본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%83%9D%EB%AA%85%EA%B3%BC%ED%95%99%EA%B8%B0%EC%88%A0%EB%8C%80%ED%95%99
최신순
조회순
신경세포 전달 후 분해 원리 30년 만에 규명
윤태영 교수 2013년도의 노벨 생리의학상은 제임스 로스먼, 랜디 셰크먼, 토마스 쥐트호프에게 돌아갔다. 그들은 신경전달물질, 호르몬 등의 주요 물질이 자루 모양의 지질막인 소포(vesicles)에 담겨 택배처럼 전달되는 과정을 발생시키는 단백질을 발견한 공로를 인정받았다. 수상자들은 소포의 막을 열어 세포막과 융합해 물질을 분출하는 방식으로 에너지를 전달하는 역할인 스네어(SNARE)라는 단백질과, 물질을 분출한 후의 스네어 단백질 재활용을 위해 기능하는 NSF라는 단백질을 발견했다. 우리에게 잘 알려진 보톡스도 스네어 단백질의 작용 과정을 역으로 이용한 것이다. 보톡스가 스네어를 절단해 소포가 세포막과 융합하지 못하게 만들어 신경전달물질의 방출을 막고, 그로인해 근육의 수축을 방해하는 것이다. 이런 운송 업무가 있기 때문에 우리 세포는 신체 곳곳에 단백질과 같은 물질이 공급돼 정상적인 기능을 할 수 있다. 우리 대학 물리학과 윤태영 교수 연구팀은 그간 명확하지 않았던 NSF가 스네어 결합체를 분해해 세포수송을 지속시키는 원리를 규명했다고 밝혔다. 이번 연구 결과는 저명 학술지 사이언스지 3월 27일자에 게재됐다. NSF와 스네어 단백질은 30여 년 전에 발견됐지만 각각의 물질이 작용하는 방식은 명확히 규명되지 않았다. 특히 세포막과 결합한 스네어 결합체를 NSF가 어떤 방법으로 분해해 재활용하는지에 대해선 의견이 분분했다. 지금까지 과학자들은 NSF가 스네어 결합체를 분해할 때 끈을 조금씩 푸는 것처럼 점진적인 과정을 통해 분해가 이뤄지고, 하나의 스네어 결합체를 분해하는 데 ATP라는 연료 역할을 하는 유기화합물 수십 개가 필요하다는 가설을 주장했다. 하지만 윤 교수팀의 연구는 단분자 형광 기법과 자기집게 기술(magnetic tweezers)을 사용해 가설을 반박했다. 마치 매듭의 양 끝을 잡고 당기면 한 번에 풀리듯, ATP를 주입하면 NSF가 스프링처럼 에너지를 저장했다가 스네어 결합체 전체를 단번에 폭발적으로 풀어냄을 증명한 것이다. 이번에 규명된 NSF는 근육의 이동, 단백질 분해, DNA의 복제 및 이동 등 신체에서 중요한 역할을 하는 AAA+ 단백질 그룹에 속해있다. 따라서 NSF와 비슷한 구조의 AAA+ 단백질 그룹은 함께 동작할 것으로 예상되며, 앞으로 많은 생물 현상 이해의 주춧돌이 될 것으로 보인다. 스네어 단백질은 신경세포 통신과 인슐린 분비 등에 중추적 역할을 하고 있어 윤 교수팀의 성과는 알츠하이머와 같은 퇴행성 뇌질환, 당뇨병과 같은 대사질환 관련 연구 뿐 아니라 피부미용 연구에도 이바지 할 것으로 기대된다. 윤 교수는 “생물 물리 분야에서 우리나라가 최고수준의 기초과학 연구력을 보유하고 있음을 증명했다”며 “이번 연구결과는 여러 대사질환을 분자수준에서 이해할 수 있는 토대가 될 것”이라고 말했다. 이번 연구는 고등과학원의 현창봉 교수팀, 독일 막스 플랑크 연구소 라인하르트 얀(Reinhard Jahn) 교수팀, 우리 대학 의과학대학원 김호민 교수팀과의 공동 연구로 진행됐으며, 윤 교수 연구팀의 류제경, 민두영 박사, 나상현 학생의 주도로 이뤄졌다. □ 그림 설명 그림 1. 신경전달물질의 분비가 끝난 후 NSF가 SNARE 단백질 복합체를 한 번에 분해하는 모습 그림 2. NSF 가 SNARE 복합체를 풀어내는 모습
