-
융합연구로 무전원 무선 키보드 개발
- 개발한 무전원 무선키보드의 상용화를 위한 기술이전-
- 학문 분야를 초월한 융합연구로 탄생 -
우리학교 IT융합연구소 미래디바이스팀이 융합연구를 통해 무전원 무선 키보드를 최근 개발했다.
무전원 무선 키보드 기술은 지난 2007년 우리학교 구성원들을 대상으로 KAIST 연구원(KAIST INSTITUTE, KI)이 개최한 ‘미래단말 아이디어 공모전’ 수상작이다. 원내 구성원들의 참여를 이끌어낸 점에서 더욱 의미가 크다.
공모전 수상작 아이디어를 구체화한 이번 연구는 KI의 IT융합연구소 미래디바이스팀(팀장 정성관)과 여러 학문분야의 우리대학 교수들로 구성된 ‘미래단말 TFT’를 만들어 학문 분야를 초월한 융합연구로 진행됐다.
이 키보드는 900MHz 수동형 RFID 태그(Passive RFID tag) 기술을 이용해 별도의 전원 공급 장치를 탑재하지 않은 키보드의 키 누름을 무선으로 인식할 수 있는 기술로 만들어졌다. 키보드 키 구조에 맞는 소형 RFID 태그 스위치 구조 및 필름PCB와 유연한 구조를 가진 물질을 이용해 얇고 유연한 형태의 휴대성이 높다.
이러한 무전원 무선 키보드는 전기및전자공학과 조동호 교수의 수동형 RFID(passive RFID) 방식의 키 인식 기술, 물리학과 윤춘섭 교수의 유연한 구조를 갖는 물질을 개발 기술과 IT융합연구소의 태그 구조 및 인식 소프트웨어 기술의 융합으로 만들어진 결과이다.
새로 개발한 키보드는 기존의 키보드 제품과 달리 건전지를 넣지 않고도 사용이 가능하며 선이 연결되지 않아도 된다. 작고 가벼워 휴대 및 사용이 편리해 제품화에 성공하면 관련 시장에서 크게 각광받을 것으로 기대되고 있다.
위 기술을 통해서 유비쿼터스 컴퓨팅 및 통신 환경을 실현하고 접는 키보드의 새로운 시장을 개척할 뿐 아니라, 세계시장에서 모바일 디바이스 산업 경쟁력을 확보하는데 한걸음 다가갈 수 있을 것으로 기대된다.
김상수 연구원장은 “아이디어 공모전 개최와 TFT 운영과 같은 적극적인 활동 덕분에 무전원 무선 키보드와 같은 창의적이고 훌륭한 기술이 개발될 수 있었다”며 “창의적인 아이디어와 연구아이템 발굴을 위해 앞으로도 꾸준히 아이디어 공모전을 개최하고 융합연구를 통한 신기술 개발에 노력 하겠다”고 말했다.
우리학교는 이 무전원 무선 키보드의 상용화를 위해 (주)한양세미텍에 최근 기술 이전한 바 있다.
KI는 융합연구 분야의 세계적 연구개발 성과를 통해 대학의 인지도를 높이고, 국가 경쟁력 향상에 기여할 목적으로 서남표 총장이 추진해온 역점 전략사업 중 하나다.
현재 바이오, IT융합, 시스템설계, 엔터테인먼트공학, 나노, 청정에너지, 미래도시, 광기술 등 8개 연구소에서 25개 학과 230여명의 교수가 참여해 활발한 융합연구를 수행하고 있다.
<용어설명>
○ Passive RFID : RFID(Radio Frequency IDentification)는 기존의 바코드 형태의 광학식 ID 식별기술의 한계(가시성, 정보량, 인식속도 등)을 극복하기 위해 개발된 무선 ID 식별 기술로써, 기본적으로 식별정보(ID)를 갖고 있는 RFID tag와 이 tag를 인식하고 tag에 저장되어 있는 정보를 무선으로 읽어올 수 있는 RFID reader로 구성 된다.이때 RFID tag의 특성에 따라서 tag가 베터리 등의 전원 공급 장치를 갖고 있는 active RFID 방식과 별도의 전원 공급 장치를 갖고 있지 않은 passive RFID방식으로 구별된다.
(Active RFID 방식은 온도, 습도 등의 정보를 지속적으로 모니터링할 필요가 있는 분야나 긴 인식거리가 필요한 분야에서 주로 쓰이며, 본 무전원 무선 키보드의 동작 특성을 만족하기에 적합하지 않은(내장 전원 요구) 특성을 갖고 있으므로 별도의 전원을 요구하지 않는 Passive RFID 기술을 사용하여 무전원 무선 키보드를 개발하였다.)
○ RFID tag : RFID 시스템에서 식별하고자 하는 대상체를 구별하기 위한 식별자(ID) 정보를 갖고 있는 장치로서 무선 전파를 수신 및 응답하기 위한 안테나 부분과 수신된 전파로부터 전력을 획득하고 정보 처리 및 응답 동작을 수행하는 tag chip부분으로 구성되어 있다.
○ 필름 PCB 구조의 substrate : 전자 소자들을 연결하여 적절한 전자회로를 구성하기 위해서는 각 소자들을 연결해 주는 "회로"(연결선)를 만들어야 하는데, 동작 특성 만족, 소형화 및 대량 생산 등을 위해 인쇄기판(PCB: Printed Circuit Board) 기술을 이용한다. 일반적인 PCB들은 FR4 등의 단단한 특성을 갖는 재질로 만들기 때문에 형태 변형 등에 강한 특성을 갖는다. 이에 반해 얇은 필름형태의 폴리이미드(Polyimide)를 사용하여 제작되는 PCB(f-PCB: flexible-PCB, Film-PCB)는 폴리이미드의 유연한 특성으로 인해 FR4 등의 단단한 PCB들 사이의 연결회로로서 많이 사용되고 있다.
본 무전원 무선 키보드는 높은 휴대성을 지원하기 위해 얇고 쉽게 접을 수 있는 형태로 제작되었으며 이를 위해 단단한 형태의 FR4가 아닌 유연한 특성을 갖는 폴리이미드 기반의 필름 PCB로 제작되었다.
