-
신병하 교수, 홀 효과 한계 보완한 새 반도체 분석기술 개발
〈 신병하 교수, 배성열 박사과정 〉
우리 대학 신소재공학과 신병하 교수와 IBM 연구소의 오키 구나완(Oki Gunawan) 박사 공동 연구팀이 반도체 특성 분석의 핵심 기술인 홀 효과(Hall effect)의 한계를 넘을 수 있는 새로운 반도체 정보 분석 기술을 개발했다.
이번 연구는 140년 전에 처음 발견된 이래로 반도체 연구 및 재료 분석의 토대가 된 홀 효과 측정에 대한 새로운 발견으로 향후 반도체 기술 개발에 이바지할 수 있을 것으로 기대된다.
신병하 교수와 오키 구나완 박사가 교신 저자로, 배성열 박사과정이 2 저자로 참여한 이번 연구 결과는 국제 학술지‘네이처(Nature)’ 10월 07일 자 온라인판에 게재됐으며 11월 07일 정식 게재됐다. (논문명: Carrier-Resolved Photo Hall Effect)
1879년 에드윈 홀(Edwin Hall)이 발견한 홀 효과는 물질의 전하 특성(유형, 밀도, 이동성 또는 속도)에 대한 중요한 정보를 제공한다. 이는 반도체 소자를 이해하고 설계하는 데 필요한 가장 기본적인 특성들이다.
이러한 이유로 홀 효과는 지난 100년이 넘는 시간 동안 가장 일반적인 반도체 특성 분석 기법의 하나며 전 세계의 반도체 연구기관에서 보편적으로 사용되고 있다.
그러나 현재까지의 분석 기법으로는 홀 효과를 통해 다수 운반체(Majority carrier)와 관련한 특성만 파악할 수 있고, 태양 전지와 같은 소자의 구동 원리 파악에 필수인 소수 운반체(Minority carrier) 정보는 얻을 수 없다는 한계를 가지고 있었다.
연구팀은 문제 해결을 위해 ‘포토 홀 효과(Carrier-Resolved Photo-Hall" (CRPH))’ 기술을 개발했다. 이 기술을 사용하면 한 번의 측정으로 다수 운반체 및 소수 운반체에 대한 많은 정보를 동시에 추출할 수 있다.
기존 홀 측정에서는 세 가지 정보를 얻을 수 있었다면 연구팀의 새로운 기술은 실제 작동 조건을 포함한 여러 광도에서 광여기 전하의 농도, 다수 운반체 및 소수 운반체의 전하 이동도, 재결합 수명, 확산 거리 등 최대 일곱 개의 중요한 정보를 얻을 수 있다.
연구팀의 이 기술은 태양 전지, 발광 다이오드와 같은 광전자 소자 분야에서 사용 가능한 신소재 개발 및 최적화에 핵심적인 역할을 할 것으로 기대된다.
신 교수는 “지난 2년간의 연구가 좋은 결심을 맺게 되어 기쁘고, 이 기술을 통해 새로운 광소자 물질의 전하 수송 특성을 이해하고 더 나은 소자를 개발하는 데 큰 도움이 되리라 믿는다”라고 말했다.
이번 연구는 한국연구재단 기후변화대응기술개발사업, 산업통상자원부와 한국에너지기술평가원(KETEP) 에너지기술개발사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 포토 홀 효과 개념도
2019.11.14
조회수 16964
-
이진우 교수, 백금 활용도 16배 높인 단일 원자 촉매 개발
〈 박진규 박사과정, 이진우 교수 〉
우리 대학 생명화학공학과 이진우 교수 연구팀이 전기화학적 물 분해(이하 수전해) 방식을 통해, 수소를 생산하는 과정에서 쓰이는 백금의 사용을 최소화하면서 뛰어난 성능을 보여 활용도를 16배 높일 수 있는 백금 기반 촉매를 개발했다.
연구팀은 백금의 활용도를 높이기 위해 백금을 단일원자 형태로 텅스텐 산화물 표면에 고분산 시켜 백금이 받는 지지체 효과를 극대화했고, 수소 생산 수전해 촉매에서 높은 성능을 구현했다.
박진규 박사과정과 이성규 박사가 공동 1 저자로 참여한 이번 연구는 세계적 화학지인‘앙게반테 케미(Angewandte Chemie)’ 8월 22일 자에 게재됐다. (논문명 : Investigation of Support Effect in Atomically Dispersed Pt on WO3-x for High Utilization of Pt in Hydrogen Evolution Reaction, 수소 생산 반응에서 백금 활용도를 높이기 위해 백금 유사-단일 원자 촉매를 담지한 텅스텐 산화물 지지체 효과 조사)
백금 기반 촉매들은 성능과 안정성이 높아 다양한 전기화학 촉매 분야에서 활용됐지만, 가격이 높아 상용화에 어려움이 있었다.
단일 원자 촉매는 금속의 원자 하나가 지지체에 고분산된 형태의 촉매로, 모든 금속 단일 원자가 반응에 참여하기 때문에 백금의 사용량을 현저히 낮출 수 있다. 하지만 대부분의 연구가 탄소 기반 지지체에 담지된 단일 원자 촉매를 적용하고 있어 백금 활용성에 한계가 있다.
연구팀은 이번에 백금과 강한 시너지 효과를 낼 수 있는 메조 다공성 텅스텐 산화물을 단일 원자 촉매의 지지체로 사용했다. 이를 통해 백금 단일 원자를 텅스텐 산화물에 담지했을 때, 텅스텐 산화물에서 백금 단일 원자로 전하 이동이 일어나 백금의 전자구조가 변하는 것을 확인했다.
또한, 단일 원자 촉매가 갖는 ‘금속과 지지체간의 경계면 극대화’라는 독특한 특징을 활용해 백금 나노입자를 텅스텐 산화물에 담지한 촉매와 비교 실험을 진행했다.
