본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9E%90%EC%97%B0%EA%B3%BC%ED%95%99%EB%8C%80%ED%95%99
최신순
조회순
백무현 교수, 메탄가스의 화학적 분해 성공
〈 백 무 현 교수 〉 우리 대학 화학과 백무현 교수 연구팀이 촉매반응과 합성이 까다로운 메탄가스를 화학적으로 분해하는데 성공했다. 이로써 메탄가스를 대체에너지원은 물론, 플라스틱 등 다양한 화학제품의 원료로 활용할 수 있는 실마리를 제시했다. 기초과학연구원 분자활성 촉매반응 연구단은 전이금속인 이리듐을 활용한 붕소화 촉매반응으로 메탄가스의 탄소-수소 결합을 끊고 화학반응을 활성화하는 과정을 이론과 실험으로 증명했다. 백 교수는 계산 화학으로 화학반응에 필요한 정확한 촉매후보물질을 예측했으며 반응 메커니즘을 규명했다. 기존 연구에서 탄소-수소 결합 활성화 반응 생산율은 2~3%에 머물러 사실상 불가능에 가까운 화학반응으로 간주되었다. 하지만 연구팀은 촉매로 탄소-수소 결합 활성화 생성물의 생산율을 약 60%까지 끌어올렸다. 메탄가스는 탄소와 수소로만 이뤄진 탄화수소(hydrocarbon)* 물질 중 하나다. 매년 5억톤 이상 발생하고 발생량이 점차 늘고 있다. 탄화수소 혼합물은 활용성이 높지만 메탄가스는 탄소-수소 결합이 매우 강해 활용이 어렵다. 상온에서 기체 상태인 메탄가스를 액화시키려면 높은 압력과 온도가 필요한데, 복잡한 공정이 동반되고 많은 경제적 비용이 소요된다. 메탄가스를 운송하려 해도 액화 중 에너지 밀도가 낮아져 활용도가 떨어진다. 원유 생산지에서 발생하는 메탄가스는 경제성이 없어 태우는 게 일반적이다. 이 때 환경에 유해한 이산화탄소, 일산화탄소가 다량 발생한다. 이번 연구는 메탄가스를 새로운 에너지원과 석유화학 산업의 원료로 사용할 수 있다는 가능성을 보여줬다는데 의의가 있다. 연구팀이 촉매반응으로 만든 탄소-수소 결합 활성화 생성물은 어떤 분자와 작용하느냐에 따라 다양하게 활용될 수 있다. 생성물에 물을 더하면 메탄올을 만들 수 있으며 다른 화합물과 반응시키면 플라스틱, 의약품, 의류 등의 화학제품의 원료로도 사용할 수 있다. 또한 연구진이 규명한 화학 반응을 활용하면 이산화탄소와 함께 기후 변화의 주요인으로 꼽히는 메탄가스를 제어할 수 있으므로 온실가스를 크게 줄일 수 있다. 다만 촉매로 사용한 붕소와 이리듐 가격이 비싸기 때문에 이를 대체할 유기금속촉매를 개발하는 것이 과제다. 이번 연구는 미국 펜실베니아 대학의 대니얼 민디올라(Daniel J. Mindiola) 교수 그룹과 미국 미시간 주립 대학의 밀턴 스미스(Milton R. Smith Ⅲ) 교수 그룹과의 공동연구로 진행되었다. 연구결과는 세계적 학술지인 사이언스(Science, if=33.611)에 3월 26일에 게재되었다. □ 그림 설명 그림1. 메탄가스의 탄소-수소 결합 활성화 반응물을 위한 연구진 실험 내용 그림2. 메탄가스의 탄소-수소 결합 활성 붕소화 촉매반응 기작
2016.03.29
조회수 12902
무형광체 백색 LED 제조 기술 개발
우리 대학 물리학과 조용훈 교수 연구팀이 형광체를 사용하지 않은 백색 LED 제조 기술을 개발했다. 이 기술은 차세대 조명 및 디스플레이 기술의 발전에 기여할 것으로 기대된다. 이번 연구 결과는 네이처가 발행하는 학술지 ‘빛 : 과학과 응용 (Light : Science & Applications)’ 12일자 온라인 판에 게재됐고, 그 중요성을 인정받아 인쇄본의 표지 논문으로 선정됐다. 현재 대부분의 백색 LED는 청색 LED에 황색 형광체를 사용하거나 여러 색의 LED 칩을 병렬 조합해서 만드는 방식이다. 그러나 황색 형광체는 희토류물질로 수입의존도가 높고, 낮은 연색성, 변색 등의 문제점을 갖는다. 또한 여러 색의 LED 칩을 병렬 조합하는 방식은 단가가 매우 높아진다는 단점이 있다. 연구팀은 문제 해결을 위해 형광체를 사용하지 않고 하나의 반도체 칩으로 백색 LED를 제작하기 위한 방법을 고안했다. 동심원 모양으로 꼭대기 부분을 잘라낸 피라미드 구조가 제작되도록 마이크로 복합 구조체를 설계한 것이다. 이 마이크로 크기 삼차원 구조체는 각 면마다 다른 조건의 양자우물이 형성돼 각 면에서 다른 색의 빛을 낼 수 있다. 결국 기존의 여러 LED 색을 조합할 필요 없이 한 구조체에서도 다양한 색을 혼합할 수 있게 된다. 삼차원 구조체를 만드는 시간과 조건을 조절해 각 결정면의 면적을 변화시킴으로써 다양하게 혼합된 색의 LED가 제작 가능하다. 