-
윤동기 교수, 금속에 버금가는 정렬도 갖는 액정 개발
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 유동적으로 움직이는 액정 재료들을 금속과 같이 단단한 결정처럼 움직이지 않게 만드는 3차원 나노패터닝 기술을 개발했다.
이 기술은 수십 나노미터 수준의 제한된 공간에서 액정 분자들의 자기조립(self-assembly) 현상을 유도해 이뤄진다. 이는 승강기 안에 적은 수의 사람들이 있다가 많은 사람이 탑승하면서 빽빽하게 자리를 차지하는 현상과 비슷하다.
김한임 박사가 1저자로 참여한 이번 연구 결과는 국제 학술지 사이언스의 자매지인 ‘사이언스 어드밴스(Science advances)’ 2월 10일자 온라인 판에 게재됐다. 이번 연구는 향후 유기 분자 기반의 나노재료를 활용하는 기술에 다양하게 기여할 수 있을 것으로 기대된다.
액정 재료는 손쉬운 배향 제어, 빠른 반응 속도, 이방적(anisotropic)인 광학 특성 등으로 인해 액정표시장치(LCD), 광학 센서 등에 이용되는 대표적인 유기 소재이다.
그러나 액정 재료는 물풀과 같이 유동적으로 흐르기 때문에 구조의 제어가 어렵고 안정적이지 않아 활용 범위가 제한됐다.
연구팀은 문제 해결을 위해 액정 재료가 들어 있는 수십 나노미터크기의 2차원의 한정된 공간을 위아래 옆, 사방에서 눌러주는 시스템을 개발했다.
게스트(guest) 역할의 액정물질과 상호작용하는 호스트(host) 물질을 3차원적 나선형의 나노구조체로 제작함으로써 효과적으로 게스트 액정물질을 제어하는데 성공했다.
이렇게 공간 자체를 줄이게 되면 유동적으로 흐르는 액정 물질조차 마치 고체처럼 단단해지는 효과가 발생한다.
기존 연구가 단순히 2차원의 고정된 공간을 한정적으로 이용했다면 이번 연구는 고정된 공간을 인위적으로 조절함으로써 그동안 존재하지 않던 좁은 공간을 3차원적으로 구현한 것이다.
이 기술을 이용하면 냉각이나 건조 등의 추가 공정 없이도 유기액정재료를 금속 결정상에 버금가는 배열로 3차원 공간에 균일하게 제어할 수 있다.
이를 통해 새로운 개념의 액정 기반 3차원 나노패터닝 기법을 개발할 수 있고, 전기 및 자기장에 민감하게 반응하는 액정 소재의 고유 성질과 융합하면 고효율의 광전자 소자 개발에 기여할 수 있다.
또한 현재 디스플레이 및 반도체에 사용되는 단순한 선과 면 형태의 2차원 패터닝을 탈피해 고차원 구조 중 가장 구현이 어렵다는 나선 형태도 쉽게 제조가 가능하다. 이를 통해 향후 카이랄 센서, 차광소재, 분리막 등 광범위한 분야에 응용할 수 있다.
연구팀은 이번 연구에 대해 “유동적인 액정소재의 배향, 배열 정보를 3차원 공간에 완벽하게 제어하는 데 성공했다”며 “액정 물질 뿐 아니라 다양한 유기 분자로 구성된 나노 구조체를 한정된 공간과 재료의 상호작용을 이용해 손쉽게 제어할 수 있는 기술이다”고 말했다.
윤 교수는 “이번에 개발한 원천기술을 이용하면 현재 사용되는 2차원적 광식각 공정(Photolithography)에 비해 10배 이상 제작 과정을 간소화시킬 수 있다”며 “현재 기술로 구현이 어려웠던 복잡한 구조를 최초로 만듦으로써 반도체, LCD 등 관련 분야에서 신 성장 동력을 창출할 수 있을 것이다”고 말했다.
이번 연구는 미래창조과학부, 교육부와 더불어 한국연구재단이 추진하는 미래유망융합기술파이오니어 사업과 글로벌연구네트워크 지원사업의 일환으로 수행됐다.
□ 그림 설명
그림1. 게스트 액정 도입 전 후 사진 및 모식도
그림2. 결정화된 액정구조체 형성 원리 모식도
2017.02.14
조회수 14759
-
김희탁 교수, 빛으로 물질 끌어올려 구조체 제작하는 기술 개발
〈 김희탁 교수 〉
우리 대학 생명화학공학과 김희탁 교수 연구팀이 새로운 형태의 임프린트 리소그래피 기술을 개발했다.
이 기술은 빛을 이용해 물질을 수직으로 끌어올려 마이크로-나노 구조체를 제작하는 방식으로 복잡하고 정교한 구조를 이전보다 훨씬 손쉽게 제작할 수 있을 것으로 기대된다.
최재호 박사과정이 1저자로 참여한 이번 연구는 나노기술분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 1월 12일자 온라인 판에 게재됐다.
임프린트 리소그래피란 모형을 마치 도장을 찍듯이 각인하고자 하는 물질에 찍어 마이크로-나노 구조체를 제작하는 기술이다. 경제적이고 손쉽게 마이크로-나노 구조 제작이 가능해 기존의 포토리소그래피 기술을 대체할 유망한 리소그래피 기술로 손꼽힌다.
그러나 열, 용매, 자외선 등을 필요로 하는 기존의 임프린트 리소그래피 기술은 물질을 수축시키는 특성이 있어 정확한 구조를 제작하기 어렵다는 한계가 있다.