연구팀은 실험을 통해 백금 표면에서 다른 지지체 표면으로 수소가 넘어가는 현상인 수소 스필오버 (Hydrogen spillover)가 크게 발현됨을 확인했다. 이를 통해 기존 상용 백금 촉매의 사용량을 16분의 1로 현저히 줄일 수 있었다.
해당 연구는 수전해 뿐만 아니라 연료전지 기술과 같은 다양한 전기화학 촉매 분야에 응용될 수 있을 것으로 기대된다고 연구팀은 밝혔다.
이 교수는 “이번에 개발한 촉매는 기존 단일 원자 촉매 연구와 다른 관점에서 접근한 연구로 학술적으로 이바지하는 바가 크다”라며 “이번 연구를 통해 단일 원자 촉매 개발의 독보적인 기술을 확보했다”라고 말했다.
이번 연구는 한국연구재단의 중견연구자지원사업, 수소에너지혁신기술개발사업, 기후변화대응기술개발사업, 미래소재디스커버리사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 유사 단일원자 촉매의 수소생산반응 모식도
2019.10.04
조회수 18291
-
최원호 교수, 플라즈마에 의한 수산기(OH radical) 생성원리 규명
〈 박주영 박사, 최원호 교수, 박상후 박사 〉
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 대기압 플라즈마에서 수산기(OH radical)가 생성되는 원리를 규명하는 데 성공했다.
박상후 박사, 박주영 박사과정 학생이 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘케미컬 엔지니어링 저널(Chemical Engineering Journal)’ 7월 8일 자 온라인판에 게재됐다 (논문명: Origin of Hydroxyl Radicals in a Weakly Ionized Plasma-Facing Liquid).
플라즈마란 강한 전기적 힘으로 인해 기체 분자가 이온과 전자로 나누어지는 상태를 말한다. 특히 대기압 플라즈마는 대기 중에 여러 형태로 플라즈마 효과 및 2차 생성물을 방출하는 장점이 있어 살균, 정화, 탈취 등 에너지 및 환경 분야부터 생의학 분야까지 다양한 연구 및 산업 분야에 활용되고 있다.
다양한 분야에서 시도되는 플라즈마는 물과 밀접한 관련이 있다. 물을 플라즈마로 처리한 방전수를 만들어 농업용수 및 살균수로 사용하기도 하고, 생의학 분야에서도 70%가 수분으로 구성된 인체에 활용하기 위해 플라즈마와 물의 반응에 대해 끊임없이 연구가 진행된다.
그중 수산기는 대표적인 활성 산소종으로, 물과 플라즈마의 반응에서 가장 중요한 역할을 하는 물질이다.
수산기는 산화력이 매우 커 여러 목적으로 활용이 시도되고 있으며, 박테리아 살균의 경우 기존의 살균법인 과산화수소나 오존을 사용할 때보다 수십에서 수백 배 효율이 높은 것으로 2018년 최원호 교수 연구팀에서 밝힌 바 있다.
수산기는 살균뿐 아니라, 수질 정화, 폐수 처리, 세척 등 환경 분야 및 멸균, 소독, 암세포 제거 등 의료 기술에서도 매우 높은 잠재력을 가지고 있다.
그러나 수산기는 대량으로 생성하기가 어렵고 생존 기간이 짧아 플라즈마 기술을 적극적으로 활용하는 데 한계가 있다.
연구팀은 문제 해결을 위해 플라즈마 내에서 기존에 알려진 수산기의 생성 방식 외에 산화질소의 광분해에 의한 생성원리를 규명했다. 더불어 광분해를 촉진시켜 수산기의 생성량을 높이면서 동시에 제어하는 방법을 개발했다.
광분해 방법이란 플라즈마로 생성된 산화질소가 존재하는 물과 플라즈마에 자외선을 추가로 노출해 산화질소가 수산기로 분해되는 과정을 말한다. 연구팀이 개발한 광분해방법은 수산기의 생성 위치를 국한하지 않고, 자외선 노출 위치에 따라 제어할 수 있어 생존 기간이 짧다는 단점을 극복할 수 있다.
최원호 교수는 “이번 연구를 통해 플라즈마 기술에 대한 과학적 이해를 넓히면서 효율적인 플라즈마 기술의 제어 방법을 제시함으로써 농업, 식품, 바이오 의학 등 다양한 분야에 플라즈마 기술이 적극적으로 접목될 수 있는 기반을 마련할 것이다”라고 말했다.
이번 연구는 국가핵융합연구소의 미래선도 플라즈마-농식품 융합기술 개발 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 플라즈마 처리수(PTW)에서 pH와 과산화수소, 아질산염 비율에 따른 수산기 반응 경로
그림2. 대기압 플라즈마 사진 및 수산기 생성경로
2019.08.16
조회수 18352
-
정재웅 교수, 스마트폰으로 뇌 신경회로 무선 제어 기술 개발
〈 김충연, 변상혁 박사과정, 정재웅 교수〉
우리 대학 전기및전자공학부 정재웅 교수와 미국 워싱턴대(University of Washington) 마이클 브루카스(Michael Bruchas) 교수 공동 연구팀이 스마트폰 앱 조작을 통해 약물과 빛을 뇌 특정 부위에 전달함으로써 신경회로를 정교하게 조절할 수 있는 뇌 이식용 무선 기기를 개발했다.
이번 기술 개발을 통해 장기간의 동물 실험이 필요한 신약 개발뿐 아니라 치매, 파킨슨병 등 뇌 질환 치료에도 적용할 수 있을 것으로 기대된다.
라자 콰지(Raza Qazi, 1저자), 김충연, 변상혁 연구원이 개발하고 워싱턴대 신경과학 연구원들이 공동으로 참여한 이번 연구는 의공학 분야 국제 학술지 ‘네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)’ 8월 6일 자에 게재됐다. (논문명 : Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation).