연구팀은 각 결정면의 면적을 조절해 하나의 LED 칩으로 무형광체 백색 LED를 시연했다. 또한 LED에 인가하는 전류를 변화시켜도 색이 거의 변하지 않았다. 이는 무형광체 백색 LED의 초기단계로 미래의 무형광체 백색광원의 방향성을 제시했다는 의의를 갖는다. 이밖에도 연구팀은 고배율 대물렌즈를 사용해 3차원 구조체 내부에서 전류주입의 정도를 측정하는 방법을 소개했다. 이를 통해 전류를 효율적으로 주입시키는 방안을 개발한다면 LED 소자의 효율과 색재현성을 조절할 수 있을 것으로 전망했다. 조 교수는 “향후 3차원 반도체 공정개발을 통해 효율이 개선된다면 형광체 없이도 값싸고 색 재현성이 좋은 단일 칩 백색 광원으로 활용될 수 있을 것이다”고 말했다. 임승혁 박사과정 학생이 1저자로 참여한 이번 연구는 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 형광체를 사용하지 않은 마이크로 크기의 끝이 잘린 피라미드 형태의 복합 구조체에서 전류 주입으로 백색광을 내는 개념도 그림2. 형광체를 사용하지 않은 마이크로 크기의 끝이 잘린 피라미드 형태의 전자현미경사진과 백색광의 전계발광 스펙트럼
2016.02.23
조회수 12735
나노미터 크기의 우담바라 꽃 모양 제작
〈윤 동 기 교수〉 우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 액정의 승화현상을 이용해 정교한 3차원 액정나노구조를 제작할 수 있는 기술을 개발했다. 이는 액정이 승화할 때 열처리 조건에 따라 여러 모습의 3차원 나노구조가 형성되는 특성을 이용한 기술이다. 간단한 온도조절만으로도 다양한 3차원 나노패터닝이 가능해 차세대 소자 개발에 기여할 것으로 기대된다. 특히 연구팀은 우담바라 꽃, 찐빵 모양 등을 나노미터 크기 수준에서 정교하게 제작하는 데 성공했다. 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 4일자 온라인 판에 게재됐다. 나노 및 마이크로 패터닝을 위해 가장 많이 쓰이는 기술은 빛을 이용한 광 식각 기술이다. 하지만 이 방식은 2차원 식각공정에 특화돼 있고 비싼 공정설비, 복잡한 과정 등의 한계를 갖는다. 특히 3차원 구조 제작을 위해서는 2차원 구조를 계속 적층해야 하는 과정이 포함되기 때문에 정교한 구현이 어려웠다. 연구팀은 문제 해결을 위해 액정의 온도를 높여 분자들을 기체로 승화시켰다. 기체로 승화된 액정분자들은 공기 중으로 날아가게 되는데 그 중 일부는 무게, 분자수준에서의 친화도 등의 원인으로 다시 되돌아와 남아있던 액정 상 구조와 다시 재결합하게 된다. 이는 동굴의 종유석, 석순의 생성 원리나 유황온천에서 승화돼 날아가던 유황 성분이 바위나 돌에 붙어 유황 바위가 되는 것과 비슷한 원리이다. 연구팀은 승화 및 재결합 현상을 통해 온도 및 시간 조절로 수 나노미터 수준의 액정 판상구조를 정교하게 한 겹씩 벗겨낸 뒤, 다양한 3차원 나노 구조체를 제작하는 데 성공했다. 온도나 시간을 조절함으로써 나노 구조체는 다양해진다. 온도를 조금만 상승시킬 때는 우담바라 꽃 모양이 되고, 온도를 매우 높일 때는 액정 분자가 순식간에 날아가 찐빵과 같은 모양이 되기도 한다. 이 기술을 이용하면 차세대 기술로 불리는 수직 트랜지스터 등을 기존 2차원 식각 공정에 비해 약 1천 배 저렴하고 간단하게 제작할 수 있다. 일일이 적층할 필요 없이 3차원으로 패터닝이 순식간에 가능해지기 때문이다. 윤 교수는 “전자기장에 민감하게 반응하는 액정의 고유 성질과 이번 승화 및 재결합 현상을 융합할 수 있다”며 “이를 통해 고효율의 광전자 소자 개발에 많은 도움이 될 것이다”고 말했다. 나노과학기술대학원 김대석 박사과정 학생이 주도하고 美 켄트 주립대학 올레그 라브렌토비치(Oleg D. Lavrentovich) 교수가 참여한 이번 연구는 미래창조과학부의 미래유망기술 융합파이오니아 사업을 통해 수행됐다. □ 그림 설명 그림1. 우담바라 나노구조체 그림2. 우담바라 나노구조체(확대) 그림3. 다양한 조건의 승화-재조합 공정 후의 초분자 액정 구조체의 모양
2016.01.11
조회수 12633
이희승 교수, 펩타이드 자기 나침반 개발
