가 필요하고 추후 장비 업그레이드 비용이 문제가 된다. 연구팀은 이러한 네트워크 단절 문제를 자동으로 처리하면서 와이파이 망을 최대한 사용하게 만드는 모바일 네트워크 플랫폼을 구축했다. 우선 네트워크 단절을 트랜스포트 계층에서 직접 처리해 네트워크간 이동 시에도 연결의 끊김 없이 전송이 가능한 프로토콜을 개발했다. 더불어 연구팀은 지연 허용 와이파이 오프로딩 기법을 개발했다. 다운로드 완료 시간을 예약하면 잔여 시간과 용량 등의 정보를 계산한 뒤, LTE와 와이파이를 스스로 조절해 최소의 LTE 데이터로 원하는 시간대에 다운로드를 완료할 수 있는 알고리즘이다. 이 기술은 스트리밍 플레이어에도 적용 가능해 와이파이 망에 있는 동안 더 많은 트래픽을 전송해 구역을 벗어나도 버퍼링 없는 동영상 시청이 가능하다. 이 기술로 사용자는 적은 요금으로 질 높은 콘텐츠를 이용할 수 있고, 사업자는 기존 LTE망의 재투자 및 효율적인 와이파이 망 유도가 가능하다. 또한 모바일 동영상 콘텐츠 사업자에겐 더 많은 수요자를 확보할 수 있다. 이융 교수는 “와이파이 오프로딩과 LTE 망의 관계를 최소화함으로써 모바일 콘텐츠 사업자, 망 사업자, 사용자 모두가 윈윈할 수 있는 기술이 될 것이다”고 말했다. 이번 연구는 미래창조과학부 정보통신기술진흥센터 (IITP) 네트워크 CP실(임용재 CP)의 지원을 받아 수행됐고, 5월에 개최하는 모바일 시스템 분야 최고 권위의 국제 학회인 에이씨엠 모비시스(ACM MobiSys)에서 발표될 예정이다. □ 그림설명 그림 1. 지연 허용 와이파이 오프로딩 기법 개념도
2015.04.20
조회수 12297
휘어지는 10나노미터 고분자 절연막 개발
10나노미터 이하의 얇고, 유연하게 휘어지면서도 균일한 두께를 유지하는 고분자 절연막의 개발로 사물인터넷의 실현을 앞당길 수 있을 것으로 보인다. 우리 대학 생명화학공학과 임성갑 교수, 전기 및 전자공학과 유승협, 조병진 교수 공동 연구팀은 ‘개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, 이하 iCVD)’을 이용한 고분자 절연막을 개발했다고 밝혔다. 이번 연구는 재료분야 국제 학술지인 ‘네이처 머티리얼스(Nature Materials)’ 3월 10일자 온라인 속보판에 게재됐다. 사물인터넷 시대의 핵심인 웨어러블, 플렉서블 기술 촉진을 위해서는 가볍고 전력 소모가 적으면서도 유연성을 가진 소자 제작 기술이 필수적이다. 하지만 무기물 소재를 기반으로 한 절연막을 포함한 전자소자 재료들은 유연성이 부족하고, 고온에서만 공정이 가능해 열에 약한 다른 재료들과의 조합이 좋지 않다. 또한 용액을 이용해 만든 기존 고분자 소재 절연막은 표면장력에 의한 뭉침 현상으로 균일도에 한계가 있었고, 잔류 불순물로 인해 절연 특성도 좋지 못한 경우가 많았다. 공동 연구팀은 이러한 문제점을 해결할 수 있도록 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법인 iCVD를 사용했다. 액체 대신 기체 상태의 반응물을 이용해 균일도를 높이고 불순물을 최소화함으로써, 10nm 이하의 매우 얇은 두께에서도 무기물 기반 소재에 필적하는 절연성을 가지게 됐다. 공동 연구팀은 개발한 절연막을 유기반도체, 그래핀, 산화물반도체와 같은 차세대 반도체를 기반으로 한 트랜지스터에도 적용해 우수한 이동도를 갖는 저전압 트랜지스터를 개발했다. 