광유전학과 신경약물학은 주변 신경회로에 영향을 주지 않고 목표로 하는 뉴런이나 신경회로만을 빛 또는 약물, 혹은 그 둘의 조합을 이용해 정교하게 제어할 수 있다. 기존의 전기자극을 활용한 방법에 비해 훨씬 더 높은 시공간적 해상도를 가져 최근 뇌 연구 및 뇌 질병 치료 목적으로 주목받고 있다.
하지만 현재 뇌 연구에 일반적으로 쓰는 기기는 상대적으로 크기가 커 뇌 조직 손상, 정교한 선택적 신경회로 제어 불가, 하나의 다기능성 프로브(probe) 형태로 구현이 어렵다. 또한, 기존 기기는 실리카(silica)와 금속 등 고강성 재료로 제작돼 부드러운 뇌 조직과의 기계 특성적 간극이 있다. 이러한 특성으로 인해 염증반응을 악화시켜 장기간 이식용으로 적합하지 않다.
무엇보다 일반적으로 연구실에서 쓰이고 있는 광섬유, 약물주입관 등은 뇌 이식 후 외부기기에 선이 연결된 형태로 사용해야 해 자유로운 행동을 크게 제약하게 된다.
연구팀은 중합체(polymer) 미세유체관과 마이크로 LED를 결합해 머리카락 두께의 유연한 탐침을 만들고, 이를 소형 블루투스 기반 제어 회로와 교체 가능한 약물 카트리지와 결합했다. 이를 통해 스마트폰 앱을 통해 무선으로 마이크로 LED와 약물 전달을 제어할 수 있는 무게 2g의 뇌 이식용 기기를 구현했다.
특히 약물 카트리지는 레고의 원리를 모사해 탐침 부분과 쉽게 조립 및 분리할 수 있도록 제작해, 필요할 때마다 새로운 약물 카트리지를 결합함으로써 원하는 약물을 장기간에 걸쳐 뇌의 특정 부위에 반복 전달할 수 있도록 만들었다.
연구팀은 이 기기를 쥐의 뇌 보상회로에 이식한 후 도파민 활성 약물과 억제 약물이 든 카트리지를 기기와 결합했다. 그 후 간단한 스마트폰 앱 제어와 도파민 활성 약물을 이용해 원하는 타이밍에 자유롭게 움직이는 쥐의 행동을 증가, 억제하는 데 성공했다.
또한, 연구팀은 쥐의 뇌에서 장소 선호도를 유도할 수 있는 부위에 빛에 반응하는 단백질을 주입해 신경세포가 빛에 반응하도록 처리했다.
그 후 쥐가 특정 장소로 이동했을 때 마이크로 LED를 켜 빛 자극을 통해 쥐가 그 장소에 계속 머물고 싶게 만들었다. 반대로 약물 전달을 통해 뇌 신경회로를 제어함으로써 쥐의 특정 장소 선호도를 없애는 데도 성공했다.
정 교수는 “빛과 약물을 이용한 신경회로 제어는 기존의 전기자극 방법보다 훨씬 더 정교해 부작용 없는 뇌 제어가 가능하다”라며 “개발된 기기는 간단한 스마트폰 조작으로 뇌의 특정 회로를 빛과 약물을 이용해 반복적, 장기적으로 무선 제어가 가능해 뇌 기능을 밝혀내기 위한 연구나 향후 뇌 질환의 치료에도 유용하게 적용할 수 있을 것이다”라고 말했다.
연구팀은 이 기술을 인체에 적용하기 위해 두개골 내에 완전히 이식할 수 있고 반영구적 사용이 가능한 형태로 디자인을 발전시키는 확장 연구를 계획하고 있다.
이번 연구는 한국연구재단 신진연구자지원사업(완전 이식 가능한 무선 유연성 광유체 뉴럴 임플랜트 개발 및 뇌 연구를 위한 광유전학/광약물학에의 적용) 및 기초연구실 지원사업(유전자 및 신경회로 조절 기반 중독 행동 제어 기초연구실)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 디바이스가 이식된 쥐의 사진
그림2. 스마트폰앱을 이용한 마이크로 LED 컨트롤
그림3. 개발된 뇌 이식용 무선 디바이스
2019.08.08
조회수 27759
-
김유천 교수, 암세포 사멸 유도하는 새 방식의 항암제 개발
〈 김유천 교수, 이대용 박사 〉
우리 대학 생명화학공학과 김유천 교수 공동 연구팀이 세포의 이온 항상성을 교란하는 새로운 원리로 암세포 자가사멸을 유도하는 항암제를 개발했다.
연구팀이 개발한 이온 교란 펩타이드는 세포의 활성산소 농도를 급격하게 높이고 소포체에 강력한 스트레스를 부여해 최종적으로 자가사멸을 유도할 수 있다. 또한, 물에 대한 용해성이 좋아 향후 임상에 적용 가능할 것으로 기대된다.
생명화학공학과 이대용 박사와 한양대학교 생명공학과 이수환 박사과정이 공동 1 저자로 참여하고, 한양대학교 생명공학과 윤채옥 교수가 공동 교신저자로 참여한 이번 연구결과는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 7월 17일 자 표지논문(Back cover)으로 게재됐다. (논문명 : A helical polypeptide-based potassium ionophore induces endoplasmic reticulum stress-mediated apoptosis by perturbing ion homeostasis)
세포 안팎의 이온 기울기는 세포 성장 및 대사과정에 중요한 역할을 해, 세포 이온 항상성을 교란하게 되면 세포의 중요한 기능이 억제돼 자가사멸(Apoptosis)을 촉진할 수 있다.
기존의 이온 항상성 교란 물질은 물에 대한 용해도가 낮아 동물 실험에 적용하기 매우 어렵고 이온 항상성 교란을 통한 자가사멸 원리가 구체적으로 밝혀지지 않아 실제 적용에 한계가 있다.