〈이 희 승 교수〉 우리 대학 화학과 이희승(47) 교수 생체모방 유기분자 연구팀이 순수 유기화합물만으로 구성된 펩타이드 자기 나침반을 개발했다. 이번 성과는 네이처(Nature) 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 10월 29일자 온라인 판에 게재됐다. 금속화합물, 산화금속과 같은 강자성(ferromagnetic) 및 상자성(paramagnetic)을 갖는 자성물질은 이들의 자기적 특성을 이용해 다양하게 응용되고 있다. 반면, 펩타이드와 같은 반자성(diamagnetic) 유기분자들은 금속성 물질에 비해 자기민감성(magnetic susceptibility)이 현저히 낮아 수 테슬라(Tesla) 이상의 강한 자기장에도 반응하지 않기 때문에 비 자성(non-magnetic) 물질로 취급됐다. 또한 반자성 특성은 분자수준에서 관찰이 어렵고 효율성이 낮아 한계가 있는 것으로 여겨졌다. 물론 이론적으로는 반자성 분자라도 열에너지를 극복할 수 있는 다수의 분자가 일정한 규칙으로 정렬된 집합체가 되면 반자성 정렬(diamagnetic alignment)이 가능하다. 따라서 외부자기장의 변화에 실시간으로 반응하는 분자기계의 개발이 가능하지만, 이를 실험적으로 증명한 예는 없었다. 문제 해결을 위해 연구팀은 폴덱쳐(foldecture)라고 이름 지은 독창적인 나선형 펩타이드 분자 자기조립체를 개발했다. 이는 독특한 3차원 모양의 일정한 크기를 갖는 비금속 유기물질이고, 반자성 특성을 갖지만 이를 구성하는 펩타이드 분자들이 높은 결정성과 일정한 규칙성을 갖도록 설계됐다. 이러한 규칙성과 결정성 등의 특징은 펩타이드 자기조립체가 외부 자기장 방향을 따라 정렬할 수 있게 만들었다. 또한 MRI 장비의 자기장 세기보다 낮은 1 테슬라 이하의 회전자기장에서도 폴덱쳐들이 실시간으로 감응하며 정렬해 수용액상에서 실시간 회전운동도 가능함을 최초로 증명했다. 연구팀은 체내에 마그네토좀이라는 자기나침반을 지닌 주자성 박테리아(magnetotactic bacteria)의 행동 양식에 착안해, 순수 유기화합물질인 폴덱쳐를 이용해서 외부 자기장의 방향 변화를 민감하게 가리킬 수 있는 수 밀리미터 크기의 하이드로겔 나침반을 구현하는데 성공했다. 이번 연구에서 밝혀진 펩타이드 자기조립체의 반자성 정렬 현상은 반자성 물질 연구에 대한 새로운 시각을 제시했을 뿐 아니라 폴대머 및 펩타이드 자기조립 연구와 자극반응성 분자기계, 유기나노물질의 움직임 제어 등 다양한 관련 응용연구 분야에 영향을 끼칠 것으로 기대된다. 이 교수는“이번 성과를 통해 자기제어가 가능한 생체 친화적 유기 나노/마이크로소재 연구개발이 활성화될 것으로 기대된다”고 말했다. KAIST 화학과 권선범 박사가 제 1 저자로 참여한 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐고, KAIST EEWS 대학원 김형준 교수팀, 화학과 최인성 교수의 세포피포화 연구단과의 공동연구를 통해 진행됐다. □ 그림 설명 그림 1. 주사전자현미경을 통해 관찰된 폴덱쳐의 자기정렬 현상 그림2. 펩타이드 1 및 2 의 분자구조식과 이들의 자기조립을 통해 합성된 폴덱쳐의 전자현미경 사진
2015.12.02
조회수 11872
화합물의 광학 활성 분석 기술 개발
〈 김 현 우 교수〉 우리 대학 화학과 김현우 교수 연구팀이 핵자기공명 분광분석기(NMR)를 통해 전하를 띠는 화합물의 광학 활성을 간단히 분석할 수 있는 기술을 개발했다. 연구 결과는 화학분야 학술지 ‘미국화학회지(Journal of the American Chemical Society)’ 10월 19일자 온라인 판에 게재됐다. 오른손과 왼손처럼 같은 물질이지만 거울상 대칭이 되는 화합물을 광학 이성질체라고 한다. 지구상의 생명체를 이루는 아미노산과 당은 하나의 광학 이성질체로 이뤄져 있어 새로운 화합물이 생체에 들어갈 때 광학 활성에 따라 서로 다른 생리학적 특징을 나타낸다. 따라서 신약을 개발할 때 광학 활성을 조절하고 분석하는 연구는 필수적이다. 광학 활성의 분석 방법으로 고성능 액체 크로마토그래피(HPLC)가 주로 사용되는데, 고가의 부품을 구비해야 하고 30분에서 1시간 정도의 시간이 소요되는 단점이 있다. 또한 신호의 감도 및 분해 기능이 떨어지고 사용할 수 있는 용매가 무극성에 한정되는 점 때문에 활용에 한계가 있었다. 반면 화합물의 분자 구조 분석에 활용되는 핵자기공명(NMR) 분광분석기는 1~5분 정도의 빠른 분석속도를 갖고 있다. 또한 화학 분야에서 분자의 구조를 확인하기 위한 필수 장비이기 때문에 대부분의 연구실에서 구비된 상태다. 하지만 이 핵자기공명 분광분석기를 통해 광학 활성 화합물의 신호를 분리하는 효과적인 방법은 보고되지 않았다. 연구팀은 기존에 알려지지 않은 음전하를 띠는 금속 화합물과 핵자기공명 분광분석기를 이용해 분석 방법을 개발했다. 