2015.03.27
조회수 12673
신경세포 연결해주는 접착단백질 결합구조 규명
국내 연구진이 신경세포 연결을 주관하는 시냅스접착단백질**의 3차원 복합체 구조를 규명함으로써, 시냅스* 형성초기 기전을 제시하였다. 시냅스 이상으로 인한 강박증이나 조울증 등 다양한 뇌질환의 발병기전 규명과 치료제 개발에 활용될 것으로 기대된다. * 시냅스 : 신경전달물질의 분비와 흡수가 일어나는 1,000억 여 개에 달하는 신경세포의 접합부위로 학습과 기억, 감각, 운동 등을 조절하는 뇌 활동의 기본단위이다. ** 시냅스접착단백질 : 벨크로처럼 두 개의 신경세포를 단단하게 연결해 시냅스 형성을 돕는 신경세포막에 존재하는 단백질 우리 학교 의과학대학원 김호민 교수와 연세대 생화학과 고재원 교수 (이상 교신저자)가 주도하고, 연세대 엄지원 연구교수, KAIST 김기훈 석사과정 연구원 및 을지대 박범석 교수(이상 제1저자)가 참여한 이번 연구는 미래창조과학부와 한국연구재단이 지원하는 신진연구자지원사업, 중견연구자지원사업(핵심연구) 및 교육부 학문후속세대양성사업의 지원으로 수행되었고 자연과학 분야 국제학술지 네이처 커뮤니케이션스(Nature Communications)지 온라인판 11월 14일자에 게재되었다. (논문명 : Structural basis for LAR-RPTP/Slitrk complex-mediated synaptic adhesion) 신경세포막에 존재하는 단백질 슬릿트랙*은 다른 신경세포의 막에 존재하는 단백질 LAR-RPTP**와 복합체를 이뤄 초기 시냅스 형성과 신경세포의 흥분과 억제간의 균형 유지에 관여하는 것으로 알려져 있었다. * 슬릿트랙(Slitrk) : 뇌의 중추신경계에서 강하게 발현되는 단백질. 이 유전자가 결핍된 형질전환생쥐의 경우 다양한 뇌질환 표현형을 나타냄. 최근 LAR-RPTP와 결합하여 시냅스 형성을 조절하는 시냅스접착단백질임이 밝혀짐 ** LAR-RPTP : 신경세포의 초기 발달과정에서 중요한 역할을 하는 단백질 군. 최근 시냅스 형성에 관계된 주요 기능들이 조금씩 밝혀지면서 새롭게 주목 받기 시작한시냅스접착단백질 이들 두 단백질의 이상은 시냅스의 기능이상을 유발해 자폐증, 정신분열증, 간질, 강박증 및 조울증 같은 다양한 신경·정신질환을 유발하는 것으로 알려져 있지만 두 단백질의 결합구조와 구체적인 작용기전이 규명되지 않아 치료제 개발에 한계가 있었다. 연구팀은 단백질 결정학기술과 바이오투과전자현미경을 활용해 두 시냅스접착단백질(슬릿트랙(Slitrk)과 LAR-RPTP)이 결합된 3차원 구조를 밝혀내고 이들 상호간의 결합의 핵심이 되는 부위를 찾아냈다. 나아가 두 시냅스접착 단백질이 결합한 후 클러스터를 형성하면서 시냅스 생성이 유도된다는 것을 규명하였다. 김호민 교수는 “시냅스접착단백질의 기능 이상으로 나타나는 다양한 뇌질환의 발병기전 이해에 큰 밑거름이 될 것. 특히, 단백질 구조생물학과 신경생물학의 유기적인 협력연구를 통하여 우수한 성과를 거둔 대표적 사례가 될 것”이라고 밝혔다. 고재원 교수는 “시냅스접착단백질 분자기전을 이해함으로써 시냅스 형성 관련 연구의 새로운 방향을 제시할 것”이라고 연구의의를 밝혔다. 그림 1. 시냅스접착단백질 결합체 구조 및 슬릿트랫 바이오투과전자현미경 이미지 (위) 시냅스접착단백질 슬릿트랙(Slitrk)과 LAR-RPTP 결합체 분자구조 단백질결정학을 통해 시냅스접착단백질 결합체 분자구조를 분석한 결과 두 시냅스접착단백질의 결합에 중추적인 역할을 하는 핵심적인 아미노산을 도출할 수 있었다. 