연구팀은 문제 해결을 위해 가시광선 영역의 빛을 아조벤젠 고분자 물질에 조사했다. 이를 통해 아조벤젠 물질을 수직방향으로 끌어올려 마이크로-나노 구조체를 형성하는 새로운 형태의 광유도 임프린트 리소그래피 기술을 개발했다.
아조벤젠 물질은 빛이 편광하는 방향에 따라 액화돼 흐르는 독특한 특성을 갖는다. 이는 편광 방향을 조절한다면 아조벤젠 물질의 움직임을 통제할 수 있다는 뜻이다.
기존의 아조벤젠 물질을 이용한 구조체 제작은 수평 방향으로 흐르는 현상에만 주목해 수직방향으로의 유체화 현상에 대한 이해와 이를 이용한 구조 제어는 거의 이뤄지지 않았다.
연구팀은 아조벤젠 물질을 움직임을 수직방향으로 유도했다. 빛의 수직방향 편광 성분에 의해 수직으로 흐를 수 있게 만들었고 이 흐름이 각인된 모형의 빈 공간을 채우며 마이크로-나노 구조체를 형성하게 된다.
연구팀이 개발한 임프린트 리소그래피 기술은 기존 기술이 갖고 있던 물질의 수축 문제를 극복해 100 나노미터 이하의 나노 구조체까지 구현하는 데 성공했다. 또한 마이크로-나노 구조체가 결합된 다중 규모의 복잡하고 정교한 구조도 제작했다.
연구팀은 앞으로 수직방향의 아조벤젠 물질의 움직임을 이용해 여러 응용분야에 쓰일 정교하고 다양한 마이크로-나노 구조체를 쉽게 제작하는 데 크게 기여할 것이라고 예상했다.
김 교수는 “아조벤젠 물질이 수평방향으로만 물질 이동을 한다는 기존 틀을 깨고 수직방향 이동을 규명했다”며 “이를 이용해 한 층 진보된 형태의 임프린트 리소그래피를 선보였다는 데 의의가 있다”고 말했다.
이번 연구는 KAIST의 엔드-런(End-Run) 프로그램의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 새로운 형태의 임프린트 리쏘그라피 공정 개요도
그림2. 본 기술을 통해 제작된 다양한 구조체
그림3. 복잡한 구조체를 제작한 데이터
2017.02.09
조회수 11354
-
김정, 박인규 교수, 로봇의 피부 역할 할 수 있는 촉각센서 개발
우리 대학 기계공학과 김정, 박인규 교수 공동 연구팀이 실리콘과 탄소 소재를 활용한 로봇의 피부 역할을 할 수 있는 촉각 센서를 개발했다.
이 기술은 충격 흡수가 가능하면서 다양한 형태의 촉감을 구분할 수 있어 향후 로봇의 외피로 이용 가능할 것으로 기대된다.
이효상 박사과정이 1저자로 참여한 이번 연구결과는 네이처 자매지인 ‘사이언티픽 리포트(Scientific Report)’ 1월 25일자 온라인 판에 게재됐다.
피부는 인체에서 가장 많은 부분을 차지하는 기관이며 주요 장기를 외부 충격으로부터 보호하는 동시에 섬세한 촉각 정보를 측정 및 구분해 신경계에 전달하는 역할을 한다.
현재 로봇 감각 기술은 시각, 청각 부분에서는 인간의 능력에 근접하고 있으나 촉각의 경우는 환경의 변화를 온몸으로 감지하는 피부 능력에 비해 많이 부족한 것이 사실이다
인간과 비슷한 기능의 피부를 로봇에게 적용시키기 위해선 높은 신축성을 갖고 충격을 잘 흡수하는 피부 센서 기술의 개발이 필수이다. 전기 배선을 통해 몸 전체에 분포된 많은 센서를 연결하는 기술 또한 해결해야 할 문제이다.
연구팀은 문제 해결을 위해 실리콘과 탄소나노튜브(CNT)를 혼합해 복합재를 만들었고 이를 전기임피던스영상법(EIT)라는 의료 영상 기법과 결합했다. 이를 통해 넓은 영역에 가해지는 다양한 형태의 힘을 전기 배선 없이도 구분할 수 있는 기술을 개발했다.
이를 통해 개발된 로봇 피부는 망치로 내려치는 수준의 강한 충격도 견딜 수 있으며 센서의 일부가 파손돼도 파손 부위에 복합재를 채운 뒤 경화시키면 재사용이 가능하다.
또한 3D 프린터 등으로 만들어진 3차원 형상 틀에 실리콘-나노튜브 복합재를 채워 넣는 방식으로 제작할 수 있다. 기존 2차원 평판 뿐 아니라 다양한 3차원 곡면으로 제작이 가능해 새로운 형태의 컴퓨터 인터페이스도 개발할 수 있다.
이 기술은 다른 형태의 위치나 크기 등을 촉각적으로 구분할 수 있고 충격 흡수가 가능한 로봇의 피부, 3차원 컴퓨터 인터페이스, 촉각 센서 등에 적용 가능할 것으로 예상된다.
특히 이번 연구는 나노 구조체 및 센서 분야의 전문가인 박인규 교수와 바이오 로봇 분야 전문가인 김정 교수가 공동으로 진행해 실제 제품 적용 가능성이 높다.
김정 교수는 “신축성 촉각 센서는 인체에 바로 부착 가능할 뿐 아니라 다차원 변형상태에 대한 정보를 제공할 수 있다”며 “로봇 피부를 포함한 소프트 로봇 산업 및 착용형 의료기기 분야에 기여할 것이다”고 말했다.
박인규 교수는 “기능성 나노 복합소재와 컴퓨터단층법의 융합을 이용해 차세대 유저인터페이스를 구현한 것이다”고 말했다.