연구팀은 수용성을 지니고 칼륨 이온을 운반할 수 있는 알파나선 펩타이드 기반 항암물질을 개발했다. 펩타이드 끝에 양이온성을 지니며 물에 잘 녹는 친수성이 강한 그룹과 칼륨 이온 운반이 가능한 그룹을 결합해 이온 수송 능력과 친수성을 동시에 지니게 했다.
이 항암 펩타이드는 세포 내의 칼륨 농도를 낮추는 동시에 세포 내 칼슘 농도를 증가시킨다. 증가한 세포 내 칼슘 농도는 세포 내의 활성산소 농도를 크게 높여, 소포체 스트레스를 일으키며 최종적으로 자가사멸을 유도한다.
연구팀은 종양을 이식한 실험용 동물 모델에 새로운 항암물질을 투여해 높은 항암 효과와 소포체 스트레스를 통한 자가사멸 신호를 확인해 암 성장을 저해할 수 있음을 증명했다.
연구를 주도한 이대용 박사는“이온 교란 펩타이드는 세포 내의 활성산소 농도를 크게 높여 세포 자가사멸을 유도하기 때문에 기존의 항암 치료보다 더 효과적일 것으로 기대한다”라고 말했다.
김유천 교수는 “새로운 기작으로 암세포를 사멸하는 항암 펩타이드는 기존 항암요법의 한계점을 대체할 수 있는 새로운 방법으로 사용될 것이라 기대한다”라고 말했다.
이번 연구는 한국연구재단의 중견연구자지원사업을 통해 수행됐다.
□ 그림 설명
그림1. Advanced Science 표지
그림2. 동물 실험을 통한 소포체 스트레스를 통한 자가사멸 신호 규명
2019.08.01
조회수 19001
-
박오옥 교수, 포도당 기반의 그래핀 양자점 합성 기술 개발
우리 대학 생명화학공학과 박오옥 교수 연구팀이 포도당을 기반으로 한 그래핀 양자점의 합성 기술을 개발해, 이를 이용해 안정적인 청색 빛을 내는 그래핀 양자점 발광소자를 제작하는 데 성공했다.
연구팀은 위 그래핀 양자점을 발광체로 응용해 디스플레이를 제작했고, 현 디스플레이 분야의 난제인 청색 발광을 구현하면서 안정적인 전압 범위에서 발광하는 것을 확인했다.
이석환 박사과정이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘나노 레터스(Nano Letters)’ 7월 5일 자 온라인판에 게재됐다. (논문명 : Synthesis of Single-Crystalline Hexagonal Graphene Quantum Dots from Solution Chemistry)
그래핀은 우수한 열, 전기 전도도와 투명도를 가져 차세대 전자재료로 주목받고 있지만, 단층 및 다층 그래핀은 도체의 특성을 가져 반도체로 적용하기 어려운 단점이 있다. 그러나 그래핀을 작은 나노 크기로 줄이게 되면 반도체의 특성인 밴드갭을 가져 발광특성을 보이게 돼 활용할 수 있게 된다. 이를 그래핀 양자점이라 한다.
기존 단결정 그래핀은 구리-니켈 기반 금속 박막 위에 화학 기상 증착법(CVD)을 이용하거나 흑연을 물리·화학적 방법으로 벗겨내는 기술로 만들었다. 물리·화학적 방법으로 제작한 그래핀은 결함이 매우 많아 순수한 단결정의 특성을 가지지 못하는 단점이 있었다.
연구팀이 개발한 그래핀 양자점은 기존과는 매우 다른 우수한 합성 과정을 보였다. 포도당 수용액에 아민과 초산을 일정 비율로 혼합해 반응 중간체를 형성하고 이를 안정적인 용액으로 구현했다.
이후 형성된 중간체의 자가조립을 유도해 단결정의 그래핀 양자점을 용액상으로 합성하는 데 성공했다. 연구팀은 이 과정에서 기존의 복잡한 분리 정제법을 개선한 저온 침전 분리법을 개발했다.
연구팀의 이번 합성 기술은 단일상(single phase) 반응을 통해 균일한 핵 성장(homogeneous nucleation)반응을 최초로 유도했다는 의의가 있다.
박 교수 연구팀은 이번 연구를 통해서 수 나노미터에서 100 나노미터 수준의 단결정 크기를 원하는 대로 조절 가능한 용액상 합성 기술을 개발했다.
박오옥 교수는 “최초로 개발된 단결정 그래핀 양자점 용액 합성법은 그래핀의 다양한 분야 접목에 크게 기여할 것이다”라며 “이를 잘 응용하면 유연 디스플레이 또는 베리스터와 같은 반도체 성질을 갖는 그래핀의 역할이 제시될 것이다”라고 말했다.
이번 연구는 고려대학교 화공생명공학과 임상혁 교수 연구팀과 공동으로 진행됐으며, 한국과학연구재단의 나노원천 과제, 한국전자통신연구원의 나노물질 기술 연구 과제, KAIST EEWS 과제, 대한민국 정부 BK21+ 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 용액 화학으로 합성된 잘 정렬된 다양한 크기의 단결정 그래핀 양자점
2019.07.30
조회수 21451
-
김재경 교수, 수학적 모델링 통해 신약 개발 걸림돌 해소
〈 김대욱 박사과정, 김재경 교수 〉
우리 대학 수리과학과 김재경 교수와 글로벌 제약회사 화이자(Pfizer)의 장 청(Cheng Chang) 박사 공동연구팀이 수학적 모델을 기반으로 동물 실험과 임상 시험 간 차이가 발생하는 원인을 밝히고 그 해결책을 제시했다.
연구팀은 일주기 리듬 수면 장애 신약을 개발하는 과정에서 동물 실험과 임상 시험 간 발생하는 차이 문제를 수학적 모델을 이용해 해결함으로써 신약 개발의 가능성을 높였다. 또한, 동물과 사람 간 차이 뿐 아니라 사람마다 발생하는 약효의 차이 발생 원인도 밝혀냈다.