음전하를 띤 금속 화합물이 양전하 및 음전하를 갖는 광학활성 화합물과 이온성 결합을 하면 핵자기공명 분광분석기를 통해 신호가 구별돼 광학 활성을 분석할 수 있는 원리이다. 이 방법을 사용하면 구조적 제약 없이 다양한 화합물을 분석할 수 있고, 비극성 및 극성 용매에 모두 적용 가능하다는 장점을 갖는다. 연구팀은 다양한 신약 및 신약후보 물질들은 전하를 띨 수 있는 작용기를 포함한 경우가 많아 연구팀의 새로운 분석 방법이 신약 개발에 직접적으로 활용 가능할 것으로 기대된다고 밝혔다. 김 교수는 “간단한 화학적 원리를 통해 기존의 틀을 깨는 혁신적 분석방법을 만들었다”며 “이 방법이 신약개발에 많이 활용되길 기대한다”고 말했다. 화학과 서민섭 박사과정(1저자)의 참여로 이루어진 이번 연구는 기초과학연구원(IBS) 나노물질 및 화학반응 연구단과 슈퍼컴퓨팅연구지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 금속 화합물과 이온성 상호작용으로 광학활성을 가진 화합물의 NMR 신호가 분리되는 현상 그림2. 다양한 광학활성 물질이 분리되는 그림
2015.11.10
조회수 14925
대장균의 생물막 형성 제어 기술 개발
〈이 영 훈 교수〉 우리 대학 화학과 이영훈 교수 연구팀이 작은 RNA(small RNA : sRNA)의 발현을 조절해 대장균의 생물막 형성을 제어할 수 있는 기술을 개발했다. 연구 결과는 네이처 자매지인 ‘사이언티픽 리포트(Scientific Reports)’ 10월 15일자에 게재됐다. 세균들은 외부의 여러 환경으로부터 스스로를 보호하기 위해 다량체로 이뤄진 세포성분을 분비한다. 이로 인해 고체 표면이나 살아있는 생물 조직에서 생물막(biofilm)이라는 3차원 구조물이 형성된다. 이 생물막은 제거가 어려울 뿐 아니라 세균의 생체 내 증식, 치석, 의료기기 오염, 수도관, 정수기 등에 분포해 각종 산업시설에서 광범위한 문제를 일으키고 있다. 특히 생물막을 형성하고 있는 세균들은 항생제에 매우 높은 내성을 가질 수 있어 슈퍼박테리아의 항생제 내성의 주요 원인이기도 하다. 생물막 형성에 크게 관여하는 세균 내의 sRNA는 표적 메신저 RNA(mRNA) 또는 단백질과 상호작용해 세포대사를 조절하는 핵심 요소로 기능한다. 학자들은 생물막 형성의 원리를 규명하기 위해 이 sRNA를 연구해 왔다. 현재 대장균에서는 100여 종의 sRNA가 보고됐다. 연구팀은 이 중 99종을 분석해 각각의 대장균 sRNA를 발현할 수 있는 라이브러리를 구축했다. 이후 이를 통해 환경적 스트레스 대응과 밀접한 관련성을 가져 생물막 형성에 핵심이 되는 sRNA를 탐색했다. 그 결과로 연구팀은 생물막 형성에 관여하는 sRNA를 새롭게 발견했고, 생물막 형성을 위한 생리적 변화(세포운동성, I형 핌브리아 형성, 컬리핌브리아 형성)를 일으키는 sRNA들을 분석하는 데 성공했다. 이 분석 방식은 기존의 유전체적 분석을 통한 sRNA 작용 원리 규명 연구에 비해 이 교수 연구팀은 특정 sRNA의 기능을 직접 분석할 수 있어 신속하고 효율적으로 작용 원리를 규명할 수 있다는 장점을 갖는다. 이번 연구를 통해 생물막 형성과정에 관여하는 신호 전달체계를 이해하는 후속 연구 뿐 아니라, sRNA를 진단 마커나 약물 타겟으로 삼아 세균의 병원성 제어에 활용할 수 있을 것으로 기대된다. 이 교수는 “세균의 생물막 형성과 분해를 원하는 방향으로 제어할 수 있게 됐다”며 “향후 99종의 sRNA 각각에 대한 돌연변이 균주도 확보해 함께 활용할 예정이다”고 말했다. 화학과 박근우, 이정민 박사가 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 글로벌프론티어사업(지능형 바이오시스템 설계 및 합성 연구), 기초연구실 지원사업, 중견연구자 지원사업(도약연구)을 통해 수행됐다. □ 그림 설명 그림 1 . 세균 생물막 형성과정의 모식도 그림 2. sRNA의 발현양에 비례하여 생물막 형성의 억제. 생물막 형성이 많을수록 진한 보라색 그림 3. 99종의 대장균 sRNA와 라이브러리 구축에 사용된 pHMB1 플라스미드의 구조
2015.10.28
조회수 13453
소장 내 지방 흡수과정의 비밀 밝혀