이번 연구는 1저자 이효상 박사과정 외 권동욱, 조지승 연구원과의 공동연구로 진행됐고, 미래창조과학부 이공분야 기초연구사업(중견연구자 지원사업)과 초정밀 광기계기술 연구센터(선도연구센터지원사업)의 지원으로 수행됐다.
□ 그림 설명
그림1. 제작한 촉각 센서와 연결돼 저항에 반응하는 로봇 손
그림2. 실리콘 고무와 카본나노튜브를 이용한 압저항 복합재 제작 과정
그림3. 압저항 복합재를 활용한 컴퓨터 인터페이스
2017.02.02
조회수 18802
-
조병진, 이건재 교수, 레이저빔 공정을 이용한 고성능 유연 열전소자 개발
우리 대학 전기및전자공학부 조병진 교수와 신소재공학과 이건재 교수 공동 연구팀이 전자기기의 전력공급원으로 사용될 수 있는 고성능 유연 열전 소자를 개발했다.
김선진 박사와 이한얼 박사과정이 공동 1저자로 참여한 이번 연구는 나노 및 에너지소재 분야 국제학술지 ‘에이씨에스 나노(ACS Nano)’ 2016년 12월 27일자에 게재됐다.
연구팀은 쿼츠 기판위에 스크린 프린팅 공정으로 열전 후막을 형성한 후 레이저빔 공정을 이용해 단단한 쿼츠 기판을 제거함으로써 쉽게 휘어지는 유연 열전 소자를 개발했다.
기존 상용 열전소자 양면에는 단단하고 무거운 세라믹 기판이 있어 휘어지지 않고 중량이 무거운 단점이 있었다. 따라서 굴곡이 있는 열원에 열전소자를 부착하여 사용하기 어려웠으며 활용이 매우 제한적이었다.
연구팀은 레이저빔을 열전소자 양면에 조사해 딱딱한 기판을 완전히 분리시키는 공정을 개발했다.
레이저빔을 이용한 기판 박리기술은 30 ns (ns : 10억분의 1초)의 매우 짧은 시간의 레이저빔을 조사하기 때문에 지난 2014년 동연구실에서 발표한 니켈박리 기술 (논문명: Wearable Thermoelectric Generator Fabricated on Glass Fabric) 보다 간편하고 공정 안전성이 매우 높다.
레이저를 이용한 기판 박리 공정기술을 개발함으로써 기존의 기판에서 발생하는 열에너지 손실문제를 개선함과 동시에 열전소자의 경량화와 유연화를 동시에 달성했다.
또한 스크린 프린팅으로 형성되는 열전후막 공정의 최적화를 통해 유연열전소자의 성능을 더욱 개선했다.
연구팀이 시험 개발한 유연 열전소자는 온도차 25 ֯C에서 단위 면적당 발전량 4.78 mW/cm2, 단위 무게당 발전량 20.8 mW/g로 최근 보고된 프린팅 기반 유연열전소자 중 가장 높은 전력밀도를 갖는다.
유연 열전소자는 잘 휘어지는 특성 때문에 굴곡이 있는 열원에 쉽게 부착해 여분의 전기에너지를 생산해 낼 수 있고 열이 발생하는 다양한 곳에 광범위하게 활용할 수 있다.
인체, 자동차, 항공기, 발전소, 산업현장 등 열이 발생하는 다양한 곳에 적용하여 여분의 전기에너지를 생산할 수 있기 때문에 그 활용성이 매우 넓다.
일례로 따뜻한 물이 흐르는 수도관 외부에 유연 열전소자를 부착하게 되면 물에서 발생하는 열을 이용해 전기에너지를 생산해 낼 수 있고, 무선 전자기기(wireless electronic device)를 동작 시킬 수 있다.
이번 연구는 미래창조과학부와 한국연구재단이 추진하는 선도연구센터지원사업의 지원으로 수행됐다.
□ 그림 설명
그림1. 레이저 멀티스캔 박리 공정으로 제작된 유연 열전소자
2017.01.23
조회수 15273
-
오일권 교수, 귀금속 촉매 대체할 친환경 물 분해 촉매 개발
우리 대학 기계공학과 오일권 교수 연구팀이 값비싼 백금 등의 귀금속 촉매를 대체할 수 있는 니켈-코발트 기반의 친환경 물 분해 기술을 개발했다.
물 분해 기술은 수소를 친환경적으로 생산할 수 있다. 연구팀이 개발한 원천기술을 통해 수소의 대량 생산 및 수소에너지 상용화에 기여할 것으로 기대된다.
배석후 박사과정이 1저자로 참여한 이번 연구는 화학, 에너지 및 소재 분야의 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 1월호 표지논문에 게재됐다.
현재 가장 많이 사용되는 수소에너지의 발전 방식은 물을 전기 분해시켜 수소를 생산하는 방법이다. 이 방식은 공해 없이 순수한 수소를 생산할 수 있다.
하지만 비용이 많이 들어 상용화에 어려움이 있다. 특히 산소가 발생하는 플러스(+) 전극에는 이리듐 및 루테늄 산화물 기반의 귀금속 촉매가 필요하고, 수소가 발생하는 마이너스(-) 전극에는 백금이 필요하다.
따라서 이를 대체할 수 있는 값싼 재료의 촉매를 개발하는 것이 상용화를 앞당길 수 있는 길이다.
연구팀은 문제 해결을 위해 플러스 전극에 사용되는 이리듐 및 루테늄 산화물 기반의 촉매를 대체할 수 있는 니켈-코발트 금속 기반의 화합물 촉매를 제작하는 데 성공했다.
니켈-코발트 금속 화합물 촉매는 가격이 저렴하지만 이리듐 및 루테늄 산화물 촉매에 비해 높은 전압을 필요로 하는 등 상대적으로 낮은 성능으로 인해 사용되지 못했다.