김대욱 박사과정이 1 저자로 참여한 이번 연구결과는 국제 학술지 ‘분자 시스템 생물학 (Molecular Systems Biology)’ 7월 8일자 온라인판에 게재됐고, 우수성을 인정받아 7월호 표지논문으로 선정됐다. (논문명 : Systems approach reveals photosensitivity and PER2 level as determinants of clock-modulator efficacy)
신약을 개발하기 위해 임상 시험 전 단계로 쥐 등의 동물을 대상으로 전임상 실험을 하게 된다. 이 과정에서 동물에서 보였던 효과가 사람에게선 보이지 않을 때가 종종 있고 사람마다 효과가 다르게 나타나기도 한다. 이러한 약효의 차이가 발생하는 원인을 찾지 못하면 신약 개발에 큰 걸림돌이 된다.
수면 장애는 맞춤형 치료 분야에서 개발이 가장 더딘 질병 중 하나이다. 쥐는 사람과 달리 수면시간이 반대인 야행성 동물이다 보니 수면시간을 조절할 수 있는 치료제가 실험 쥐에게는 효과가 있어도 사람에게는 무효한 경우가 많았다. 하지만 그 원인이 알려지지 않아 신약 개발에 어려움이 있었다.
연구팀은 이러한 차이의 원인을 미분방정식을 이용한 가상실험과 실제 실험을 결합해 연구했고, 주행성인 사람은 야행성인 쥐에 비해 빛 노출 때문에 약효가 더 많이 반감되는 것이 원인임을 밝혔다. 이는 빛 노출 조절을 통해 그동안 사람에게 보이지 않던 약효가 발현되게 할 수 있음을 뜻한다.
수면 장애 치료 약물의 약효가 사람마다 큰 차이를 보이는 것도 신약 개발의 걸림돌이었다. 연구팀은 증상이 비슷해도 환자마다 약효 차이가 나타나는 원인을 밝히기 위해 수리 모델링을 이용한 가상환자를 이용했다.
이를 통해 약효가 달라지는 원인은 수면시간을 결정하는 핵심 역할을 하는 생체시계 단백질인 PER2의 발현량이 달라서임을 규명했다.
또한, PER2의 양이 낮에는 증가하고 밤에는 감소하기 때문에 하루 중 언제 투약하느냐에 따라 약효가 바뀜을 이용해 환자마다 적절한 투약 시간을 찾아 최적의 치료 효과를 가져오는 시간요법(Chronotherapy)를 개발했다.
김재경 교수는 “수학이 실제 의약학 분야에 이바지해 우리가 좀 더 건강하고 행복한 삶을 살 수 있는데 도울 수 있어 행복한 연구였다”라며 “이번 성과를 통해 국내에선 아직은 부족한 의약학과 수학의 교류가 활발해지길 기대한다”라고 말했다.
□ 그림 설명
그림1. 김재경 교수 연구팀 성과 개념도
그림2. 맞춤형 시간 치료법 (Chronotherapy) 개념도
2019.07.09
조회수 25105
-
이병주 교수, 게임의 랙 현상 해소 기술 개발
〈 이병주 교수, 이인정 박사과정 〉
우리 대학 문화기술대학원 이병주 교수와 핀란드 알토 대학교(Aalto Univ) 공동 연구팀이 게임의 겉보기 형태를 변화시켜 게임 내 레이턴시 효과, 일명 랙(lag)을 없앨 수 있는 기술을 개발했다.
이인정 박사과정이 1 저자로 참여하고 알토대학교 김선준 연구원이 공동으로 개발한 이번 연구는 지난 5월 4일 열린 인간-컴퓨터 상호작용 분야 최고권위 국제 학술대회 CHI 2019(The ACM CHI Conference on Human Factors in Computing Systems)에서 풀 페이퍼로 발표됐다. (논문명 : Geometrically Compensating Effects of End-to-End Latency in Moving-Target Selection Games)
레이턴시는 장치, 네트워크, 프로세싱 등 다양한 이유로 인해 발생하는 지연(delay) 현상을 말한다. 사용자가 명령을 입력했을 때부터 출력 결과가 모니터 화면에 나타날 때까지 걸리는 지연을 엔드-투-엔드 레이턴시(end-to-end latency)라 한다.
상호작용의 실시간성이 중요한 요소인 게임 환경에서는 이러한 현상이 플레이어의 능력에 부정적 영향을 미치는 것으로 알려져 있다.
연구팀은 레이턴시가 있는 게임 환경에서도 플레이어의 본래 실력으로 게임을 할 수 있도록 돕는 레이턴시 보정 기술을 개발했다. 이 기술은 레이턴시의 양에 따라 게임의 디자인 요소, 즉 장애물의 크기 등의 형태를 변화시킴으로써, 레이턴시가 있음에도 레이턴시가 없는 것처럼 느껴지는 환경에서 플레이할 수 있다.
연구팀은 레이턴시가 플레이어에 미치는 영향을 분석해 플레이어의 행동을 예측하는 수학적 모델을 제시했다. 시간제한이 있는 상황에서 게임 플레이를 위해 버튼 입력을 해야 하는 ‘움직이는 타겟 선택’ 과업에 레이턴시가 있을 때 사용자의 성공률을 예측할 수 있는 인지 모델이다.
이후에는 이 모델을 활용해 게임 환경에 레이턴시가 발생할 경우의 플레이어 과업 성공률을 예측한다. 이를 통해 레이턴시가 없는 환경에서의 플레이어 성공률과 비슷한 수준으로 만들기 위해 게임의 디자인 요소를 변형한다.
연구팀은 ‘플래피 버드(Flappy Bird)’라는 게임에서 기둥의 높이를 변형해 레이턴시가 추가됐음에도 기존 환경에서의 플레이 실력을 유지함을 확인했다. 연구팀은 후속 연구를 통해 게임 속 장애물 등의 크기를 변형함으로써 레이턴시를 없애는 등의 확장 연구를 기대하고 있다.