또한, 필름 PCB를 이용한 유연한 형태의 특성을 키보드 완성품에서도 유지하기 위해서, 회로부분을 지탱하고 전체 키보드 외형을 구성하는 물질(substrate)로 변형에 대한 내구성이 높고 수분/산소 등에 대한 투과도가 낮은 재질(윤춘섭 교수)을 이용하여 전체 키보드 외형을 제작하였다.
2010.07.28
조회수 18043
-
이상엽 교수, 초고분자량 거미 실크 단백질 생산기술 개발
- 초고분자량의 거미 실크 단백질이 거미줄을 강하게 만든다는 사실 밝혀 -- 첨단 초강력 섬유소재로의 활용 기대 -
우리학교 이상엽 특훈교수는 서울대 박명환 교수팀과 공동으로 세계적으로 이제까지 생산하지 못했던 ‘초고분자량의 거미 실크 단백질’을 대사공학으로 개량된 대장균을 이용하여 생산하였다고 발표하였다. 이 초고분자량의 단백질로 만든 거미 실크 섬유는 강철보다 강한 성질을 나타냄을 밝혔다.이 연구는 교육과학기술부가 2009년부터 추진하고 있는 ‘신기술융합형 성장동력사업(바이오제약 사업본부장 수원대 임교빈 교수, 분자생물공정 융합연구단장 KAIST 김정회 교수)의 지원을 받아 수행되었으며, 연구결과는 특허 출원 중으로 세계적 저명 학술지인 「미국 국립과학원 회보 (PNAS)」誌’ 7월 26일자 온라인판에 게재되었다.
거미가 만드는 초고분자량의 실크 섬유는 미국 듀폰(Dupont)社의 고강력 합성섬유인 케블라(Kevlar)에 견줄 강도를 갖고 있으며, 탄성력이 뛰어나 의료산업 등 다양한 분야에서 활용될 수 있는 것으로 알려져 있다. 거미 실크 섬유의 우수한 특성 때문에 그동안 효모, 곤충, 동물세포, 형질전환식물, 대장균을 비롯한 여러 생체 시스템을 활용하여 거미실크를 대량 생산하는 기술을 개발하려는 많은 시도가 있어 왔다.그러나 지금까지는 글리신 등 특정 아미노산이 반복적으로 많이 존재하는 거미 실크 단백질의 특수성으로 인해 고분자량의 거미실크를 인공적으로 생산할 수 없었다.
이러한 기존 기술의 한계와 달리, 우리학교 생명화학공학과 이상엽 교수 연구팀은 고분자량의 거미실크 단백질 (황금 원형 거미; Nephila clavipes 유래)을 생산하는 대장균을 대사공학적으로 새로이 개발하고, 이를 활용함으로써 고성능의 거미실크섬유를 인공적으로 합성하는데 성공하였다.
우선, 연구팀은 비교 단백체 분석 등 시스템 대사공학 기법을 이용하여 거미 실크 단백질을 생산할 때 대장균 내에 글리실-tRNA의 부족 현상이 일어남을 밝혀냈다. 그리고 이 문제의 해결을 위해 관련 유전자들을 증폭 또는 제거 하는 등 대장균의 대사를 재구성함으로써 대장균으로부터 세계 최고 수준의 반복단위수를 가진 285 kDa에 달하는 거미실크 단백질을 성공적으로 합성해 낼 수 있었다.
또한, 대장균에서 생산된 거미 실크 단백질을 분리‧정제한 후에 생체 모방 기술을 이용한 스피닝 작업을 통해 실크 섬유 형태로 제작하였다. 이렇게 만들어진 거미 실크 섬유의 물성을 측정한 결과 강도 (tenacity) 508 MPa, 인장탄성율 (Young"s modulus) 21 GPa를 보여 케블라 수준의 강도를 가지게 된다는 사실을 확인하였다. 기존에는 285 kDa이나 되는 큰 거미 실크 단백질의 생산이 불가능하여 고강도의 거미 실크 섬유를 만들 수 없었는데, 이번 연구를 통해 가능하게 되었다.
이상엽 교수는 “이번 연구는 바이오기반 화학 및 물질 생산시스템 개발의 핵심기술인 시스템 대사공학적 방법을 통해 기존의 석유화학 제품과 대체 가능한 고성능의 섬유를 생산하는 기반기술을 확립하였다는 데 그 의의가 있으며, 향후 생산시스템 향상과 물성 연구를 계속 수행하여 실용화하고 싶다.”라고 밝혔다.
2010.07.28
조회수 24030
-
KAIST, 미국 TI社 지원받아 미래 CPU개발
- 전기 및 전자공학과 유회준교수 연구실, 공식 TI Lab 지정 -
우리학교 전기및전자공학과 유회준 교수 연구실이 공식 TI Lab(Texas Instruments Lab.)으로 선정돼 연구비와 3억원 상당의 연구장비를 지원받는다.
미국의 종합 반도체 생산업체인 Texas Instruments社(이하 TI社)는 유회준 교수 연구실과 ‘사람의 뇌를 모방한 매니코어 프로세서 칩(Many-core Processor Chip) 개발’을 위한 협약을 7월초 가진 바 있다.
21일에는 박현욱 KAIST 전기및전자공학과장, 유회준 전기및전자공학과 교수와 유혜경 TI사 한국지부 반도체영업부장은 유회준 교수 연구실에서 TI Lab 선정 현판식을 가졌다.
최근 하나의 칩상에 수십 개 이상의 프로세서를 집적하는 미래형 CPU가 미국 인텔사 등을 중심으로 활발하게 연구되고 있다. KAIST 전기 및 전자공학과 유회준 교수팀은 인텔 기술을 뛰어 넘는 새로운 CPU기술을 개발해오고 있다.
TI사 관계자는 “KAIST와의 연구 협력을 통해 미래 세계를 이끌어갈 지능형 컴퓨터의 핵심 기술인 매니코어 프로세서개발에 새로운 전기를 마련할 계획”이라며 “유회준 교수 연구실과의 기술 교류를 통해 차세대 기술 개발을 선도할 수 있을 것으로 기대 한다”고 밝혔다.
유 교수는 “이번 기회로 미래 CPU를 국내 기술이 선도할 수 있는 계기로 삼고 싶다”고 말했다.