김 필 한 교수 우리 대학 나노과학기술대학원 김필한 교수와 의과학대학원 고규영 교수 공동 연구팀이 소장에서 지방이 흡수되는 과정의 고해상도 촬영에 성공했다. 이번 연구는 나노과학기술대학원 최기백 박사과정 학생, 의과학대학원 장전엽 박사, 박인태 박사과정 학생이 1저자로 참여했다. 이를 통해 소장의 융모로 흡수된 지방의 전달 통로인 암죽관의 수축현상을 최초로 발견했다. 이번 연구결과는 의생명과학 분야 국제 학술지인 ‘임상연구(The Journal of Clinical Investigation, Impact Factor 13.261)’ 10월 5일자 온라인판에 게재됐다. 또한 11월에는 이달의 주목할 만한 연구로 ‘JCI This month’에도 소개될 예정이다. (논문명 : Intravital imaging of intestinal lacteals unveils lipid drainage through contractility) 소장은 영양분을 흡수하는 기관이다. 소장의 관찰을 위해 많은 학자들이 노력했지만 소장은 항상 쉬지 않고 움직이기 때문에 고해상도 촬영에 한계가 있었다. 연구팀은 자체 개발한 초고속 레이저 스캐닝 공초점 현미경과 소장 의 상태를 보존하고 내벽을 고정할 수 있는 영상 챔버를 이용해 동물 모델의 소장 내벽에서 지방산이 흡수되는 과정을 촬영했다. 이 과정에서 지방의 흡수 통로인 암죽관이 일정 주기로 수축 및 이완하는 현상을 발견했다. 또한 암죽관의 수축 정도가 소장에서의 지방산 흡수 속도에 영향을 미치는 것을 발견했다. 연구팀은 이 암죽관의 움직임이 융모 내부에 다량 존재하는 민무늬근세포에 의해 발생하고, 이는 체내에 분포된 자율신경계를 통해 조절됨을 밝혔다. 이번 연구를 통해 개발된 최첨단 고해상도 생체영상기술로 소장 내 다양한 물질 흡수 과정의 실시간 모니터링이 가능해질 것으로 예상된다. 또한 이 기술은 신약개발 과정에서 지용성 약물이 소장 내 암죽관으로 흡수되게 해 간 독성을 최소화하는 새로운 약물전달 방법 확립에 기여할 것으로 기대된다. 김 교수는 “우리가 섭취하는 다량의 지용성 영양소가 체내로 흡수되는 과정에서 자율신경계로 조절되는 융모 내부의 암죽관 제어 메커니즘이 존재함을 새롭게 밝혀냈다”고 말했다. 이번 연구는 미래창조과학부의 글로벌프론티어사업 및 신기술융합형 성장동력사업의 지원을 받아 수행됐다. 그림 설명 그림1. 소장 내벽에 존재하는 융모에서 지방산이 흡수되는 과정을 광학현미경으로 영상화하는 과정 모식도 그림2. 소장 융모에서 지방산(적색)이 암죽관(녹색)을 통해 흡수되는 과정 그림3. 암죽관(녹색)의 반복적인 이완과 수축 운동. 0초, 2.7초에 이완. 1.6초, 4초에 암죽관의 수축
2015.10.14
조회수 15722
산란된 빛을 다시 집약시키는 시간 역행 거울 개발
우리 대학 물리학과 박용근 교수 연구팀이 빛을 거꾸로 반사시켜 시간이 역행하는 것처럼 보이는 시간 역행 거울을 개발했다. 연구 성과는 물리학분야 학술지인 ‘피지컬 리뷰 레터스(Physical Review Letters)’ 10월 6일자 온라인 판에 게재됐다. 빛의 시간 역행성은 녹화된 비디오를 되감기하듯 빛의 진행을 되돌릴 수 있는 개념을 뜻한다. 이는 마치 쏟은 물을 주워 담는 것과 같이 흩뿌려진 빛을 다시 집약시켜 산란 전의 영상을 복구하는 것과 같은 원리이다. 빛의 시간 역행 실현을 위해선 특별한 거울이 필요했다. 이론상으로만 제안되었던 이 시간 역행 거울(위상 공액 거울)은 빛이 거울에 부딪혔을 때 부딪쳐 온 방향으로 빛이 반사돼 원래 상태로 돌아가는 특성을 갖는다. 많은 학자들이 비선형 레이저 광학 지식을 이용해 시간 역행 거울을 구현하려 노력했다. 하지만 이 특수한 현상의 실현을 위해선 일반적인 거울과 다르게 추가적인 입사 레이저광이 필요하고 주변 환경에 극도로 민감하다는 한계가 있었다. 연구팀은 문제 해결을 위해 기존 복잡한 시도와 반대로 일반 거울에서의 반사를 재해석해 활용했다. 연구팀은 파면제어기라 불리는 수많은 미세 거울로 이루어진 장치를 활용했다. 파면제어기는 입사하는 빛의 모양에 맞춰 거울의 표면을 변경시켜 평행 상태로 만드는 원리인데, 이를 통해 복잡한 물리현상의 도입 없이도 빛의 시간 역행 거울을 구현하는데 성공했다. 또한 연구팀은 구현된 시간 역행 거울을 활용해 모의 생체조직 샘플, 생 닭가슴살 등에 의해 심하게 산란된 빛을 집약시켜 산란 전의 모양으로 재현했다. 연구팀에 의해 구현된 시간 역행 거울은 그 구현방법이 쉽고 주변환경의 영향을 받지 않아 빠른 시일 내에 실제 응용에 접목할 수 있을 것으로 예상된다. 논문의 1저자인 이겨레 박사과정은 “이 기술을 활용하면 기존 생체조직에서 심한 산란으로 인해 불가능했던 생체조직 내부의 빛 집약이 가능하다” 며 “향후 무절개 암 수술 등 미래기술의 기반기술이 될 수 있다”고 말했다. 또한 박 교수는 “이번 기술은 빛 뿐 아니라 소리, 전자파, 라디오 등 일반적인 파동에서 성립하는 개념이다”며 “향후 레이저 및 광통신 기술을 포함한 물리학, 광학, 의학 등 다양한 분야에 응용될 것으로 기대된다”고 말했다. □ 그림 설명 그림 1. 생체조직,닭가슴살,광섬유를 산란체로 활용한 뒤 시간역행 거울로 원래 이미지를 구현한 사진 그림 2. 일반거울과 시간역행거울의 원리