특히 LAR-RPTP 단백질에 위치한 선택적 접합(Alternative splicing) 부위(붉은색 화살표)가 슬릿트랙 (Slitrk)과 선택적으로 결합하기 위한 분자코드임을 규명하였다. (아래) 슬릿트랙의 바이오투과전자현미경 이미지 단백질결정학으로는 규명이 어려운 전체 슬릿트랙 단백질 구조(세포막 바깥쪽부위)를 바이오투과전자현미경을 사용하여 분석하였다. 그림에서 보듯 전체 슬릿트랙은 땅콩처럼 생긴 비슷한 두 개의 단백질 모듈(푸른색, 노란색 화살표)로 구성되어 있고, 이들 중 한 부분(파란색 화살표)만 LAR-RPTP와 결합하게 된다는 것을 규명하였다. 그림 2. 시냅스접착단백질 결합에 의해 유도되는 시냅스형성 분자기전 전시냅스의 LAR-RPTP과 후시냅스의 슬릿트랙(Slitrk)의 결합이 단순한 결합에 그치는 것이 아니라 결합 이후 신경세포 막에서의 배열변화를 통해 단백질 클러스터 형성을 유도할 수 있음을 보였다. 그림 3. 시냅스 및 시냅스접착단백질 개요 시냅스는 1000 억여 개에 달하는 신경세포들의 접합 부위인 뇌기능의 기본단위로서 신경세포 간 교환되는 신경전달물질들에 의하여 학습 및 기억, 감각, 운동 등이 원활히 조절된다. 시냅스에는 약 1,000여종 단백질이 존재하며, 이들 중 신경세포 막에 존재하며 벨크로처럼 두 개의 신경세포를 단단하게 연결하여 시냅스 형성을 돕는 단백질을 시냅스접착단백질이라 한다. 현재 불과 10여개의 시냅스접착단백질만이 밝혀져 있고, 이중 최근에 주목받기 시작한 시냅스접착단백질이 슬릿트랫과 LAR-RPTP이다.
2014.11.20
조회수 17660
A형 간염 환자의 간 손상 해결 단초 마련
우리 학교 의과학대학원 신의철 교수팀은 인체 면역계의 균형유지를 담당하는 조절 T 세포가 A형 간염 환자의 간 손상에 끼친 영향을 밝혔다. 연구결과는 세계적으로 저명한 소화기학 학술지인 ‘거트(Gut)’ 7월 9일자 온라인판에 게재됐다. A형 간염은 A형 간염 바이러스에 의해 발생하는 급성 간염이다. 날씨가 더운 여름철에 발병률이 높고 바이러스가 입을 통해 소화기로 침입해 전파된다. A형 간염은 환자의 발병초기와 회복기를 순차적으로 관찰할 수 있고 다양한 임상적 양상을 나타내 급성 바이러스 감염에 대한 인체의 면역반응을 연구하기에 적당한 질환이기 때문에 연구팀은 A형 간염을 선택했다. 인체 내에서 조절 T 세포는 다른 면역세포의 활성화를 억제함으로써 면역체계의 항상성을 유지하는데 중요한 역할을 한다. 만성 바이러스 감염의 경우 조절 T 세포는 바이러스에 대한 면역반응을 약화시켜 감염상태를 지속시키는데 기여한다고 알려져 있다. 그러나 급성 바이러스 감염에서는 조절 T 세포가 인체에서 어떠한 역할을 수행하는지 밝혀진 바가 없었다. 연구팀은 A형 간염 환자로부터 얻어진 혈액에서 조절 T 세포를 포함한 다양한 면역세포의 숫자와 특성을 파악하기 위해 형광 유세포 분석(fluorescence flow cytometry) 기법을 활용했다. 연구팀은 A형 간염 환자의 혈액에서 조절 T 세포의 현저한 감소와 함께 조절 T 세포의 면역 억제능이 감소되어 있음을 확인했다. 또 조절 T 세포의 감소가 더 현저하게 나타난 환자일수록 간 손상은 더욱 극심하게 발생함을 밝혔다. 연구팀은 세포사멸을 유도하는 세포표면 단백질인 ‘Fas’의 발현 증가에 의한 세포사멸 현상이 이러한 조절 T 세포의 수적, 기능적인 감소의 원인임을 실제 환자의 혈액을 분석해 입증했다. 