연구팀은 문제 해결을 위해 수열합성을 이용했다. 수열합성은 고온, 고압 상태에서 물 혹은 수용액에 금속 등을 녹여 물질을 합성하는 기술이다.
연구팀은 니켈-코발트 전구체가 녹아 있는 용액을 바탕으로 수열합성을 진행했다. 이를 통해 니켈-코발트 촉매의 낮은 성능 문제를 해결하는 동시에 촉매의 표면적을 넓히는 데 성공했다.
또한 추가적인 수열합성을 통해 촉매 외부층을 전도성이 높은 탄소층으로 둘러싸면서 전극과 나노선 복합체 사이의 전하 전달 능력을 극대화시킨 이중 나노선 형태의 촉매를 제작했다.
외부층을 전도성이 높은 탄소층으로 구성했기 때문에 탄소 직물로 만들어진 전극 기판과 상승효과(Synergy)를 내면서 단일 니켈-코발트계 금속 촉매에 비해 30% 낮은 전압과 2.7배 높은 단위 면적당 촉매 활성도를 보였다.
기존의 나노선은 원뿔 모양으로 종횡비가 커 나노선 전체로 전달되는 전압이 일정하지 않았다. 이 때문에 나노선 전체가 촉매 반응에 참여하지 못하는 현상이 발생했으나, 연구팀의 촉매는 탄소층으로 둘러싸여 있기 때문에 전자의 활발한 이동이 가능했고 이는 일정한 전압 전달로 이어졌다.
연구팀은 “연이은 수열합성을 통해 비교적 간단한 공정으로 이상적인 이중 구조의 나노선 촉매를 제작하는 데 성공했다”며 “기존의 값비싼 귀금속 촉매에 비해 훨씬 저렴하면서도 성능은 거의 차이가 없다”고 말했다.
오 교수는 “생산 과정이 간단하고 대량 생산이 가능하며 성능 또한 기존 귀금속 촉매에 뒤지지 않는다 ”며 “이번 연구를 통해 물을 수소같은 화학에너지로 변환하는 기술의 상용화에 기여할 수 있을 것이다”고 말했다.
이번 연구는 기계기술연구소 김지은 박사, EEWS 대학원 박정영 교수가 참여했고, 미래창조과학부 리더연구자지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 선정된 표지논문(front cover) 이미지
그림2. 탄소층이 코팅된 니켈-코발트 이중 나노선 촉매 입자의 미세구조 사진
그림3. 이중 나노선 구조의 전기화학적 촉매로써의 작용 모습
그림4. 이중 나노선 형상의 촉매 제작 과정을 나타낸 모식도
2017.01.19
조회수 16126
-
정기훈 교수, 눈물 성분 분석해 통풍 예방하는 기술 개발
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 종이에 금속 나노입자를 증착한 저렴하고 정교한 통풍 종이 검사지(Strip)를 개발했다.
이 기술은 눈물 속의 생체 분자를 분석해 비침습적 진단이 가능하고 소요 시간을 크게 단축시킬 수 있다. 진단 의학, 약물 검사 뿐 아니라 현장 진단 등 특정 성분의 신속하고 정확한 진단이 필요한 다양한 분야에 응용 가능할 것으로 기대된다.
박문성 박사과정이 1저자로 참여한 이번 연구는 나노분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 2016년 12월 14일 온라인 판에 게재됐다.
통풍은 바늘 모양의 요산 결정이 관절에 쌓이면서 통증을 유발하는 병이다. 일반적으로 통증의 완화와 요산 배출, 요산 강하제 복용 등이 치료법으로 이용된다.
이러한 치료법은 일시적인 통풍 증상 완화에는 도움이 되지만 완치에는 한계가 있어 지속적인 요산 농도 측정과 식이요법이 병행돼야 한다.
따라서 간편하게 요산을 측정할 수 있다면 통풍 예방율을 크게 높일 수 있고 통풍 환자의 병 관리에 큰 도움을 줄 수 있다.
하지만 기존의 통풍 진단 기술은 혈액을 채취해 요산 농도를 측정하거나 관절 윤활액을 채취해 요산 결정을 현미경으로 관찰하는 방식이다. 이처럼 침습적 시술이 대부분이고 시간이 오래 걸리는 등의 한계가 있다.
연구팀은 문제 해결을 위해 눈물을 쉽게 채집할 수 있는 종이의 표면에 나노플라즈모닉스 특성을 갖는 금 나노섬을 균일하게 증착했다.
나노플라즈모닉스 기술은 금속의 나노구조 표면에 빛을 모으는 기술로 질병 및 건강 진단 지표, 유전 물질 검출 등에 응용할 수 있다.
또한 금과 같은 금속은 빛을 조사했을 때 기존보다 강한 빛을 받아들이는 특성을 갖기 때문에 종이의 특성을 유지하면서도 기판 표면의 빛 집광도를 최고 수준으로 끌어올릴 수 있었다.
연구팀이 개발한 금속 나노구조 제작 기술은 넓은 면적에 자유자재로 나노구조를 제작할 수 있기 때문에 빛의 집광도를 자유롭게 조절할 수 있다.
연구팀은 종이 검사지에 표면증강 라만 분광법(Surface-enhanced Raman spectroscopy)을 접목시켜 별도의 표지 없이도 눈물 속 요산 농도를 측정하고 이를 혈중 요산 농도와 비교해 통풍을 진단했다.
1저자인 박문성 박사과정은 “통풍 진단을 위한 새로운 방법으로 눈물을 이용해 진단이 가능한 종이 통풍 검사지를 제작했다”며 “신속하고 간단하게 현장 진단이 가능하고 일반적인 반도체 공정을 이용한 대면적 양산이 가능하다”고 말했다.