그 외에도 우수한 유연성을 바탕으로 스티커 필름 형태의 전자 소자를 시연했고, 동국대 노용영 교수 연구팀과 협력해 iCVD 고분자 절연막이 대면적 유연 전자소자 기술에 적용할 수 있음을 확인했다. 이 기술은 향후 다양한 미래형 전자기기 제작에 핵심 요소소재로 활용되고, 이 분야의 기술경쟁력 우위 확보에도 역할을 할 것으로 기대된다. 임성갑 교수는 “이번에 iCVD로 구현된 박막의 절연특성은 고분자 박막으로는 구현할 수 없었던 매우 높은 수준”이며 “이번에 개발된 iCVD 고분자 절연막은 플렉서블 전자 소자 등 차세대 전자 기술에 핵심적인 역할을 할 수 있을 것”이라고 말했다. 문한얼, 신우철 박사(전기 및 전자공학과), 성혜정 학생(생명화학공학과)이 참여한 이번 연구는 미래창조과학부의 한국연구재단 신진연구자 지원사업 및 중견연구자 지원사업, 글로벌프론티어사업 나노기반 소프트일렉스토닉스 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림 1. iCVD 공정의 모식도 (i) 재료물질 (initiator, monomer) 주입, (ii) 개시제의 활성화, (iii), (iv): 활성화된 개시제에 의한 고분자(polymer) 합성 그림 2. 연구진이 개발한 고분자 절연막을 이용하여 제작한 대면적, 고유연성 전자소자 그림 3. 스티커처럼 붙이고 뗄 수 있는 전자소자 이미지
2015.03.10
조회수 17092
도장 찍듯이 자유롭게 그래핀 옮기는 기술 개발
우리 학교 전기및전자공학과 최성율 교수 연구팀이 단원자층 그래핀을 금속촉매기판에서 직접 떼어내는 동시에 원하는 기판에 도장을 찍듯 자유롭게 옮길 수 있는 기술을 개발하는데 성공했다. 이 기술을 활용하면 기존의 직접박리 기반 전사공정으로 달성하기 어려웠던 그래핀 박막 적층, 구조물 표면이나 유연한 기판으로 전사, 4인치 웨이퍼 크기의 대면적 전사 등이 가능해진다. 향후 웨어러블 스마트기기 등 다양한 분야에 사용되는 그래핀 전자소자 상용화에 활용될 전망이다. 그래핀을 원하는 기판으로 옮기기 위해 현재 가장 널리 사용하는 방법인 습식전사법은 전사과정 중에 그래핀이 물리적으로 손상되고 표면이 오염 될 수 있어 전사된 그래핀의 전기적 특성이 심각하게 훼손될 수 있다는 단점이 있다. 최 교수 연구팀은 금속촉매기판 위에 성장된 그래핀을 수용성 고분자 용액으로 처리한 후 동일한 수용성 고분자 지지층을 그 위에 형성시켰다. 이 과정을 통해 지지층과 그래핀 사이에 강한 결합력이 형성되고 그 후 지지층을 탄성체 스탬프로 떼어내면 지지층과 함께 그래핀이 금속촉매기판으로부터 분리된다. 이렇게 분리된 그래핀은 탄성체 스탬프에 고립상태로 존재하기 때문에 원하는 기판 어디에든 도장 찍어내듯 자유롭게 옮길 수 있다. 또 금속촉매기판을 재활용 할 수 있고 유해한 화학물질을 전혀 사용하지 않기 때문에 친환경적인 전사법 이라는 장점도 가지고 있다. 최 교수는 이번 연구에 대해 “개발된 그래핀 전사방법은 그 공정이 범용적이고 대면적 전사도 가능하므로 그래핀 전자소자 상용화에 기여할 수 있을 것”이라며 “이 방법이 가지고 있는 높은 전사 자유도로 인해 향후 그래핀과 2차원 소재 접합 나노소자 구현에도 다양하게 활용될 것으로 기대된다”고 연구의의를 밝혔다. 이번 연구는 KAIST 전기및전자공학과 최성율 교수와 양상윤 연구교수가 주도하고 같은 과 조병진 교수, 한국전자통신연구원 최춘기 박사가 참여했으며, 미래창조과학부가 추진하는 글로벌 프론티어 사업인 ‘나노기반 소프트일렉트로닉스 연구단’의 지원으로 수행됐다. 