이 교수는 “이번 기술은 비 간섭적 레이턴시의 보정 기술로, 레이턴시의 양만큼 게임 시계를 되돌려 보상하는 기존의 랙 보상 방법과는 다르게 플레이어의 게임 흐름을 방해하지 않는 장점이 있다”라고 말했다.
이번 연구는 한국연구재단 신진연구자지원사업(프로게이머 역량 극대화를 위한 게임 입력장치의 설계 최적화) 및 KAIST 자체 연구사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 게임의 겉보기 형태를 변화시킴으로써, 플레이어가 제로 레이턴시 환경과 레이턴시가 있는 환경에서 같은 실력을 유지
2019.07.02
조회수 21971
-
임성갑 교수, 새로운 다층 금속 상호연결 기술 개발
우리 대학 생명화학공학과 임성갑 교수와 POSTECH(총장 김도연) 창의IT융합공학과 김재준 교수 공동 연구팀이 비아홀(via-hole, vertical interconnect access hole) 공정 없이도 금속을 다중으로 상호 연결할 수 있는 기술을 개발했고, 이를 통해 5층 이상의 3차원 고성능 유기 집적회로를 구현했다.
이번 기술은 금속의 수직 상호 연결을 위해 공간을 뚫는 작업인 비아홀 공정 대신 패턴된 절연막을 직접 쌓는 방식으로, 유기 반도체 집적회로를 형성하는데 적용할 수 있는 신개념의 공정이다.
유호천 박사와 박홍근 박사과정 학생이 공동 1 저자로 참여한 이번 연구 결과는 국제적인 학술지인 네이처 커뮤니케이션(Nature Communications) 6월 3일 자 온라인판에 게재됐다. (논문명: Highly stacked 3D organic integrated circuits with via-hole-less multilevel metal interconnects)
유기 트랜지스터는 구부리거나 접어도 그 특성을 그대로 유지할 수 있는 장점 덕분에 유연(flexible) 디스플레이 및 웨어러블 센서 등 다양한 분야에 적용할 수 있다.
그러나 이러한 유기물 반도체는 화학적 용매, 플라즈마, 고온 등에 의해 쉽게 손상되는 문제점 때문에 일반적인 식각 공정을 적용할 수 없어 유기 트랜지스터 기반 집적회로 구현의 걸림돌로 여겨졌다.
공동 연구팀은 유기물 반도체의 손상 없이 안정적인 금속 전극 접속을 위해 절연막에 비아홀을 뚫는 기존 방식에서 벗어나 패턴된 절연막을 직접 쌓는 방식을 택했다. 패턴된 절연막은 패턴 구조에 따라 반도체소자를 선택적으로 연결할 수 있도록 했다.
특히 연구팀은 ‘개시제를 이용한 화학 기상 증착법(iCVD: initiated chemical vapor deposition)’을 통해 얇고 균일한 절연막 패턴을 활용해 안정적인 트랜지스터 및 집적회로를 구현하는 데 성공했다.
공동 연구팀은 긴밀한 협력을 통해 개발한 금속 상호 연결 방법이 유기물 손상 없이 100%에 가까운 소자 수율로 유기 트랜지스터를 제작할 수 있음을 확인했다. 제작된 트랜지스터는 탁월한 소자 신뢰성 및 균일성을 보여 유기 집적회로 제작에 큰 역할을 했다.
연구팀은 수직적으로 분포된 트랜지스터들을 상호 연결해 인버터, 낸드, 노어 등 다양한 디지털 논리 회로를 구현하는 데 성공했다. 또한, 효과적인 금속 상호 연결을 위한 레이아웃 디자인 규칙을 제안했다. 이러한 성과는 향후 유기 반도체 기반 집적회로 구현 연구에 유용한 지침이 될 것으로 기대된다.
연구책임자인 POSTECH 김재준 교수는 “패턴된 절연막을 이용하는 발상의 전환이 유기 집적회로로 가기 위한 핵심 기술의 원천이 됐다”라며 “향후 유기 반도체 뿐 아니라 다양한 반도체 집적회로 구현의 핵심적인 역할을 할 것으로 기대한다”라고 말했다.
본 연구는 과학기술정보통신부, 한국연구재단과 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 제안된 금속 상호 연결 기술 모식도
그림2. 수직 집적된 디지털 회로 공정 모식도 및 이미지
2019.06.11
조회수 20055
-
조광현 교수, 대장암 항암제 내성 극복할 병용 치료타겟 발굴
〈 조광현 교수 연구팀 〉
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 대장암의 항암제 내성을 극복할 수 있는 새로운 병용치료 타겟을 발굴하는 데 성공했다.
연구팀은 암세포의 복잡한 생체데이터를 분자 네트워크 관점에서 분석하는 시스템생물학 접근법의 중요성을 제시했다. 이 방법을 통해 암세포가 가지는 약제 내성의 원리를 시스템 차원에서 파악하고, 새로운 약물 타겟을 체계적으로 발굴할 수 있을 것으로 기대된다.
박상민 박사과정, 황채영 박사 등이 참여한 이번 연구결과는 국제학술지 ‘유럽생화학회저널(FEBS Journal)’의 4월호 표지논문으로 게재됐다. (논문명 : Systems analysis identifies potential target genes to overcome cetuximab resistance in colorectal cancer cells)
암은 흔하게 발생하는 대표적인 난치병으로 특히 대장암은 전 세계적으로 환자 수가 100만 명을 넘어섰고, 국내의 경우 서구화된 식습관과 비만 등으로 인해 발병률 증가 속도가 10년간 가장 높게 나타났다. 최근 급격한 고령화에 따라 대장암 환자의 발생률 및 사망률이 가파르게 증가할 것으로 예상되고 있다.