2015.10.07
조회수 10800
수학 통해 생체시계 유지 원리 60여년 만에 밝혀
김 재 경 교수 우리 대학 수리과학과 김재경 교수가 미분방정식을 이용한 수학적 모델링을 통해 온도 변화에도 생체시계의 속도를 유지하는 원리를 발견했다. 이번 연구는 저명 학술지 셀(Cell) 자매지 몰라큘러 셀(Molecular Cell) 10월 1일자에 게재됐다. 우리 뇌에 위치한 생체시계는 밤 9시 경이 되면 멜라토닌 분비가 시작되게 하고 아침 7시 경에 멈추게 한다. 그로 인해 우리는 매일 일정한 시간에 잠을 자고 기상할 수 있다. 생체시계는 온도가 변화해도 빨라지거나 느려지지 않고 일정한 속도가 유지된다. 따라서 우리의 체온이 변화해도 규칙적인 삶을 살 수 있고, 이는 환경에 따라 체온이 변하는 변온 동물에게도 적용된다. 이러한 생체시계의 성질은 1954년에 발견됐지만 그 원리는 밝혀지지 않아 지난 60여 년간 생체시계 분야의 가장 큰 미스테리로 남아 있었다. 김 교수는 수학 모델링을 통해 이 원리를 밝혀냈고 모델링 결과는 듀크-싱가폴 국립 의과대학 데이빗 벌쉽(David Virshup) 교수 연구팀의 실험을 통해 검증돼 60년의 난제가 풀렸다. 생체시계에는 Period2라는 핵심 단백질이 존재한다. 이 단백질은 12시간 동안 증가하고 나머지 12시간 동안 분해되는 리듬을 평생 반복한다. 김 교수는 이 Period2 분해가 두 가지 방법으로 발생하는 것을 밝혔다. 하나는 매우 빠른 속도로 분해가 일어나는 것이고 나머지 하나는 매우 느린 속도로 분해가 이뤄지는 것이다. 그리고 두 가지 방법의 비율을 조절하는 것이 Period2에 존재하는 인산화 스위치(Phosphoryltion switch)이다. 인산화 스위치의 역할은 온도가 올라갔을 때 느리게 분해되는 Period2의 양을 늘림으로써 전체적인 분해 속도가 천천히 이뤄지게 만든다. 반대로 온도가 내려갔을 때는 빠르게 분해되는 비율을 늘려 생체시계의 속도를 조절하는 것이다. 결국 생체시계 속도 유지의 핵심은 인산화 스위치이고, 다른 생화학 반응이 빨라져도 생체시계의 속도 유지를 가능하게 만드는 요소인 것이다. 이번 연구에서 밝혀진 인산화 스위치는 생체시계의 속도를 조절할 수 있는 핵심 요소가 될 전망이다. 이 인산화 스위치를 조절할 수 있는 약을 개발한다면 잦은 해외 출장으로 인한 시차, 주야 교대 근무 등에 의한 생체 시계 고장 예방 등에 기여할 수 있을 것으로 기대된다. 김 교수는 “이번 성과를 통해 우리나라에선 아직은 부족한 생물학과 수학의 교류가 활발해지길 기대한다”며 “수학이 생물학의 난제들을 해결하는데 기여할 수 있음을 알리고 싶다”고 말했다. 이번 연구는 듀크-국립 싱가폴 의과 대학 데이빗 벌쉽 (David Virshup) 교수 연구팀, 미국 미시간 대학 (University of Michigan, Ann Arbor) 데니 폴저 (Daniel Forger) 교수와의 공동연구로 진행됐다. □ 그림 설명 그림 1 . 이번 연구에서 밝혀진 인산화 스위치와 그 과정에서 사용된 수학 방정식의 일부 그림 2. Period2 단백질이 인산화 스위치에 의해 낮은 온도(30도) 에서 분해되는 속도가 더 빨라진다는 것을 보여주는 실험
2015.10.05
조회수 15308
휘어지는 물질에서 증폭된 광전기 효과 발견
양 찬 호 교수 우리 대학 물리학과 양찬호 교수 연구팀이 물질이 휘어질 때 광전기(光電氣) 효과가 증폭되는 것을 발견하고 그 원인을 규명했다. 이번 연구결과는 나노과학기술 분야 학술지 ‘네이처 나노테크놀로지(Nature Nanotechnology)’ 8월 31자 온라인 판에 게재됐다. 광전기 효과는 빛 에너지가 전기 에너지로 전환되는 현상으로 이 효과를 이용하면 온실가스 배출 없이 전기를 만들 수 있다. 따라서 전 세계적으로 안정적이고 저렴하며 효율이 높은 광전기 효과를 발생시키는 물질 및 구조를 찾는 연구가 활발히 진행되고 있다. 기존 태양광 소자들은 다른 물질을 붙이거나 P형-N형 반도체를 접합하는 등 두 개 이상의 물질을 이용하는 방식으로 광전기 효과를 일으켰다. 