유 교수는 면적을 적게 소모하며 계산 속도가 뛰어난 아날로그 회로와 전력 소모가 낮고 정밀도가 높은 디지털 회로를 한 칩으로 하는 혼합형 회로를 통해 인체의 뇌를 모방하는 신경회로망을 설계하였으며, 이를 Many-core Processor에 일부분으로 삽입하여 인간의 뇌의 종합적인 지능을 단순처리에 능한 종래의 프로세서에 접목시키는 연구를 해오고 있다. 특히 이를 이용해 지능형 감시 카메라, 로봇 및 자동차 등의 ‘눈’을 한층 더 똑똑하게 만들어 2008년부터 매년 미국 샌프란시스코에서 발표해오고 있다.
국제 전기전자공학자학회(IEEE) 석학회원이며 세계 최고 권위의 국제 고체회로학회(ISSCC)의 아시아 지역 회장이기도 한 유 교수는 미국의 국제적인 출판사인 Wiley사에서 올해 ‘Mobile 3D Graphics SoC’라는 책을 출간했으며 2년전에는 미국 CRC 출판사에서 ‘Low-Power NoC for High Performance SoC Design’이라는 책을 펴낸 바 있다.(끝)
<용어설명>
○ Texas Instruments社 : 인텔, 삼성, 도시바와 함께 세계 4대 반도체 엔진 생산업체 중 하나
○ Many-core Processor : 10개 이상의 코어를 탑재하여 만든 프로세서, 싱글코어에 비해 처리 속도가 빠르고 전력 소모량이 적다.
○ 신경회로망 : 인간의 뇌가 물체를 인식하는 방법을 모사하여 설계한 칩으로 기존의 복잡한 연산과정을 거치지 않기 때문에 컴퓨터의 물체 인식 처리 시간을 20배 이상 빨라지게 하였으며 전력 소모량도 크게 줄였다.
2010.07.22
조회수 19613
-
CT대학원, KBS "구미호 여우 누이뎐"CG제작
지난 5일 첫 방송된 KBS-2TV 납량미니시리즈 ‘구미호 여우누이뎐’이 한국판 ‘트와일라잇’이라는 기대이상의 호평 속에 시청률이 꾸준한 상승세를 보이고 있는 가운데 이 드라마에 등장했던 호랑이와 까마귀를 사실적이고도 자연스럽게 표현한 컴퓨터그래픽(CG) 기술이 국내대학의 연구센터에서 자체개발한 순수 국산기술이라는 점에서 많은 관심을 끌고 있다.
지난 5일(1회)과 12일(3회) 각각 방송된 ‘구미호 여우누이뎐’에 등장했던 화제의 호랑이와 까마귀 군중씬의 CG 제작을 담당한 국내대학은 우리학교 문화기술대학원 비주얼 미디어 연구센터(Visual Media Lab, 센터장: 노준용 교수).
이 센터는 지난 3년간 ‘Digital Creature의 사실적인 움직임에 대한 연구’라는 제목으로 파충류와 포유류, 조류 등의 디지털 크리쳐를 사실적으로 만들어 내며 이를 쉽고 빠르게 TV나 영화 등 문화콘텐츠에 적용시키는 연구를 진행해왔다.
이번 ‘구미호 여우누이뎐’에서 호랑이와 히치콕의 느낌을 연상시키는 까마귀가 등장한 장면이 그동안의 연구결과를 활용한 첫 번째 케이스로 컴퓨터그래픽스 연구 성과물이 상업 콘텐츠에 바로 적용될 수 있다는 가능성을 보여줬다는 점에서 관련업계로부터 높은 평가를 받고 있다.
‘구미호 여우누이뎐’은 한국인에게 가장 매혹적이고 익숙한 공포 캐릭터의 하나인 구미호를 소재로 KBS-2TV가 마련한 납량 특집극 인데 지난 7월 5일 첫 방송을 시작으로 매주 월․화 16부작으로 기획, 제작됐다.
‘가필드’, ‘나니아연대기’, ‘수퍼맨 리턴즈’ 등 여러 편에 달하는 할리우드 대작의 영상특수효과 개발에 참여한 경력을 지닌 노준용 교수가 책임을 맡고 있는 비주얼 미디어 연구센터의 성과는 단지 여기에 그치지 않는다.
이 센터 소속 학생들과 연구원들이 작년에 제작한 2분짜리 단편 CG 애니메이션 ‘Taming The Cat(고양이 길들이기)’은 지난 6월 호주 멜버른에서 열린 세계적인 국제 애니메이션 페스티벌인 ‘제10회 MIAF(Melbourne International Animation Festival)"를 시작으로 4개의 해외 유명 애니메이션 페스티벌에 초청작으로 상영되거나 상영될 예정이다.
이밖에 현재 한국콘텐츠진흥원이 주관하는 단편 애니메이션 프로젝트를 비롯, 최근 각광받고 있는 3D 영상관련 기술을 개발하는 프로젝트를 진행하는 등 다양한 연구프로젝트를 수행중이다.
노 교수는 “아무리 가치가 있는 콘텐츠라도 문화기술(CT)를 통해 잘 다듬고 정리하지 않으면 그 진가를 제대로 발휘할 수 없다”며 과학기술과 문화콘텐츠를 하나로 접목시키는 문화기술(CT)의 중요성과 CT분야 국내기술 개발을 위한 고급인력 양성의 필요성을 강조했다.
2010.07.20
조회수 21030
-
최성민교수, 세포막의 탄성특성 변화현상 규명
- 피지컬 리뷰 레터스 7월16일자 게제 -- 새로운 의약품 개발에 중요한 역할을 할 것으로 기대-
우리학교 원자력 및 양자공학과 최성민 교수 연구팀은 세포막을 형성하는 인지질 이중막과 향균 펩타이드의 상호작용에 따른 세포막의 탄성특성 변화 현상을 첨단 중성자 산란 측정을 이용하여 세계 최초로 규명했다.
이번 연구결과는 지난 16일 물리학 분야의 세계적 권위지인 피지컬 리뷰 레터스(Physical Review Letters)에 발표됐다.
최성민 교수와 박사과정 이지환 씨가 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 원자력연구기반확충사업(원자력기초공동연구소)의 지원을 받아 수행됐다.
세포막은 인지질 분자의 이중막으로 구성되어 있으며, 세포 내부의 물질을 유지하는 방어막 역할과 다양한 기능의 단백질을 함유하고 있는 등 매우 중요한 역할을 담당한다.