신의철 교수는 이번 연구에 대해 “A형 간염 뿐만 아니라 급성 바이러스 감염증에서 임상 양상의 심화 기전을 제시한 첫 사례”라며 “향후 바이러스 자체에 대한 효과적인 치료가 없는 다양한 중증 급성 바이러스 감염질환에서 조절 T 세포의 세포사멸을 억제함으로써 조직 손상을 예방할 수 있을 것”이라고 의의를 밝혔다. 논문의 제1저자인 최윤석 박사는 의과대학을 졸업한 내과 의사로서 전문의 취득 후 KAIST 의과학대학원 박사과정에 진학했다. ‘인체 T 세포에 의한 면역반응의 조절에 대한 연구’를 수행하며 ‘의사-과학자’ 훈련을 5년간 받은 연구자로 ‘KAIST가 배출한 1세대 중개연구전문가’의 성공적 사례다. KAIST에서의 연구 경험 및 심도 있는 교육을 바탕으로, 박사 학위 취득 후 충남대학교병원 혈액종양내과에서 진료교수로 재직하며 현재 신의철 교수와 함께 림프계 악성질환(악성림프종 및 다발성골수종)에서 종양특이 T 세포의 기능적 변화 및 그 임상적 의의에 대한 연구를 통해 난치성 질환에 대한 새로운 치료 타겟 발굴을 위한 연구를 진행 중이다. □ 그림설명 혈액에서 형광 항체를 이용하여 조절 T 세포 및 다양한 면역세포를 형광염색하고 유세포 분석(flow cytometry)을 수행하여 그 숫자 및 특성을 분석한 데이터로서, 실제 A형 간염 환자의 혈액에서 이러한 분석을 수행하여 조절 T 세포의 감소를 규명하였음.
2014.07.31
조회수 16962
인공항체 기반 암 치료제 후보 개발
- 생명과학과 김학성 교수, Molecular Therapy에 표지 논문으로 발표 - 인공 항체 골격인 리피바디 기반 폐암 치료제 후보 개발- 리피바디 기반 단백질 신약 개발 가능성을 입증 우리 학교 생명과학과 김학성 교수는 충남대 의과대학 조은경 교수와 공동으로 인공 항체인 리피바디(Repebody) 기반 암 치료제 후보를 성공적으로 개발, 연구결과를 분자 치료(Molecular Therapy) 7월 호에 표지 논문으로 게재됐다. 김 교수팀은 암 유발 인자인 인터루킨-6 (Interleukin-6)와 강하게 결합하는 인공 항체인 리피바디를 개발했다. 또 리피바디가 비소 세포 폐암 동물 모델에서 암세포의 증식을 획기적으로 억제한다는 것을 확인했다. 많은 다국적 제약사 및 생명공학 기업들이 낮은 부작용과 높은 치료 효능을 갖는 단백질 치료제 개발에 천문학적인 연구비를 투자하고 있고 현재 20종 이상이 임상에 사용되고 있으며 100 여 종 이상이 임상실험 중이다. 이 중 항체 기반 치료제가 다수를 차지하고 있으며 많은 집중 투자가 진행되고 있다. 그러나 항체는 생산 비용이 매우 비싸고 큰 분자량과 복잡한 구조적 특성 때문에 설계가 어려우며 개발에 많은 시간과 비용이 소요된다. 이러한 기존 항체 기반 치료제의 한계점을 극복하고자, 김 교수팀은 신규 인공 항체 골격인 리피바디를 성공적으로 개발했다.(PNAS게재, 2012) 이를 기반으로 암 유발 인자인 인터루킨-6에 특이적으로 강한 결합력을 갖는 비소 세포 폐암 치료제 후보를 개발하는데 성공했다. 인터루킨-6는 면역 및 염증 관련 신호에 중요한 생체 내 물질로서, 비정상적으로 과 발현되는 경우에는 다양한 발암 경로를 활성화시켜 종양의 증식 및 전이를 촉진하는 것으로 알려져 있다. 이러한 중요성 때문에, 다국적 제약 업체들은 인터루킨-6에 의한 신호 전달을 억제할 수 있는 치료제 개발에 많은 연구를 집중하고 있다. 이번 연구에서 김 교수팀은 리피바디가 반복 모듈로 구성된 점에 착안, 질병 타겟에 대해 결합력을 효과적으로 증대시킬 수 있는 모듈 기반 친화력 증대 기술을 개발했다. 개발된 치료제 후보는 세포 및 동물 실험에서 낮은 면역원성과 비소세포 폐암의 증식을 탁월하게 억제한다는 것으로 확인됐다. 