정 교수는 “이번 결과를 바탕으로 향후 눈물을 이용해 낮은 가격의 무표지 초고감도 생체분자 분석 및 신속한 현장 진단이 가능할 것이다”며 “눈물 뿐 아니라 다양한 체액을 이용해 질병 진단, 생리학적 기능 연구 등에 기여할 수 있을 것이다”고 말했다.
□ 그림 설명
그림1. 금으로 덮인 종이 통풍 검사지의 광학 사진
그림2. 종이 통풍 검사지의 주사전자현미경 사진
그림3. 금나노섬으로 코팅된 셀룰로오스 섬유의 주사전자현미경 사진
그림4. 눈물을 이용한 통풍 진단표
2017.01.17
조회수 16816
-
배병수, 이도창 교수, 고온 및 고습 견딜 수 있는 퀀텀닷 기술 개발
우리 대학 신소재공학과 배병수 교수와 생명화학공학과 이도창 교수 연구팀이 차세대 디스플레이 발광 소재인 퀀텀닷을 고온, 고습 환경에서도 안정적으로 보호할 수 있는 퀀텀닷 실록산 수지(실리콘 기반의 고분자)를 개발했다.
이 기술을 통해 퀀텀닷을 차세대 고화질 디스플레이 제품에 다양하게 응용할 수 있을 것으로 기대된다.
이번 연구 결과는 화학 분야 학술지인 ‘美 화학회지(Journal of the American Chemical Society, JACS)’ 의 2016년 12월 21일자 최신호에 게재됐다.
퀀텀닷은 수 나노미터 크기의 반도체 나노 결정이다. 크기 변화에 따라 발광 파장을 쉽게 조절할 수 있고 넓은 색 표현 범위를 갖고 있어 초고화질의 디스플레이를 구현할 수 있다.
이러한 특성 덕분에 퀀텀닷은 고분자 수지에 분산된 형태로 필름에 코팅되거나 LED 광원에 도포돼 차세대 디스플레이 핵심 소재로 떠오르고 있다.
그러나 퀀텀닷은 우수한 발광특성에도 불구하고 고온이나 고습 환경에서 쉽게 산화돼 고유의 발광특성(양자효율)이 급격히 저하되는 문제가 있다.
현재 상용화된 퀀텀닷 디스플레이 제품은 고온의 원인인 LED 광원과 거리를 둘 수 있는 퀀텀닷 필름을 사용한다. 그리고 퀀텀닷의 산화를 방지하기 위해 산소, 수분을 차단시키는 별도의 차단 필름으로 퀀텀닷 필름을 감싸서 사용한다.
하지만 차단 필름의 높은 단가는 퀀텀닷 디스플레이 제품의 금액을 상승시켜 시장에서의 가격 경쟁력을 떨어트린다.
연구팀은 문제 해결을 위해 자체적으로 개발한 솔-젤 합성공정을 이용했다. 이 기술을 통해 퀀텀닷이 열에 강한 실록산 분자구조에 의해 보호돼 별도의 산소, 수분 차단 필름 없이도 퀀텀닷의 성능을 유지할 수 있다.
화학적으로 균일하게 분산된 퀀텀닷 실록산 수지를 사용해 제작된 퀀텀닷 실록산 재료는 85℃의 고온, 85℃/85%의 고온고습 뿐 아니라 강산성과 강염기성의 환경에서도 발광특성이 저하되지 않았다. 또한 오히려 고습 환경에서는 발광특성이 상승하는 현상을 발견했다.
연구팀의 퀀텀닷 실록산 수지를 이용하면 별도의 차단필름 없이도 안정적인 퀀텀닷 필름을 제작해 가격을 낮출 수 있다. 향후 LED 광원에 직접 도포해 퀀텀닷의 사용량을 줄이는 동시에 성능을 높일 수 있는 퀀텀닷 디스플레이의 개발이 가능할 것으로 기대된다.
배 교수는 “퀀텀닷이 차세대 디스플레이 소재로 나아가는 시점에서 퀀텀닷의 한계를 극복하고 널리 활용될 수 있는 방안을 제시했다”며 “원천소재를 기반으로 하는 국내 디스플레이 산업의 발전에 크게 기여할 수 있을 것이다”고 말했다.
또한 “현재는 기술의 가능성을 제시한 수준으로서 향후 국내외 업체들과 협력해 퀀텀닷의 신뢰성을 향상시켜 상용화에 주력할 계획이다”고 말했다.
연구팀은 관련 특허를 국내외에 출원 중이고, KAIST 교원창업기업인 ㈜솔잎기술에 이전해 사업화를 추진할 계획이다.
□ 그림 설명
그림1. 끓는 물속에도 안정성을 보이는 퀀텀닷 실록산 재료
그림2. 균일한 분산을 갖는 퀀텀닷 실록산 수지와 기존 퀀텀닷 상용고분자 수지 비교
그림3. 본 연구에서 개발된 퀀텀닷 실록산 수지 및 퀀텀닷 실록산 재료 개념도
2017.01.10
조회수 15514
-
최양규 교수, 실리콘 반도체보다 5배 빠르고 저렴한 탄소나노튜브 반도체 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 국민대학교 최성진 교수와의 공동 연구를 통해 탄소나노튜브를 위로 쌓는 3차원 핀(Fin) 게이트 구조를 이용해 대면적의 탄소나노튜브 반도체를 개발했다.