세포막을 통한 물질전달, 세포 분열 등 세포에서 일어나는 여러 가지 현상은 세포막과 단백질의 상호작용에 의해 지배되며 세포막은 이러한 과정에서 다양한 형태의 구조적 변화를 겪게 된다.
세포막의 탄성특성, 즉 탄성계수는 세포막이 얼마나 부드럽거나 단단한가를 나타내는 것으로 세포막과 단백질의 상호작용에 따른 탄성특성 변화에 대한 이해는 세포에서 일어나는 여러 가지 과정과 이에 따른 구조적 변화를 이해하는데 매우 중요한 사안이다.
최 교수팀은 펩타이드라는 작은 단백질들이 세포막을 구성하는 인지질 이중막에 흡착되어 인지질 이중막의 구조적 변화를 일으키는 과정에서 인지질 이중막의 탄성특성이 어떻게 변하는가를 중성자 스핀에코 분광법이라는 최첨단 비탄성 중성자 산란 기법을 이용하여 규명했다.
이번 연구결과에 의하면 멜리틴이라는 펩타이드는 그 양이 적을 때는 인지질 이중막 표면에 흡착되어 이중막을 형성하고 있는 인지질 분자들의 정렬도를 저해함으로써 인지질 이중막을 부드럽게 만드는 효과를 보인다.
반대로, 멜리틴의 양이 일정량보다 많아지게 되면 인지질 이중막을 통과하는 구멍을 형성하고 동시에 이중막을 단단하게 만들기 시작하며, 멜리틴에 의해 형성된 인지질 이중막의 구멍이 더욱 많아지게 되면 구멍들이 서로 상호작용을 일으켜 인지질 이중막이 급격하게 단단해짐을 밝혔다.
현재 여타 단백질과 인지질 이중막의 상호작용에 대한 추가적인 연구가 진행되고 있으며, 이러한 현상에 대한 이해는 세포에서의 생명현상에 대한 근본적인 이해와 향후 새로운 의약품 개발에 중요한 역할을 할 것으로 기대된다.
최 교수팀은 최근 중성자 및 X-선 산란을 이용하여 탄소나노튜브 및 나노입자의 자기조립 초구조체 개발 연구를 수행하여 신소재 및 화학분야의 세계적 권위지인 어드밴스드 메터리얼즈(Advanced Materials), 미국화학회지(Journal of the American Chemical Society) 등에 연속적으로 논문을 게재하는 등 연성나노물질 연구에서도 우수한 연구성과를 거두고 있다.
최 교수는 중성자를 이용한 연성나노물질 연구분야에서 국제적 전문성을 인정받고 있으며 대표적인 국제 중성자 협회인 아시아-오세아니아 중성자 산란협회(AONSA)의 총무이사를 담당하고 있다. 또한 최성민 교수와 한국원자력연구원이 공동으로 개발한 하나로 냉중성자 연구시설의 40m 소각중성자산란 장치는 세계 최고수준의 나노구조 측정능력을 갖추고 있어 우리나라 나노소재 연구분야의 발전에 새로운 기회를 제공할 것으로 기대되고 있다.
<용어설명>
❶ 세포막(cell membrane)
세포와 세포 외부의 경계를 짓는 막으로 세포 내의 물질들을 보호하고 세포간 물질 이동을 조절한다. 세포막은 인지질 및 단백질 분자로 구성된 얇고 구조적인 인지질 이중층으로 되어 있으며, 선택적인 투과성을 지닌다.
❷ 펩타이드(Peptide)
아미노산의 중합체이다. 보통 소수의 아미노산이 연결된 형태를 펩타이드라 부르고 많은 아미노산이 연결되면 단백질로 부른다.
❸ 멜리틴(melittin)벌 독에서 분리한 26개의 아미노산으로 구성된 단백질로 10∼20년 전에 그 성분과 역할이 알려져 항균물질로 사용된다.
[그림]세포막을 구성하는 인지질 이중막에 멜리틴 펩타이드가 흡착되어 형성하는 구조의 각 단계별 모식도 (왼쪽). 멜리틴 펩타이드 양의 증가에 따른 인지질 이중막의 각 단계별 탄성특성 변화 (오른쪽).
2010.07.19
조회수 20579
-
홍합접착을 이용 뼈미네랄 형성 기술개발
우리학교 화학과 이해신(李海臣, 37세, 오른쪽사진), 신소재공학과 박찬범(朴燦範, 41세) 교수팀이 자연계의 홍합접착현상을 모방해 지지하는 소재에 관계없이 뼈의 미네랄성분을 고속으로 형성시킬 수 있는 원천기술개발에 성공했다. 범용성이 뛰어나 다양한 소재에 적용할 수 있다. 이 기술의 핵심은 뼈의 주요성분인 인산화칼슘 미네랄결정을 다양한 표면에서 고속 성장시키는 것이다. 뼈를 구성하는 칼슘성분의 대부분(약 99퍼센트)은 인산화칼슘으로 구성되어 있다.
기존 기술은 인산화칼슘 결정을 특정물질의 표면에서만 성장시키는 한계를 지녀왔으며, 이를 필요로 하는 인공뼈, 치아 임플란트 등 다양한 지지소재에 도입할 수 없다는 단점이 제기되어 왔다. KAIST 연구팀은 이러한 난제를 자연의 홍합접착제에서 착안하여 해결하였다. 홍합은 몸에서 내는 실 모양의 분비물인 족사를 이용해 바위, 수초표면 등에 붙어산다. 접착력이 강해 파도가 치는 해안가와 같은 다른 생물체가 살기 어려운 환경에서도 문제없이 붙어서 생존한다.
연구팀은 이러한 홍합접착제를 모방한 폴리도파민(polydopamine)이라 불리는 무독성의 화학성분을 코팅하면, 각종 금속, 산화규소, 산화철, 스테인리스, 테플론, 폴리스티렌 등과 같은 다양한 지지표면에서 인산화칼슘 결정이 손쉽게 자랄 수 있음을 입증했다. 또한 연구팀은 이번 논문에서 기존 기술로는 코팅이 불가능하였던 폴리에스터 섬유, 나일론, 셀룰로오스 등 3차원 다공성 물질 내부에도 뼈미네랄을 손쉽게 형성할 수 있음을 발견했다.