최근 암세포의 특정 분자만을 표적으로 하는 표적항암제가 개발돼 부작용을 크게 줄이고 효과를 높일 수 있지만, 여전히 약물에 반응하는 환자가 매우 제한적이며 그나마 반응을 보이더라도 표적 항암치료 후 약물에 대한 내성이 생겨 암이 재발하는 문제를 안고 있다.
또한, 환자별로 항암제에 대한 반응이 매우 달라 환자의 암 조직 내 유전자 변이의 특징에 따라 적합한 치료를 선택하는 정밀의학의 필요성이 커지고 있다. 대장암 역시 약물의 효과를 예측할 수 있는 유전자 바이오마커의 여부에 따라 적합한 표적항암제를 처방하는 시도가 이뤄지고 있다.
FDA 승인을 받은 대표적인 대장암 치료제인 세툭시맙(cetuximab)의 경우 약물 반응성을 예측하는 바이오마커로 KRAS 유전자 돌연변이의 유무가 활용되고 있는데 이 유전자 돌연변이가 없는 환자에게 처방을 권고하고 있다.
그러나 KRAS 돌연변이가 없는 환자도 세툭시맙 반응률은 절반 정도에 불과하고 기존 항암 화학요법 단독시행과 비교해도 평균 5개월의 수명을 연장하는 데 그치고 있다. 오히려 KRAS 돌연변이가 있는 환자에게서 반응성이 있는 경우가 보고되고 있다.
따라서 KRAS 돌연변이 유무 이외의 새 바이오마커가 요구되고 있으며 KRAS 돌연변이가 존재해도 내성을 극복할 수 있는 병용치료 타겟의 발굴이 필요하다.
조 교수 연구팀은 유전체 데이터 분석, 수학 모델링, 컴퓨터 시뮬레이션 분석과 암 세포주 실험을 융합한 시스템생물학 연구를 통해 세툭시맙 반응성에 대한 바이오마커로 다섯 개의 새로운 유전자(DUSP4, ETV5, GNB5, NT5E, PHLDA1)를 찾아냈다.
그리고 대장암세포에서 각 유전자를 실험적으로 억제한 결과 KRAS 정상 세포에서 발생하는 세툭시맙 내성을 모두 극복할 수 있었다.
특히 GNB5를 억제하면 KRAS 돌연변이가 있는 세포주에서도 세툭시맙 처리에 따른 약물내성을 극복할 수 있음을 밝혔다. 따라서 GNB5의 억제를 통해 대장암 환자의 KRAS 돌연변이 유무와 관계없이 세툭시맙에 대한 내성을 극복할 수 있어 GNB5가 효과적인 병용치료 분자 타겟이 될 수 있음을 증명했다.
연구팀이 제시한 유전자를 바이오마커로 활용하면 세툭시맙에 잘 반응할 수 있는 민감 환자군을 미리 선별해 치료할 수 있는 정밀의학의 실현을 앞당길 수 있다.
또한, 발굴된 유전자들을 표적화하는 신약개발을 통해 내성을 가지는 환자군에 대해서도 새로운 치료전략을 제시할 수 있다. 특히 세툭시맙 치료 대상에서 제외됐던 KRAS 돌연변이가 있는 환자군에 대해서도 GNB5의 억제를 통해 치료 효과를 가져올 수 있을 것으로 기대된다.
조 교수는 “지금껏 GNB5 유전자 조절을 대장암의 조합치료에 활용한 예는 없었다”라며 “시스템생물학으로 암세포가 가지는 약제 내성의 원리를 밝히고, 내성 환자군에 대한 바이오마커 동정 및 내성 극복을 위한 병행치료 타겟 발굴을 통해 정밀의학을 실현할 수 있는 새로운 가능성을 제시했다”라고 말했다.
이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 유럽생화학회저널 4월 표지
2019.05.07
조회수 24420
-
이진우 교수, 그래핀 기반의 자연 효소 모방물질 개발
〈 이진우 교수 〉
우리 대학 생명화학공학과 이진우 교수 연구팀이 그래핀을 기반으로 해 과산화효소의 선택성과 활성을 모방한 나노단위 크기의 무기 소재(나노자임, Nanozyme)를 합성하는 데 성공했다.
연구팀은 이 무기 소재를 이용하면 알츠하이머병 조기 진단과 관련된 신경전달물질인 아세틸콜린을 자연 효소를 이용했을 때보다 더 민감하게 검출할 수 있음을 확인했다.
가천대학교 바이오나노학과 김문일 교수, UNIST 에너지화학공학부 곽상규 교수팀과 공동으로 연구하고 김민수 박사가 1 저자로 참여한 이번 연구는 재료 분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 3월 25일자에 게재됐다. (논문명 : N and B Codoped Graphene: A Strong Candidate To Replace Natural Peroxidase in Sensitive and Selective Bioassays , 질소와 붕소가 동시에 도핑된 그래핀: 민감하고 선택성이 있는 바이오에세이에 사용되는 자연의 과산화효소를 대체할 수 있는 강력한 후보)
효소는 우리의 몸 속 다양한 화학 반응에 촉매로 참여하고 있다. 각각의 효소는 구조가 매우 복잡해 체내에서 특정 온도와 환경에서 원하는 특정 반응에만 촉매 역할을 할 수 있다.
특히 과산화효소는 과산화수소와 반응하면 푸른 색을 띠기 때문에 과산화수소를 시각적으로 검출할 수 있다. 이를 이용해 산화 과정에서 아세틸콜린을 포함한 과산화수소를 배출하는 다양한 물질을 시각적으로 검출할 수 있다는 장점이 있다.
대신 효소는 안정성, 생산성이 낮고 가격이 비싸다는 단점이 있다. 단백질로 이뤄진 효소와 달리 무기물질로 합성된 효소 모방 물질은 기존 효소의 단점을 해소할 수 있어 효소의 역할인 질병의 검출 및 진단 시스템에 활용할 수 있다. 따라서 효소의 활성을 정확히 모방하는 나노물질의 필요성이 커지고 있다.