이동일 연구원이 제 1저자로 참여한 이번 연구는 나노 분야 학술지 ‘에이씨에스 나노(ACS Nano)’ 12월 27일자에 게재됐다. (논문명: Three-Dimensional Fin-Structured Semiconducting Carbon Nanotube Network Transistor)
탄소나노튜브로 제작된 반도체는 실리콘 반도체보다 빠르게 동작하고 저전력이기 때문에 성능이 훨씬 뛰어나다.
그러나 대부분의 전자기기는 실리콘 재질로 만들어진 반도체를 이용한다. 높은 순도와 높은 밀도를 갖는 탄소나노튜브 반도체의 정제가 어렵기 때문이다.
탄소나노튜브의 밀도가 높지 않아 성능에 한계가 있었고 순도가 낮아 넓은 면적의 웨이퍼(판)에 일정한 수율을 갖는 제품을 제작할 수 없었다. 이러한 특성들은 대량 생산을 어렵게 해 상용화를 막는 걸림돌이었다.
연구팀은 문제 해결을 위해 3차원 핀 게이트를 이용해 탄소나노튜브를 위로 증착하는 방식을 사용했다. 이를 통해 50나노미터 이하의 폭에서도 높은 전류 밀도를 갖는 반도체를 개발했다.
3차원 핀 구조는 1마이크로미터 당 600개의 탄소나노튜브 증착이 가능해 약 30개 정도만을 증착할 수 있는 2차원 구조에 비해 20배 이상의 탄소나노튜브를 쌓을 수 있다.
그리고 연구팀은 이전 연구를 통해 개발된 99.9% 이상의 높은 순도를 갖는 반도체성 탄소나노튜브를 이용해 고수율의 반도체를 확보했다.
연구팀의 반도체는 50나노미터 이하의 폭에서도 높은 전류밀도를 갖는다. 실리콘 기반의 반도체보다 5배 이상 빠르면서 5배 낮은 소비 전력으로 동작 가능할 것으로 예상된다.
또한 기존의 실리콘 기반 반도체에 쓰이는 공정 장비로도 제작 및 호환이 가능해 별도의 비용이 발생하지 않는다.
제 1저자인 이동일 연구원은 “차세대 반도체로서 탄소나노튜브 반도체의 성능 개선과 더불어 실효성 또한 높아질 것이다”며 “실리콘 기반 반도체를 10년 내로 대체하길 기대한다”고 말했다.
이번 연구는 미래창조과학부 글로벌프론티어사업 스마트IT융합시스템 연구단과 미래유망융합파이오니아 사업의 씨모스 THz 기술 융합 연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 3차원 구조의 탄소나노튜브 전자소자의 모식도 및 실제 SEM 이미지
그림2. 개발된 8인치 기반의 대면적 3차원 탄소나노튜브 트랜지스터 전자 소자의 사진 및 단면을 관찰한 투과 전자 현미경 사진
2017.01.04
조회수 15163
-
최양규 교수, 10초 내 물에 녹는 보안용 메모리 소자 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 물에 녹여 빠르게 폐기할 수 있는 보안용 메모리 소자를 개발했다.
연구팀이 개발한 보안용 비휘발성 저항변화메모리(Resistive Random Access Memory : RRAM)는 물에 쉽게 녹는 종이비누(Solid Sodium Glycerine : SSG) 위에 잉크젯 인쇄 기법을 통해 제작하는 방식이다. 소량의 물로 약 10초 이내에 용해시켜 저장된 정보를 파기시킬 수 있다.
배학열 박사과정이 1저자로 참여한 이번 연구는 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 12월 6일자 온라인 판에 게재됐다. (논문명 : Physically transient memory on a rapidly dissoluble paper for security application)
과거에는 저장된 정보를 안정적으로 오랫동안 유지하는 능력이 비휘발성 메모리 소자의 성능을 가늠하는 주요 지표였다. 하지만 최근 사물인터넷 시대로 접어들며 언제 어디서든 정보를 쉽게 공유할 수 있게 돼 정보 저장 뿐 아니라 정보 유출을 원천적으로 차단할 수 있는 보안용 반도체 개발이 요구되고 있다.
이를 위해 용해 가능한 메모리 소자, 종이 기판을 이용해 불에 태우는 보안용 소자 등이 개발되고 있다. 그러나 기존의 용해 가능한 소자는 파기에 시간이 매우 오래 걸리고 불에 태우는 기술은 점화 장치와 고온의 열이 필요하다는 한계가 있다.
연구팀은 문제 해결을 위해 물에 매우 빠르게 반응해 녹는 SSG 기판 위에 메모리 소자를 제작해 용해 시간을 수 초 내로 줄이는데 성공했다.
이 메모리 소자는 알칼리 금속 원소인 소듐(Sodium)과 글리세린(Glycerine)을 주성분으로 하고 친수성기를 가져 소량의 물에 반응해 분해된다.
용해 가능한 전자소자는 열과 수분에 취약할 수 있어 공정 조건이 매우 중요하다. 연구팀은 이 과정을 잉크젯 인쇄 기법을 통해 최적화된 점성과 열처리 조건으로 금속 전극을 상온 및 상압에서 증착했다.
또한 메모리 소자의 특성을 결정하는 저항변화층(Resistive Switching Layer)인 산화하프늄(HfO2)도 우수한 메모리 특성을 얻도록 150도 이하의 저온에서 증착했다. 이를 통해 평상시 습도에서는 안정적이면서도 소량의 물에서만 반응하는 소자를 제작했다.
연구팀은 휘어지는 종이비누 형태의 SSG 기판을 이용하고, 잉크젯 인쇄기법을 이용해 ‘금속-절연막-금속’ 구조의 2단자 저항 변화메모리를 제작하기 때문에 다른 보안용 소자보다 비용 절감 효과가 매우 크다고 밝혔다.