이번 연구결과는 인공뼈 재생과 같은 의료용 재료뿐만 아니라 차세대 치과용 임플란트용 표면 소재 개발과 같은 다양한 응용분야에 사용될 수 있다. 관련 연구결과는 독일에서 발간되는 재료분야 국제저명학술지인 Advanced Functional Materials지 최근호(7월 9일자 온라인판)에 인사이드 커버논문으로 게재됐으며, 최근 특허출원이 완료되었다.
KAIST 나노융합연구소, 교육과학기술부 우수연구센터 등으로부터 지원받아 수행된 이번 연구성과는 자연계를 모방하여 새로운 기능을 가진 스마트 소재를 개발하였다는 평가를 받았다.
<용어설명>
◯ 홍합모방 접착제: 홍합의 몸에서 내는 실모양의 분비물인 접착 단백질을 모방한 인공접착제◯ 족사 [足絲] : <동물>연체동물이 몸에서 내는 실 모양의 분비물. 바위 따위에 달라붙는 작용을 하며, 홍합 따위에서 볼 수 있다.
[그림] 홍합의 접착현상을 이용하여 폴리에스터 섬유에 뼈미네랄을 대량으로 형성시킨 사진 (저널표지)
2010.07.09
조회수 20512
-
김상규교수 화학반응의 비밀을 밝히다
네이처 케미스트리誌 발표, "화학반응을 원하는 대로 제어할 수 있는 방법 개발 가능성 열어"
화학반응의 핵심적인 개념이지만, 지난 60년간 학계에서 이론적으로만 예측되었던 원뿔형 교차점(conical intersection)의 존재와 분자구조가 국내연구진에 의해 실험적으로 규명되었다.
우리학교 김상규 교수와 임정식 박사가 주도한 이번 연구는 교육과학 기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견 연구자지원사업(도약연구)과 우수연구센터(SRC)사업의 지원을 받아 수행되었고, 연구결과는 화학분야 세계 최고 권위의 과학 전문지인 ‘네이처 케미스트리(Nature Chemistry)’지 온라인 속보(7월 4일자)에 주요 논문으로 게재되었다.
김상규 교수 연구팀은 지금까지 이론적으로만 존재했던 원뿔형 교차점을 실험적으로 구체화하고, 화학반응의 핵심이론을 검증했으며, 화학 반응을 제어하는 새로운 방법론 구축에 성공하였다.
원뿔형 교차점은 화학반응은 물론이고, 우리 눈의 망막에서 일어나는 광이성질체화(光異性質體化)* 반응 및 DNA의 강한 자외선 보호 메커니즘 등 화학과 의학 문제를 설명하는데 필수적인 매우 중요한 화학적 개념이다. ※ 광이성질체화(photoisomerization) : 분자가 빛을 흡수하여 들뜬상태를 거쳐 이성질체화를 일으키는 현상
학계는 눈 깜짝할 사이에 사라지고, 다차원적 위치에너지의 복잡한 구조를 지닌 ‘화학반응의 특이점’에 접근하는 것이 사실상 불가능해, 지금까지 원뿔형 교차점의 존재를 실험적으로 규명하기 위해 무수히 시도하였지만 실패하였다.
김상규 교수팀은 서로 다른 두 개의 전자적 양자상태가 화학반응을 하면서 중첩하는 지점에 발생한 원뿔형 교차점을 관측하고, 에너지 위치와 자세한 분자구조를 유추해냈다.
김 교수팀은 레이저와 분자선 기술을 사용하여 분자의 특정 양자 상태에서 일어나는 화학반응의 자세한 동역학적 움직임을 살펴본 결과, 두 개의 서로 다른 전자적 양자상태가 중첩될 때 뚜렷한 공명 (resonance)현상이 발생하며, 이것은 원뿔형 교차점에 의한 것임을 확인하였다.
김상규 교수는 “화학반응에서 전자와 핵 사이에 상호작용이 가장 크게 일어나는, 화학반응의 핵심개념인 원뿔형 교차점을 최초로 관측한 점은 이번 연구의 가장 큰 성과로, 향후 화학반응을 원하는 대로 제어하여, 치료 및 제약 등 다각적으로 활용될 수 있는 원천적 기초지식 기반을 마련하였다”라고 연구의의를 밝혔다.
2010.07.06
조회수 20640
-
배병수교수팀, 새로운 LED봉지재 개발
신소재공학과 배병수 교수연구팀이 고휘도 LED 개발에 필수적인 고굴절률 고내열성 하이브리드소재 LED 봉지재를 개발했다. LED 봉지재는 백색 빛을 내는 형광체를 포함해 LED 칩을 둘러싸서 외부 충격과 환경 등으로 부터 LED 칩을 보호하는 핵심 소재다. LED의 빛은 결국 봉지재를 통해 나오기 때문에 빛의 흡수, 산란, 굴절을 최소화한 고휘도 LED 구현을 위해 고굴절률 투명 봉지재 소재의 개발이 필요하다.
또, 봉지재는 외부 노출에 견디는 내후성 외에 LED칩에서 발산되는 열을 견디는 내열성이 매우 중요하다. 특히, 향후 상용화하게 될 고출력 조명에서는 매우 높은 열이 발생될 것으로 예상되기 때문에 이를 상용화하기 위해서는 고내열성 봉지재 소재의 개발이 필수적이다.
기존 에폭시 봉지재는 최근 고내열성의 요구로 실리콘소재로 대체되고 있으며, 현재 해외 주요 실리콘업체들이 국내에 독점 공급한다. 일반적으로 굴절률이 낮은 메틸 실리콘소재에 비해 굴절률이 높은 페닐 실리콘소재가 사용된다. 그러나 고온에서 쉽게 노란색으로 변색(황변)되어 전 세계 업체들은 굴절률을 높이면서 내열성이 우수한 소재를 개발하기 위해 노력하고 있다.