연구 결과는 나노 및 마이크로 과학 분야의 국제 학술지 스몰(small) 1월 14일자 표지논문으로 게재됐다. 끝. 그림1. 본 연구결과를 설명하는 Small紙의 2015년 1월 14일자 표지 사진 그림2. 본 연구에서 개발된 ‘높은 자유도를 갖는 그래핀 직접박리/전사법’ 그림3. 개발된 전사법으로 전사된 그래핀: (좌) 단원자층 그래핀을 3번 반복 전사하여 얻은 3층 그래핀 (3-layerd graphene), (우) 그래핀 트랜지스터 제작을 위해 금속 전극 구조물 표면에 전사한 그래핀 그림4. 대면적 전사된 그래핀: (좌) 4인치 실리콘 웨이퍼에 전사된 그래핀, (우) 플라스틱 (polyethersulfone, PES) 유연기판에 전사된 그래핀 (크기 7cm x 7cm)
2015.01.19
조회수 15227
KAIST, 국내대학 최초로 국제표준특허 등록
우리 학교 전기및전자공학과 김문철 교수가 개발한 영상압축기술이 차세대 고효율 영상압축기술(HEVC, High Efficiency Video Coding)의 표준특허로 등록됐다. 김 교수가 KBS와 공동 개발한 이 기술은 기업이나 연구소가 아닌 대학에서 주도적으로 표준화를 추진해 표준특허로 인정받은 국내 최초 사례다. HEVC(H.265)는 Full HD보다 4배나 화질이 우수한 UHD(초고화질)급 해상도를 가진 TV, 스마트폰 등에 적용하기 위한 대용량 영상데이터를 효율적으로 압축하기 위해 만들어진 국제 기술표준이다. 현재 Full HD에 가장 널리 쓰이는 H.264/AVC 보다 데이터 압축효율이 두 배 정도 우수하다. 즉, 같은 수준의 영상화질을 유지하면서도 데이터 용량을 절반 정도로 줄일 수 있다. HEVC 관련 시장은 현재 태동기이지만 최근 출시된 UHD TV와 최신 스마트폰에 적용되기 시작했고, 2016년까지 급속도로 팽창하면서 세계시장은 연간 2천억 달러 규모로 성장할 것으로 전망된다. KAIST는 이번에 등록된 표준특허로 향후 최소 100억 원의 특허 로열티를 받을 것으로 전망하고 있다. 국제표준화기구(ISO/IEC, ITU-T)는 2013년 1월 HEVC 표준을 확정했다. 또한, 세계적인 특허 풀(Pool) 라이선스 관리기업인 MPEG LA는 2014년 9월 29일 HEVC 표준특허 풀을 확정 발표했다. 김 교수는 지난 2007년 KBS와 공동으로 개발한 영상처리 기술이 HEVC 표준에 부합한다고 판단, KAIST 기술사업화센터(센터장 윤준호)와 특허분석을 통한 표준화 전략을 수립했다. 이후 MPEG LA에 수립된 전략에 따라 보유하고 있던 기술을 제안해 표준특허로 등록시키는데 성공했다. 배중면 산학협력단장은 “대학에서 개발한 세계적인 수준의 원천기술을 가지고 시장파급력이 큰 국제표준화를 달성해 아직까지 대학에서는 경험할 수 없었던 커다란 금액의 기술료 수익이 기대된다”며 “전략적 특허관리를 통해 향후 2년 이내에 50개 이상의 국내외 표준특허를 확보할 계획”이라고 말했다. 강성모 총장은 “KAIST는 뛰어난 기술력으로 애플, 지멘스, NEC 등과 함께 HEVC 표준특허 풀 창립멤버로 가입, 글로벌 톱 기업들과 어깨를 나란히 해 학교의 위상을 크게 드높였다”며 “원천기술에 대한 연구생산성을 크게 높임으로써 그동안 대학에서 시도하지 못했던 새로운 형태의 창조경제 모델을 제시했다는데 의미가 있다”고 의의를 밝혔다. □ 영상압축기술의 발전 □ 비디오화면 화소 수 비교
2014.10.01
조회수 12606
<<
첫번째페이지
<
이전 페이지
11
12
13
14
>
다음 페이지
>>
마지막 페이지 14