이와 함께 인터루킨-6와의 복합체 구조를 밝혀 리피바디의 작용기작을 규명해 치료제 개발 가능성을 입증했다. 김 교수팀은 현재 비 소세포 폐암 동물을 대상으로 임상 진입을 위한 전 임상 실험을 수행하고 있으며 향후 임상 시험을 통해 안정성 및 치료 효능을 입증해 단백질 신약으로 개발할 계획이다. 김 교수팀은 본 연구를 통해 인공항체 골격인 리피바디를 기반으로 단백질 신약을 개발할 수 있다는 것을 확인했고, 향후 국내의 단백질 신약 및 생명공학 산업 발전에 크게 기여할 것으로 기대하고 있다. 이번 연구결과는 미래창조과학부가 주관하는 미래 유망 파이오니어 사업의 지원을 받아 수행됐다. 그림 1. Molecular Therapy 7월 호 표지 논문 선정 그림 2. 동물 모델을 통한 리피바디의 암 성장 억제 효능 입증
2014.07.09
조회수 18128
C형간염바이러스의 면역회피 기전 밝혀
C형간염은 우리나라 국민의 약 1~2%가 감염된 것으로 알려져 있다. C형간염바이러스에 감염되면 대부분 만성으로 진행되며 간경변증 및 간암이 발생해 사망에 이를 수도 있다. A형이나 B형간염과는 달리 예방백신이 없어 감염원 노출을 피하는 것만이 최선의 예방법으로 알려진 가운데 우리학교 연구진이 백신 개발에 탄력을 받을 만한 연구 성과를 냈다. 우리학교 의과학대학원 신의철 교수팀은 C형간염바이러스가 체내에서 면역반응을 일으키지 않는 원인을 규명했다. 연구결과는 소화기병 분야 세계적 학술지 ‘위장병학(Gastroenterology)’ 5월호에 게재됐다. 우리 몸에서는 외부로부터 침입한 바이러스를 제거하기 위해 면역반응이 일어난다. 이 과정에서 바이러스에 감염된 세포의 제거에 필요한 T세포 반응을 적절하게 유도하는데 제1형 주조직복합체가 핵심적인 역할을 한다. 세포가 바이러스에 감염되면 인터페론이라는 물질에 의해 제1형 주조직복합체 발현이 증가되고 T세포는 증가된 제1형 주조직복합체를 인식해 바이러스에 감염된 세포를 찾아낼 수 있다. 그러나 그동안 C형간염바이러스의 경우 제1형 주조직복합체 발현에 어떤 영향을 미치는지 명확히 밝혀지지 않았다. 연구팀은 세포배양을 이용한 감염시스템을 통해 C형간염바이러스가 제1형 주조직복합체 단백질 발현을 억제함을 밝혔다. 또 이에 대한 메커니즘을 분자 수준에서 규명, C형간염바이러스가 세포내의 PKR이라는 단백질을 활성화시켜 제1형 주조직복합체 단백질 발현을 억제하는 사실도 입증했다. 이와 함께 실제 C형간염바이러스 환자로부터 분리한 T세포 배양 기술을 이용해 C형간염바이러스가 제1형 주조직복합체 단백질 발현을 억제함으로써 T세포 면역반응을 회피한다는 사실을 세계 최초로 규명했다. 이러한 연구를 통해 연구팀은 세포내 PKR 단백질을 조절하면 T세포 면역반응을 증강시킬 수 있다는 가설을 세우고 이를 실험을 통해 증명했다. 신의철 교수는 “C형간염바이러스를 치료하는 신약들은 많이 개발된 반면 백신은 아직 개발되지 않은 상태”라며 “C형간염바이러스의 면역회피 기전을 밝혀내 백신 개발에 탄력을 받을 것”이라고 이번 연구의 의의를 말했다. 그림1. 세포배양을 이용한 C형간염바이러스 감염 시스템을 유세포분석 기법으로 관찰, C형간염바이러스에 감염된 간세포에서는 인터페론에 의한 제1형 주조직복합체 단백질 증가가 억제됨을 밝혔다. 그림2. C형간염바이러스에 감염된 간세포에서는 인터페론에 의한 제1형 주조직복합체 단백질의 증가가 억제된다. 그림3. C형간염바이러스가 PKR-eIF2a 전달체계를 활성화시켜 제1형 주조직복합체 단백질 발현을 억제함으로써 바이러스에 대한 T세포의 활성이 약화된다.