배교수 연구팀은 기존 LED 봉지재 소재인 실리콘소재의 제조방법과 달리, 실리카 유리 제조에 사용하는 솔-젤 공정과 함께 실리콘 제조공정인 하이드로실릴레이션(Hydrosilylation) 반응을 함께 사용해 다량의 페닐기를 포함하고 치밀한 네트워크 분자구조를 갖는 투명 하이브리드소재를 개발했다. 이번에 개발된 하이브리드재료는 1.56이상의 고굴절률을 가지면서 200도 이상의 고온에서도 황변이 일어나지 않는 고내열성을 보인다. 현재까지 전 세계적으로 1.53이상의 고굴절률 투명소재가 200도 온도에서 황변이 일어나지 않는 고내열성은 아직 보고되지 않았다.
이와 함께 하이브리드소재는 기존 실리콘소재에 비해 기체투과성이 낮으며, 경도가 높아 장기 안정성 높은 고휘도 LED 봉지재로 매우 유리하다. 이번에 개발된 하이브리드소재 봉지재를 사용하는 LED 제품은 일반 조명용 제품은 불론 LED TV용 백라이트 광원용 제품에 널리 활용될 수 있다. LED 산업의 성장과 함께 최근 세계 주요 소재업체들이 줄이어 고성능 봉지재 소재들을 출시하고 있는 시점에, 국내에서 세계 최초로 봉지재 원천소재를 개발한 것은 국내 LED산업의 발전은 물론 소재산업 위상 제공에 기여할 것으로 기대된다.
한편, 이번 연구결과는 미국화학회에서 발간하는 재료화학(Chemistry of Materials)저널 최근호에 게재됐으며, 관련 원천소재 특허 3건을 국내외에 출원했다. 연구팀은 현재 국내 실리콘 제조업체인 (주)KCC와 이번에 개발된 봉지재가 실제 LED칩에 실장되는 생산 공정에 적합하도록 최적화하고 굴절률을 더 높여 해외 선진사 제품 대비 경쟁력 높은 제품으로 상용화할 계획이다.
<사진설명>배교수 연구팀이 개발한 하이브리드소재 LED 봉지재와 해외 선진사 상용 실리콘 LED봉지재의 250도 내열성 비교평가결과. 상용 제품은 황변이 일어난 반면, 개발 제품은 투명하고 굴절률이 높다.
2010.06.16
조회수 20045
-
조광현교수 생체 분자네트워크의 다이나믹한 조절회로 규명
- 조광현 교수연구팀, IT와 BT를 융합한 시스템생물학 연구 통해- 초파리 발달과정의 다이나믹한 조절메커니즘을 시스템차원에서 규명
우리학교 바이오및뇌공학과 조광현 교수 연구팀은 IT와 BT를 융합한 시스템생물학 연구를 통해, 시간에 따라 변화하는 유전자 네트워크의 동역학 개념을 최초로 제시했다. 이 개념을 이용하면 초파리 발달과정 중 단계별로 중요한 조절작용을 하는 동적 네트워크 모티프를 찾아내어, 발달과정의 다이나믹한 조절메커니즘을 시스템차원에서 규명할 수 있다.
측정기술이 발달한 현대생명과학은 유전체나 단백질체 등 세포내 분자발현량의 집단 관측이 가능하다. 이러한 오믹스(Omics) 기술의 발전에 힘입어 생체 분자들 간 상호작용을 거대한 네트워크로 모사하고, 집합적 조절작용을 시스템 차원에서 분석 이해하고자 하는 시도가 이어지고 있다.
특히, 거대 생체 분자상호작용 네트워크를 이해하는 유용한 방법으로 네트워크를 구성하는 작은 모듈, 즉 네트워크 모티프를 찾아내고 그 역할을 분석하여 이들의 조합으로 이루어진 전체 네트워크의 거동을 추정하는 연구가 각광받고 있다. 그러나 지금까지 이런 조절 네트워크는 시간축 상에 고정된 정적 개념으로만 다루어져 왔다.
조교수 연구팀은 실제의 시간 흐름에 따라 다이나믹하게(동적으로) 변화하는 분자발현을 추적했다. 그리고 이 데이터로부터 거대 네트워크의 일부분만이 특정 시간대의 조절작용에 참여함을 밝히고 이 관점에서 동적 조절네트워크 모티프 개념을 도입해 4차원에서 생체분자 조절작용을 규명하는 새로운 시도를 했다.
이 개념을 이용해 초파리 발달과정에서 단계별 발달의 조절작용에 기여하는 동적 네트워크 모티프를 찾아내어 다이나믹하게 조절되는 발달과정의 메커니즘을 시스템관점에서 새롭게 규명한 것이다.
조교수는 “이번 연구에서 제안된 개념은 암과 같은 복잡한 인체질환의 발달과정을 분석하고 새로운 진단과 예측방법의 개발에 폭넓게 응용될 수 있을 것으로 보인다”고 말했다.
이 연구는 교육과학기술부가 지원하는 한국연구재단 연구사업의 일환으로 수행됐으며, 연구 결과는 국제저널 <바이오에세이(BioEssays)> 5월 18일자 온라인판 표지논문으로 소개됐다.
[그림설명]
발달유전학의 4차원 분해: 초파리 발달과정의 다이나믹 네트워크 모티프 원리 규명. 정적 조절네트워크 관점에서만 다뤄져 온 초파리 발달과정의 유전자 상호작용 네트워크에 시간축을 더해 4차원의 다이나믹한 관점으로 분석하는 새 개념의 연구가 조광현 교수 연구팀에 의해 제안되었다. 이 개념에 따르면 초파리 발달과정에서 단계별로 주요 역할을 하는 일련의 유전자집단을 새롭게 규명할 수 있다. 이 그림은 초파리 배아로부터 성체에 이르는 발달과정별로 주요 조절작용을 하는 네트워크 모티프의 개념을 설명한 것.
시간에 따라 변화하는 동적 조절네트워크의 개념도
A. 시간축으로 분해한 동적 조절네트워크 모티프
B. 시간축을 없애고 한 평면에 투영한 정적 조절네트워크 (섞여진 네트워크로부터 특정시간에 조절작용하는 요소를 식별하기 어려움).C. 마이크로어레이 실험을 통해 측정된 유전자 발현량으로부터 유전자 조절네트워크를 추론하고 시간대별로 작동하는 각각의 조절네트워크 모티프를 규명하는 과정의 모식도.