하지만 연구팀은 단일 물질에서도 휘어지는 변형이 발생했을 때 마치 두 물질의 경계면에서 광전기 효과가 일어나는 것과 흡사한 현상을 발견했다. P형-N형 반도체 접합에서만 가능했던 전기장 생성이 단일 물질의 휘어짐으로도 가능함을 확인해 좀 더 효율적인 광전기 소자 제작이 기대된다. 물질의 일반적인 휘어짐으로는 얻을 수 있는 광전기 효과가 크지 않아 실용성이 없었다. 하지만 연구팀은 나노미터 크기의 구조까지 관찰해 물질이 자발적으로 매우 크게 휘는 구간을 발견했다. 그리고 수십 나노미터(1억분의 1미터)의 곡률(曲律)로 크게 휘어진 이 물질이 통상적인 물질에 비해 100배 증폭된 광전기 효과를 생성함을 규명했다. 광전기 효과가 증폭된 원인은 물질이 휘어질 때 발생하는 전기장에 있다. 물질이 빛을 받으면 원자에 묶여있던 전자가 잠깐 움직일 수 있는 상태가 되는데 일반적으로는 원자에 다시 속박된다. 하지만 물질이 휘어지는 구간에서는 전기장이 유의미한 강도로 세게 발생해 전자가 원자의 속박을 벗어나 외부로 빠져나와 전류가 흐를 수 있는 것이다. 특히 나노미터 규모의 미시적 구조에서는 물질이 크게 휘어진 상태가 흔하게 존재하기 때문에 연구팀의 규명은 작은 나노소자 연구에 유용할 것으로 예상된다. 또한 연구팀은 물질 표면의 전기기계적 성질을 10나노미터의 해상도로 이미지화할 수 있는 기술을 개발했다. 이 기술은 전기장 분포를 유추할 수 있어 다양한 나노스케일 연구에 활용할 수 있을 것으로 기대된다. 양 교수는 “휘어진 정도가 큰 경우에 플렉소전기 현상의 비선형 움직임이 중요함을 제안했다.”며 “이러한 비선형 거동은 전기기계적 성질의 계보를 잇는 새로운 현상으로 학술적 가치가 높다”고 말했다. 이번 연구는 우리 대학 김용현 교수, 포항공대 조문호 교수, 오상호 교수, 포항 가속기연구소 구태영 박사, 재료연구소 최시영 박사 등과 공동으로 진행됐고, 한국연구재단의 중견연구자지원사업을 통해 수행됐다. □ 그림 설명 그림1. 물질이 휘어질 때 광전기 효과가 발생함을 나타낸 개념도
2015.09.15
조회수 11460
수학으로 생물학적 리듬을 유지하는 원리 밝혀
김 재 경 교수 우리 몸엔 다양한 주기의 리듬을 만드는 시계들이 존재한다. 심장은 매 초 박동하고 체세포들은 일정한 주기로 분열한다. 생체 리듬은 다양한 호르몬 분비 시점을 조절함으로써 생명체가 24시간 주기의 환경에 적응해 살 수 있도록 한다. 과학자들은 어떤 원리로 우리 신체가 일정한 주기로 생체 리듬을 조절할 수 있는지 연구했다. 그리고 그 생체 리듬을 인공적으로 만들기 위한 노력도 끊임없이 계속됐다. 우리 대학 수리과학과 김재경(32) 교수가 미분방정식과 확률적 매개변수 샘플링을 바탕으로 한 수학적 모델링을 통해 다양한 환경에서도 안정적인 생체 리듬을 유지할 수 있는 생물학적 회로 디자인을 설계했다. 그리고 김 교수의 설계를 바탕으로 미국 라이스 대학 메튜 베넷 교수 연구팀이 합성생물학 기술을 통해 안정적인 리듬을 갖는 시스템을 실제로 제작하는 데 성공했다. 이번 연구는 저명 학술지 사이언스(Science) 8월 28일자에 게재됐다. 최근 생체 리듬 생성의 매커니즘을 밝히기 위해 생물학적 시스템을 직접 구현하는 합성생물학 (Synthetic biology)이 발전하고 있다. 이 방식은 전지, 전구, 모터 등을 연결해 전자 회로도의 작동 원리를 이해하듯이 유전자와 단백질로 구성된 생물학적 회로를 직접 만들어 생체 회로의 작동 원리를 연구하는 것이다. 김 교수 연구팀은 라이스 대학 연구팀에게 수학적 모델링을 제공해 합성생물학 연구에서 사용되는 바텀-업(Bottom-Up) 방식의 단점인 방대한 범위와 생물학적 회로를 테스트를 거쳐야 하는 문제 등을 해결했다. 실험을 위한 설계도를 제공한 것과 같은 이치이다. 김 교수는 이번 연구에서 이러한 융합적 접근을 통해 기존에 알려진 안정적인 리듬을 만들어내는 생물학적 회로 디자인과는 근본적으로 다른 디자인을 밝히고 설계했다. 생체 회로에서 특정 물질이 분비될 때 음성 피드백(Negative Feedback)은 물질 분비를 억제하는 역할을 하고, 양성 피드백(Positive Feedback)은 분비를 촉진하는 역할을 한다. 양성 피드백의 역할은 기존 연구들을 통해 알려졌으나 잉여로 존재하는 음성 피드백의 역할은 명확하지 않았다. 김 교수는 수학적 모델링을 통해 두 개의 전사적 음성 피드백 회로(Transcriptional negative feedback loops)가 안정적인 생체 리듬을 만들어낼 수 있음을 증명했다. 하나의 음성 피드백이 증가하고 감소하면서 물질의 분비 리듬을 조절하는 것이 가능하지만 안정적이지 못해 실제로 생체 회로를 구현하는 것은 한계가 있었다. 