1저자인 배학열 박사과정은 “이 기술은 저항변화메모리 소자를 이용해 기존 실리콘 기판 기반의 기술 대비 10분의 1 수준의 저비용으로 제작 가능하다”며 “소량의 물로 빠르게 폐기할 수 있어 향후 보안용 소자로 응용 가능할 것이다”고 말했다.
이번 연구는 미래창조과학부 한국연구재단과 나노종합기술원의 지원을 통해 수행됐고, 배학열 박사과정은 한국연구재단의 글로벌박사펠로우십에 선정돼 지원을 받고 있다.
□ 그림 설명
그림1. 메모리 소자가 물에 용해되는 과정
그림2. 최양규 교수팀이 개발한 보안용 메모리 소자
그림3. 보안용 메모리 소자 모식도
2016.12.22
조회수 17302
-
이건재, 최성율 교수, 고체 상분리 현상에 의한 그래핀 생성원리 발견
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀이 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝혔다.
기존에 활용되고 있는 화학기상증착(Chemical Vapor Deposition, CVD) 기반의 그래핀 합성법이 상당시간의 고온 공정을 필요로 하는 것과 달리 새로운 레이저 열처리법은 상온환경에서 단시간의 공정으로 그래핀을 합성할 수 있어 향후 그래핀 활용의 폭을 넓힐 수 있을 전망이다.
연구진은 단결정 탄화규소 소재 표면에 나노초(10억분의 1초) 단위의 극히 짧은 시간 동안 레이저를 쪼여 표면을 순간적으로 녹였다가 다시 응고시켰다. 그러자 탄화규소 표면이 두께 2.5나노미터의 탄소(C) 초박막층과 그 아래 두께 5나노미터의 규소(Si, 실리콘)층으로 분리되는 상분리 현상이 나타났다. 여기에 레이저를 다시 쪼이자 안쪽 실리콘층은 증발하고, 탄소층은 그래핀이 됨을 확인했다.
특히 탄화규소와 같은 이종원소 화합물과 레이저의 상호작용에 대한 연구는 아주 짧은 시간에 일어나는 복잡한 상전이 현상으로 지금까지 그 규명이 쉽지 않았다. 그러나 연구진은 레이저에 의해 순간적으로 유도된 탄소 및 실리콘의 초박막층을 고해상도 전자현미경으로 촬영하고, 실리콘과 같은 반도체 물질이 고체와 액체 상태일 때 나타나는 광학 반사율이 다르다는 점에 착안해 탄화규소의 고체 상분리 현상을 성공적으로 규명해낼 수 있었다.
연구에 활용된 레이저 열처리기술은 AMOLED(능동형 유기발광다이오드) 등 상용 디스플레이 생산공정에 널리 활용되고 있는 방법으로, CVD 공정과 달리 레이저로 소재 표면만 순간적으로 가열하기 때문에 열에 약한 플라스틱 기판 등에도 활용이 가능하여, 향후 플렉시블 전자 분야로 응용의 폭을 넓힐 수 있을 것으로 기대된다.
이 교수는 "이번 연구 결과를 통해 레이저 기술이 그래핀과 같은 2차원 나노소재에 보다 폭넓게 응용될 수 있을 것이다”고 말했다.
최 교수는 "앞으로 다양한 고체 화합물과 레이저의 상호작용을 규명해 이들의 상분리 현상을 활용하면 새로운 나노소재 개발을 기대할 수 있을 것이다”고 말했다.
이번 연구결과는 자연과학 및 응용과학 분야 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 최신호에 게재됐다.
□ 그림 설명
그림1. 단결정 탄화규소의 용융을 통한 상분리 현상의 원리를 밝혀내는 분자동역학 시뮬레이션의 모식도
그림2. 레이저에 의해 순간적으로 유도된 단결정 탄화규소의 용융 및 응고 현상을 증명하는 실시간 시간 분해능 반사율 (In-situ time-resolved reflectance) 측정 스펙트럼
그림3. 레이저가 조사된 탄화규소 표면의 전체적인 전자현미경 사진(a) 및 이로 의한 탄소와 실리콘으로의 상분리 현상을 촬영한 고해상도 전자현미경 사진(b)
2016.12.05
조회수 18863
-
윤동기 교수, 붓으로 DNA의 모양을 조절하는 기술 개발
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 일상생활에서 흔히 쓰이는 화장용 붓을 이용해 일정한 지그재그 형태를 갖는 DNA 기반의 나노 구조체 제작 기술을 개발했다.
차윤정 박사과정 학생이 1저자로 참여한 이번 연구 성과는 재료분야 저명 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’ 11월 15일자 온라인 판에 게재됐고 액정(liquid crystal) 분야 핫 토픽으로 선정됐다.
기존에도 DNA를 빌딩블록으로 사용해 다양한 나노 구조체를 만드는 기술은 많이 존재했다. 그러나 이 방식은 복잡한 설계과정이 필요하고 특히 염기서열이 조절된 값비싼 DNA를 이용해야 하는 단점이 있다.
연구팀은 연어에서 추출한 DNA 물질을 이용해 기존보다 1천 배 이상 저렴한 비용으로 잘 정렬된 지그재그 형태의 나노 구조체를 구현했다.
연구팀은 화장품 가게에서 구매한 화장용 붓으로 연어에서 추출한 DNA를 물감처럼 이용해 그림 그리듯 기판에 한 방향으로 문질렀다. 수 센티미터 크기의 붓을 이용해 지름이 약 2 나노미터인 DNA 분자들을 붓질 방향으로 나란히 정렬시켰다.