2010.06.07
조회수 17841
-
박제균 교수, 개인 맞춤형 항암치료 원천기반기술 개발
- 극소량의 암 조직으로 다양한 암 판별 물질을 동시에 검사할 수 있는 기술 개발 -
유방암을 비롯한 현대인의 각종 암을 개인별 특성에 맞게 맞춤형 항암 치료할 수 있는 원천기반기술이 국내 연구진에 의해 개발되었다.
우리대학 바이오 및 뇌공학과 박제균 교수 연구팀과 고려대 안암병원 유방센터 이은숙 교수 연구팀이 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견연구자지원 사업(도약연구), 바이오전자사업 및 고려대 학술연구비의 지원을 받아 수행되었고, 연구 결과는 국제적으로 저명한 온라인 오픈액세스 과학 전문지인 “플로스원(PLoS ONE)” 최신호(5월 3일자)에 게재되었다.
연구팀은 극소량의 암 조직만으로도 다양한 암 판별 물질(종양 표지자, 바이오마커)을 동시에 검사할 수 있는 기술(미세유체기술을 이용한 면역 조직화학법과 랩온어칩)을 개발하는데 성공하였다.
암 진단과 치료를 위한 필수검사는 암 조직을 떼어내 암 여부를 판별하는 물질인 표지자 4개를 모두 검사해야만 최종적으로 판단할 수 있는데,기존의 검사는 떼어낸 암 조직 하나에 1개의 표지자밖에 검출하지 못해, 많은 암 조직을 떼어내야 하기 때문에 불편하고, 검사가 하나씩 순차적으로 이루어지기 때문에 검사 시차가 달라, 정확한 검사가 어려워 검사비용과 시간이 늘어나 환자의 부담이 컸었다. 그러나 연구팀이 개발한 기술을 이용하면, 하나의 작은 암 조직만으로도 한 번에 최대 20여개의 표지자까지 동시에 검사할 수 있어, 비용을 1/200로 절감하고, 분석시간도 1/10로 단축하는 등 획기적인 기술로 평가된다.
특히 이번 연구결과는 동물이 아닌 인간의 암 조직을 직접 이용한 임상실험을 통해 증명한 최초의 사례로 그 의미가 크다.
연구팀은 유방암 환자 115명의 실제 암 조직을 가지고 복잡한 실험을 하나의 칩 위에서 간단히 구현할 수 있는 기술(랩온어칩 기술)을 이용해 임상 실험한 결과, 기존 검사결과와 최대 98%까지 일치하는 등 검사의 정확도를 입증하였다.
고려대 이은숙 교수는 “미세바늘로 추출한 소량의 조직만으로도 다양한 검사가 가능하고 객관적으로 판독할 수 있다”면서, “검사에 필요한 비용과 시간을 상당부분 줄일 수 있을 뿐만 아니라, 초기 정밀검진이 가능하여, 향후 개인 맞춤형 항암치료에 크게 기여할 것으로 기대된다” 라고 강조하였다.
또한 바이오공학, 병리학 및 종양학 등 공학과 의학이 융합된 학제적 연구성과로, 향후 사업화를 통한 경제적 부가가치도 클 것으로 기대된다.
현재 이 기술은 특허협력조약(Patent Cooperation Treaty, PCT)의 특허 1건을 포함해 국내 특허 6건을 출원하였고, 종양분석과 조직시료 검사에 활용되는 기반기술로, 개인 맞춤형 항암제 효력 테스트용 랩온어칩 등 사업화를 위한 후속연구가 활발히 진행되고 있다.
특히 조직병리, 암 진단, 질병의 경과예측 등 의학뿐만 아니라, 바이오 마커 개발 등 생명공학에도 응용될 것으로 기대하고 있다.
우리대학 박제균 교수는 “이번 연구성과로 지금까지 분석할 수 없었던 매우 작은 조직도 쉽고 빠르게 검사할 수 있게 되어 정확한 진단을 통한 치료가 가능하게 되었다”면서, “개인별 맞춤형 항암치료의 대중화를 통해 우리나라 보건의료의 선진화에 크게 기여할 것”이라고 연구 의의를 밝혔다.
한편, 제1저자인 우리대학 김민석 박사는 이번 연구성과로, 제16회 삼성 휴먼테크 논문 대상에서 금상을, 교육과학기술부가 후원하는 젊은 파스퇴르상에서 대상을 수상하는 영예를 안았다.
[그림. 암 조직 시료 상부에 올려지게 되는 투명한 플라스틱으로 이루어진 랩온어칩의 구조]
2010.05.10
조회수 19828
-
윤태영 교수팀, 생체막 단백질 기능 첫 규명
우리대학 윤태영 물리학과 교수 주도하에 생체막 단백질인 시냅토태그민1(Synaptotagmin1)이 신경세포 통신을 능동적으로 제어한다는 사실을 세계 최초로 규명하였다.
시냅토태그민1은 신경전달물질 분출을 조절하는 양대 핵심 단백질로서, 지금까지 학계는 단순히 칼슘 이온이 유입되면 시냅토태크민1이 신경전달물질을 분출하는 것으로 추정해 왔지만, 명확히 그 기능을 밝혀내지 못했다.
△카이스트 윤태영 물리학과 교수, △이한기 박사 △신연균 교수(포항공대, 아이오와주립대) △권대혁 교수(성균관대) △현창봉 교수 (고등과학원) 등이 참여한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 ‘기초연구실육성사업(BRL)"과 ‘세계 수준의 연구중심대학(WCU)육성사업’의 지원을 받아 수행되었고, 연구결과는 세계 최고 권위의 과학저널인 ‘사이언스(Science)’誌 5월 7일자에 게재된다. 이번 연구결과는 젊은 국내 토종박사들이 주축이 되어 불굴의 도전정신으로 일궈낸 값진 연구성과이다.
총 9명으로 구성된 연구팀에서 8명이 국내 연구자들로, 이중 7명이 만 40세를 넘지 않은 신진 연구자이다.
특히 연구를 주도한 윤태영 교수는 만 34세로 2004년 서울대에서, 이한기 박사는 만 33세로 명지대에서, 권대혁 교수는 만 38세로 서울대에서 박사학위를 받은 토종박사들이다.
또한 이번 연구성과는 정부의 대표적인 연구지원사업(BRL)과 인력 양성사업(WCU)의 지원을 받아 시너지 효과를 발휘하여, 세계 최고의 과학저널에 발표했다는 점에서 의의가 있다.