하지만 김 교수는 하나의 음성 피드백을 추가했을 때 다양한 환경에서도 생체 리듬을 만들 수 있고, 추가적인 음성 피드백이 변화에 대한 대응 역할을 해 안정적인 생체 리듬이 구현됨을 증명했다. 이 연구 결과는 다양한 생물학적 리듬 생성의 근본 원리를 밝히는데 새로운 방향을 제공할 것으로 기대된다. 김 교수의 모델링을 바탕으로 진행한 실험에서도 기존과 차별화된 성과를 얻었다. 합성생물학에서는 보통 단일 박테리아 안에 회로를 만드는 방식을 이용하는데 이번 연구에서는 기존과는 다른 방식을 채택했다. 서로 다른 두 종류의 박테리아 사이의 신호 물질을 바탕으로 생체 회로를 구현한 것이다. 이를 통해 인체의 내장 속에 존재하는 다양한 박테리아 간의 상호 작용을 이해하고 조절하는 기술을 개발하는데도 역할을 할 것으로 기대된다. 김 교수는 “이번 성과를 통해 우리나라에선 아직은 부족한 생물학과 수학의 교류가 활발해지길 기대한다”며 “수학이 생물학 연구에 기여할 수 있음을 알리고 싶다”고 말했다. 이번 연구는 김재경 교수 외에도 라이스 대학 생명과학과 매튜 베넷 (Matthew Bennett) 교수 연구팀, 휴스턴 대학 수학과 크레시미르 조식 교수 (Kresimir Josić)의 공동연구로 진행됐다. □ 그림 설명 그림 1. 두 개의 음성 피드백이 안정적인 주기로 활성화되는 모습 그림 2. 두 박테리아 사이의 생물학적 회로 디자인과 그 기능을 이해하는 데 사용된 미분방정식의 일부분
2015.08.31
조회수 15547
수 나노미터급으로 빛 모으는 3차원 광 장치 개발
우리 대학 물리학과 김명기, 이용희 교수 연구팀이 빛을 수 나노미터급 영역안으로 집속시킬 수 있는 초 고광밀도 삼차원 갭-플라즈몬 안테나(3D gap-plasmon antenna)를 개발했다. 이번 연구는 미국화학회의 나노분야 저널인 ‘나노 레터스(Nano Letters)’ 6월 10일자에 게재됐다. 빛을 한 점으로 집속시키는 연구는 최근까지도 활발하게 이뤄지고 있다. 빛을 고밀도로 집속시킬수록 다양한 분야에서 활용 가능하기 때문이다. 하지만 빛의 파장보다 작은 크기에서 발생하는 회절(回折, diffraction) 현상은 집속을 방해한다. 이를 극복하기 위해 학자들은 금속에서는 회절한계를 뛰어넘어 빛이 가둬지는 플라즈모닉 현상을 이용해 연구를 진행 중이다. 학자들은 2차원 형태의 플라즈모닉 안테나 개발에 집중했고 연구를 통해 5나노미터 이하로 빛을 집속하기도 했다. 하지만 2차원 안테나로는 아무리 작게 모아도 나머지 한 쪽 방향으로 빛이 퍼지는 한계가 있다. 즉, 빛을 3차원 방향으로 집속시킬 수 있어야 빛의 밀도를 최대로 끌어올릴 수 있는 것이다. 연구팀은 집속 이온빔 근접 식각 (Proximal Focused-Ion-Beam Milling) 기술을 도입해 3차원 구조의 4나노미터급 갭-플라즈몬 안테나를 제작했다. 이를 통해 삼차원 나노 공간(~4 x 10 x 10 nm3)안으로 빛을 집속시켜 입사파와 비교해 40만 배 이상의 빛의 세기를 만들었다. 또한 제작된 안테나 내 높은 광밀도를 이용해 금속에서 발생하는 이차조화파 세기의 극대화에 성공했고, 음극선 발광 측정(Cathodoluminescence)장치를 이용해 빛이 나노 갭 안으로 강하게 집속됨을 확인했다. 연구팀은 이 기술이 데이터 통신과 정보 처리 속도를 테라헤르츠(THz, 1초당 1조번) 수준으로 높이고, 하드디스크 면적당 용량을 현재의 100배로 늘릴 수 있을 것이라고 밝혔다. 더불어 전자 현미경 대신 직접 빛을 이용해 분자 이하 크기의 고해상도 이미지를 추출하거나 반도체 공정을 수 나노미터 수준으로 발전시키는 기술이 가능할 것이라고 말했다. 김명기 교수는 “간단하고 새로운 아이디어가 기존 2차원 플라즈모닉 안테나 중심 연구를 3차원 공간으로 확대시켰다”며 “정보통신, 데이터 저장, 영상의학, 반도체 공정 등 다양한 분야에 응용될 수 있을 것이다"고 말했다. 이번 연구는 한국연구재단의 일반연구자지원사업과 중견연구자지원사업, 첨단융합기술개발사업 프로그램 지원을 받아 수행됐다. □ 그림 설명 그림 1. 제작된 3차원 갭-플라즈몬 안테나 그림 2. 3차원 갭-플라즈몬 안테나 구조 및 시뮬레이션 결과 그림 3. 증폭된 이차조화파 발생과 나노갭 안으로 빛이 집속된 모습
2015.06.15
조회수 13325
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
>
다음 페이지
>>
마지막 페이지 18