얇게 퍼진 진한 상태의 DNA 필름이 공기 중에 노출돼 건조되며 이 때 기판의 바닥에서 잡아주는 힘 때문에 팽창력이 작용한다. 이 팽창력은 DNA의 탄성력과 상호작용해 일렬로 향하던 DNA의 분자에 파도모양의 기복이 생기면서 일정한 지그재그 패턴이 형성된다.
형성된 DNA 지그재그 패턴은 생물체에서 추출한 저렴한 DNA를 사용했기 때문에 그 내부정보(sequence)까지는 조절되지 않았지만, DNA 물질의 구조적 정교함은 변하지 않아 아주 일정한 구조체가 된다.
이렇게 정밀하게 구조가 조절된 DNA 막 위에 다른 물질을 바르면 DNA 구조에 따라 정밀하게 그 물질이 정렬하기 때문에 다양한 분야에 이용 가능하다.
예를 들어 액정 디스플레이에 사용되는 다른 액정을 정렬시킬 수 있고 금속 입자, 반도체 물질 역시 정렬이 가능하다. 이러한 기능을 통해 새로운 개념의 광전자 소자로의 응용에 기여할 수 있을 것으로 기대된다.
윤 교수는 “DNA 뿐 아니라 자연계에 존재하는 단백질, 근육 세포, 뼈의 구성물질 등 다양한 생체 물질을 광전자 분야에 사용할 수 있다는 점에서 큰 의의를 갖는다”고 말했다.
이번 연구는 한국연구재단의 나노소재 원천기술개발사업 및 미래유망융합기술 파이오니아 사업을 통해 수행됐다.
□ 그림 설명
그림1. 규칙적인 DNA 지그재그 구조체의 이미지와 내부 분자의 배향을 설명하는 모식도
그림2. 정렬되지 않던 DNA(좌)가 붓질 및 건조시킨 후 정렬된 과정(우)
그림3. 마이크로 채널 기판을 이용한 DNA 지그재그 구조체의 제어
그림4. DNA 지그재그 구조체 표면 위에 형성된 액정 물질의 배향제어 모식도 및 편광 현미경 이미지
2016.12.01
조회수 15245
-
최경철 교수, 직물위에 유기발광다이오드(OLED) 형성 기술 개발
〈 학술지에 게재된 표지논문 〉
옷처럼 편하게 입으면서도 디스플레이 기능을 수행할 수 있는 OLED 기술이 개발됐다.
우리 대학 전기및전자공학부 최경철 교수 연구팀이 직물 기판 위에 유기발광다이오드(OLED)를 형성해 웨어러블 디스플레이를 실현할 수 있는 원천기술을 개발했다.
연구팀의 직물 OLED는 다층 박막봉지 기술(Thin-film Encapsulation)을 적용한 상태에서도 유연함을 잃지 않았고 1천 시간 이상의 동작 수명을 유지했다.
㈜코오롱글로텍과 공동으로 진행된 이번 연구는 나노전자 기술 분야 국제 학술지 ‘어드밴스드 일렉트로닉 머티리얼즈(Advanced Electronic Materials)’ 11월 16일 표지논문으로 선정됐다.
플라스틱 기판을 기반으로 한 유연 디스플레이는 플라스틱 기판이 얇을수록 뛰어난 유연성을 보인다. 하지만 얇게 만들수록 쉽게 찢어지는 문제가 발생하고 내구성이 약해지게 된다.
반면 직물은 씨실과 날실로 이뤄진 구조로 전체 직물은 두껍지만 여러 가닥의 수 마이크로미터 두께의 섬유들이 엮여있어 매우 유연하면서도 뛰어난 내구성을 갖는다. 연구팀은 이 점에 주목해 직물 OLED 형성 기술을 연구했다.
일반 옷감에 쓰이는 직물은 표면이 거칠고 온도 상승에 따라 부피가 팽창하는 열팽창계수(Coefficient of Thermal Expansion)가 커 열 증착 과정을 거치는 OLED 소자 형성 과정에서 문제가 발생한다.
연구팀이 개발한 평탄화 공정은 이러한 문제를 해결했다. 직물의 유연한 성질을 잃지 않으면서도 유리 기판과 같이 평평한 형태의 직물을 구현했다. 또한 이 평탄화된 직물은 동일 두께의 플라스틱 기판보다 더 유연했다.
연구팀은 평탄화 된 직물 위에 진공 열 증착 공정으로 OLED를 형성했고 OLED를 보호하기 위해 수분과 산소의 침투를 막는 다층 박막봉지 기술을 적용했다.
다층 박막봉지 기술이 적용된 직물 OLED는 1천 시간 이상의 동작 수명과 3천 500시간 이상의 유휴 수명을 갖는 것으로 확인됐다. 결과적으로 플라스틱보다 유연하면서 소자의 신뢰성까지 보장할 수 있는 디스플레이 소자를 구현했다.
연구팀은 이번 연구 결과가 산업적으로 플라스틱 OLED에서 진보된 패브릭 기판의 OLED 기술을 제시할 것이라고 예상했다.
최 교수는 “플라스틱보다 유연하면서 뛰어난 신뢰성을 보인 직물 OLED는 옷처럼 편한 웨어러블 디스플레이를 구현할 수 있을 것이다”며 “작년 실 한 올마다 OLED를 구축했던 성과에 이어 보다 실현 가능한 기술을 개발했다는 데 의미가 있다”고 말했다.
김우현 박사와 권선일 박사과정이 공동 1저자로 참여한 이번 연구는 산업통상자원부의 산업기술혁신사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 제작된 직물 기판 위에 형성된 OLED 구동 사진
그림2. 직물 위에 형성된 OLED 구조
그림3. 단면 SEM 사진
2016.11.22
조회수 18694