그러나 효소를 모방하는 나노물질은 활성을 모방하는 것이 가능하지만 원하지 않은 다른 부가적인 반응을 일으킬 수 있다는 단점이 있어 효소를 대체하는 데 어려움이 있다. 특히 기존의 과산화효소 활성이 높은 물질은 과산화수소가 없는 상황에서도 색이 변하기 때문에 검출 물질이 없어도 발색이 되는 단점이 있다.
문제 해결을 위해 연구팀은 과산화효소 활성만을 선택적으로 모방하는 질소와 붕소가 동시에 도핑된 그래핀을 합성했다. 이 그래핀의 경우 과산화수소 활성은 폭발적으로 증가하지만 다른 효소 활성은 거의 증가하지 않아 과산화효소를 정확하게 모방할 수 있다.
연구팀은 실험적 내용을 계산화학을 통해 증명했으며 새롭게 개발한 물질을 이용해 중요 신경전달 물질인 아세틸콜린을 시각적으로 검출하는 데 성공했다.
아세틸콜린은 알츠하이머병의 조기 진단과 관련이 높아 연구팀의 효소모방 물질을 이용하면 향후 질병 진단 및 치료에 기여할 수 있을 것으로 예상된다.
이 교수는 “효소 모방 물질은 오래되지 않은 분야이지만 기존 효소를 대체할 수 있다는 잠재성 때문에 관심이 폭발적으로 커지고 있다”라며 “이번 연구를 통해 효소의 높은 활성 뿐 아니라 선택성까지 가질 수 있는 물질을 합성하고 알츠하이머의 진단 마커인 아세틸콜린을 효과적으로 시각적 검출할 수 있는 기술을 확보했다”라고 말했다.
이번 연구는 한국연구재단의 이공분야 기초연구사업 중견연구자지원사업을 통해 수행됐다.
□ 그림 설명
그림1. 촉매의 과산화효소와 산화효소 활성을 시각적으로 확인할 수 있는 사진
그림2. 질소와 붕소가 동시에 도핑된 그래핀의 바이오 에세이 적용
2019.04.23
조회수 20306
-
공승현 교수, 30미터 정확도의 스마트폰 위치측정 기술 개발
〈 공승현 교수 연구팀 〉
우리 대학 조천식녹색교통대학원 공승현 교수 연구팀이 LTE 신호만을 이용해 실제 환경에서 평균 30미터 이내의 정확도를 갖는 스마트폰 위치 측정 기술을 개발했다.
김태선 연구원 및 조상재, 김보성, 정승환 석사과정이 참여한 이번 연구를 통해 연구팀은 KT와 협력해 기술 상용화를 추진하고 있다.
최근 전 세계적으로 도심 내에서의 신뢰도 높은 위치 기반 서비스를 제공하기 위한 다양한 기술 개발이 이뤄지고 있다. 그러나 우리나라처럼 기지국과 중계기가 혼재하는 이동통신 환경에서 새로운 장치를 추가하지 않고 이동통신 신호만을 이용하는 제한적인 기술로 넓은 도시 지역에서 높은 정확도와 완성도를 갖는 기술은 아직 보고되지 않고 있다.
일반적으로 GPS 등의 위성항법 시스템은 도심이나 아파트 단지 등 고층 건물이 밀집한 곳에서 극심한 신호의 난반사로 인해 위치 측정 오차가 발생하고 이로 인해 수백 미터 이상의 큰 오차가 발생하기도 한다.
이러한 문제로 최근에는 도심이나 실내에서 와이파이 신호의 RF 핑거프린트를 이용해 스마트폰의 위치를 파악하는 기술이 많이 사용된다. 그러나 이 기술은 여러 대의 와이파이 공유기 신호가 수신되는 특정 공간에서만 높은 신뢰도를 가지고, 공유기가 구축되지 않은 곳에서는 측정할 수 없거나 정확도가 현저하게 떨어진다는 한계가 있다.
연구팀은 스마트폰에서 얻을 수 있는 LTE 기지국 신호에 대한 다양한 측정치를 일정 위치마다 수집해 이를 LTE 핑거프린트(Fingerprint) 데이터베이스로 저장했다. 이후 임의의 사용자 스마트폰에서 측정한 LTE 신호 측정치를 서버로 전달하면 그 측정치를 LTE 핑거프린트 데이터베이스와 비교해 스마트폰의 위치를 파악하는 방식으로, 이는 RF 핑거프린트를 고도화한 기술이다.
연구팀이 개발한 기술의 특징은 LTE 신호를 측정해 얻은 다양한 데이터로부터 각 데이터의 특성에 따라 효과적으로 데이터베이스를 구성하고, 변화가 많은 이동통신 신호 환경에 강인한 최적의 패턴 매칭 기법을 활용하고 있다는 점이다.
연구팀은 개발한 LTE 핑거프린트 기술을 KAIST 교내, 주변 아파트 및 상업 단지를 포함 대전지역과 광화문 일대부터 인사동에 이르는 서울 도심에서 시연해 평균 30미터의 오차를 갖는 성능을 확인했다.
공승현 교수는 “현재 개발된 기술보다 더 높은 정확도를 갖는 LTE 핑거프린트 기술을 개발하는 것도 가능하며 5G에서는 LTE보다 2배 높은 평균 15미터 내외의 측위 정확도를 얻을 수 있다”라며 “머신러닝 기술을 이용해 기지국이나 중계기의 이설과 추가 등으로 LTE 신호 환경이 바뀌었을 때 이를 자동 탐지하고 LTE 핑거프린트 데이터베이스를 신속히 갱신하는 기술을 추가 연구할 계획이다”라고 밝혔다.
현재는 개발된 기술을 이동통신 시스템에 적용하기 위한 단계별 방안을 계획하면서 상용화를 추진 중이다.
□ 그림 설명
그림1. 기지국 LTE 핑거프린트의 실례
2019.04.16
조회수 12898