[그림1. 신경전달물질 분출에 있어서 시냅토태그민1의 동적제어 스위치 모델]
윤태영 교수 연구팀은 시냅토태그민1이 신경세포 통신의 강약을 자유자재로 제어하는 스위치 역할을 한다는 새로운 사실을 밝혀냈다.
연구팀은 신경세포 내에 적정농도(10μmol/L, 1리터당 10마이크로 몰)의 칼슘 이온이 유입되면 시냅토태그민1은 신경전달물질을 빠르게 분출하지만, 적정농도 이상의 칼슘이 유입되면 오히려 그 기능이 감소된다는 사실을 최초로 확인하였다. 이것은 시냅토태그민1이 신경세포에서 나오는 칼슘 농도에 따라 다양하게 반응한다는 사실을 의미하는 것으로, 시냅토태그민1이 신경세포 통신의 강약을 자유자재로 제어할 수 있다는 사실을 새롭게 규명한 것이다.
윤태영 교수팀의 이번 연구는 지난 10년간 학계의 풀리지 않은 수수께끼인 시냅토태그민1의 기능에 대한 명쾌한 해답을 제시하였다. 이번 연구는 낮은 농도의 칼슘에서 시냅토태그민1이 가장 활발히 활동한다는 사실을 최초로 발견하여, 기존 연구가 밝히지 못한 시냅토태그민1의 기능을 정확히 설명하였다.
특히 연구팀은 시냅토태그민1을 생체막으로부터 분리하면, 제어 스위치 기능이 상실된다는 사실도 확인하여, 시냅토태그민1의 생체막 부착 여부가 그 기능에 핵심인 것을 밝혀냈다.
또한 윤 교수팀은 차세대 신약개발의 주요 타깃인 생체막 단백질의 기능을 분자수준에서 관찰할 수 있는 신기술을 개발하는데 성공하였다.
생체막 단백질은 물질 수송 등 세포내 필수적인 역할을 하는데, 암, 당뇨, 비만 등 각종 질병과 밀접하게 관련되어 있어, 차세대 신약개발 표적 단백질의 최대 70%를 차지하는 것으로 알려져 있다.
연구팀은 ‘단소포체 형광 기법(single-vesicle fluorescence detection)’을 개발하는데 성공하여, 생체막 단백질의 기능을 단분자 혹은 수개 분자 수준에서 관찰할 수 있는 세계 최고 수준의 기술을 보유하게 되었다.
[그림2. 단소포체 형광기법]
윤 교수는 “이번 연구결과는 지난 10년간 학계가 밝혀내지 못한 시냅토태그민1의 기능을 명쾌히 밝혀내고, 복잡한 생체막 단백질의 기능을 분자수준에서 관찰할 수 있는 신기술을 개발한 것이다. 이번 연구로 생체막 단백질을 활용하여, 암, 당뇨, 비만 등 현대인의 질병에 대한 신약을 개발할 수 있는 가능성을 열었다“라고 연구 의의를 밝혔다.
2010.05.07
조회수 27311
-
박찬범 교수팀, 나노크기의 광감응 소재를 이용한 인공광합성 원천기술개발
신소재공학과 박찬범(朴燦範, 41세) 교수팀이 나노소재를 이용해 자연계의 광합성을 모방한 ‘인공광합성’ 시스템 개발에 성공했다.
이러한 새로운 개념의 인공광합성 기술은 고부가가치의 각종 정밀의약품들을 태양 에너지를 이용해 생산하는 친환경 녹색생물공정 개발의 전기가 될 것으로 기대된다.
식물 등 자연계의 광합성 생물체들은 태양에너지를 이용해 환원력을 재생하여 보조인자(cofactor)라는 형태로 저장하고, 이렇게 재생된 보조인자 등을 빛이 없을 때 캘빈사이클 (calvin cycle)을 통해 생존에 필요한 탄수화물 등 각종 화학물질들을 합성하는데 이용한다.
[그림 1. 자연광합성을 모방한 인공광합성 공정을 이용한 정밀화학제품 생산 개념도]
박 교수팀은 이러한 자연광합성시스템을 모방하여 자연계의 광반응 (light reaction) 대신 태양전지 등에서 사용되는 양자점 (quantum dot) 등 수 나노크기의 광감응소재로 빛에너지를 전기에너지로 효율적으로 전환하고, 이를 이용하여 보조인자를 재생했다. 또한 자연계의 복잡한 캘빈 사이클 대신 산화환원 효소반응을 보조인자 재생에 연결시킴으로써 빛에너지로부터 시작하여 최종적으로 정밀화학물질 생산이 가능한 반응시스템을 개발했다.
인류가 지구 온난화와 화석 연료의 고갈이라는 문제를 안고 있는 가운데, 온난화의 원인인 이산화탄소를 배출하지 않고 또한 무제한으로 존재하는 태양 에너지를 이용하려는 노력이 계속되고있는데, 이번에 개발된 인공광합성기술은 에너지원으로 무한한 태양광을 사용한다는 장점 때문에 그 파급효과가 매우 클것이다.
특히 각종 정밀화학물질 합성에 있어서 산화환원효소들이 매우 뛰어난 응용가능성/다양성을 가졌음에도 불구하고 이들의 효율적 사용을 위하여 필수적으로 요구되는 보조인자의 재생에 대한 연구는 지난 20여년동안 수행되어 왔으나 현재까지도 성공적인 결과가 거의 없어 향후 생물공학분야에서 해결되어야 할 미해결 난제들 중의 하나였다.
박교수팀의 연구성과는 산화환원효소를 산업적으로 활용하기 위한 토대를 마련한 것이다.
[그림 2. 산화환원효소 기반 인공광합성을 통한 고부가가치 정밀화학제품 생산]
관련 연구결과는 독일에서 발간되는 나노분야 국제저명학술지인 Small지 최근호(4월 23일자 온라인판)에 게재됐으며, 최근 특허출원이 완료됐다.
이번 연구는 교육과학기술부 신기술융합형 성장동력사업(생물공정연구단) 등으로부터 지원을 받아 수행됐으며, 나노과학과 생명공학분야의 창의적인 융합을 통하여 새로운 공정기술을 개발하는데 크게 기여했다는 평가를 받았다.
2010.04.23
조회수 24881