2014.05.19
조회수 15759
손상된 DNA의 돌연변이 수리과정 규명
- DNA 손상을 복구하는 암 관련 핵심 효소 ATM의 조절 메커니즘 밝혀 - 우리 학교 생명과학과 최광욱 교수와 홍성태 박사 연구팀은 생체정보를 저장하는 DNA가 손상됐을 때 이를 수리하는 핵심효소의 기능에 필수적인 단백질 ‘ATM(Ataxia telangiectasia mutated)’의 작동 메커니즘을 규명했다. 연구결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈(Nature communications)’ 19일자 온라인판에 게재됐다. 인간을 포함해 DNA를 갖고 있는 모든 생명체는 자신의 DNA정보를 지키기 위해 끊임없이 노력하고 있으며 이들이 살아가고 있는 자연환경에는 DNA를 손상시킬 수 있는 수많은 요소들이 존재한다. 예를 들면, 우리가 매일 섭취하는 음식물속에 들어있는 탄화물질이나 건물의 시멘트에서 나오는 라돈과 같은 방사선 물질, 강한 태양빛에 포함된 자외선 등 수많은 발암물질들과 함께 살아가고 있다. 생명체는 발암물질들로부터 DNA정보를 일정하게 유지하기 위해 복잡하고 정교한 DNA 수리작업을 항상 수행하고 있는데 이 과정에서 ‘ATM’이라고 하는 DNA 손상복구 단백질이 핵심적인 역할을 한다. 따라서 ATM이 제대로 작동하지 않으면 암 발병 확률이 높아진다. 지금까지 학계에서는 TCTP(Translationally controlled tumor protein)라는 단백질이 ATM의 기능을 조절하는데 중요할 것이라고 추정해 왔다. 그러나 이에 대한 주된 연구결과가 배양된 세포수준에서 확인했기 때문에 정확히 어떠한 방식으로 TCTP가 ATM의 기능을 조절하는지 알 수 없었다. 연구팀은 TCTP에 결합하는 아미노산 조각의 정보를 활용해 TCTP가 ATM과 결합을 할 수 있고, 다양한 분자생화학적인 방법들을 이용해 TCTP가 ATM의 효소기능을 높여준다는 사실을 밝혀냈다. 이와 함께 분자 유전학의 모델동물로 널리 사용되는 초파리를 이용해 TCTP와 ATM이 방사선에 의해 손상된 DNA를 수리하는데 매우 중요한 역할을 하고 있다는 점도 규명했다. 이를 통해 연구팀은 TCTP가 세포배양 수준은 물론 고등생명체에서도 DNA 정보를 일정하게 유지하는데 중요한 역할을 하며, TCTP가 ATM의 기능을 조절하는 방법에 대한 중요하고 구체적인 단초를 제시했다. 최광욱 교수는 이번 연구에 대해 “초파리 모델동물을 이용한 기초연구가 암 등 질병의 과정을 이해하고 치료방법을 개발하는데 중요한 기여를 할 수 있음을 보여주는 좋은 사례”라고 말했다. 이번 연구는 미래창조과학부(장관 최문기)와 한국연구재단이 추진하는 중견연구자지원사업(도약 연구)과 일반연구자지원(대통령포스닥펠로우십)의 지원을 받아 수행됐다. □ 보충자료 1. ATM(Ataxia telangiectasia mutated)ATM 유전자의 이상은 Louis-Bar syndrome 이라는 희귀 퇴행성 신경질환을 유발하는 것으로 알려져 있다. 운동기능이상, 눈의 흰자위나 피부에 비정상적으로 나타나는 혈관 확장, 약화된 면역반응, 혈액암 (림프종, 백혈병) 과 같은 질병증상을 추가로 일으킬 수 있다. ATM 유전자는 인산화 효소(kinase)의 기능을 가지고 있으며, ATM 단백질은 DNA의 이중나선이 모두 끊어질 경우, 이를 연결하는데 중요한 역할을 수행한다. 2. TCTP(Translationally controlled tumor protein)1988년 처음으로 발견된 단백질로, 이 유전자의 이름은 종양 세포에서 그 양이 비정상적으로 많아지기 때문에 붙여졌다. 그 기능이 본격적으로 밝혀진 것은 2000 초반부터이며, 세포의 생존과 성장에 중요한 역할을 한다. 최근에서야 DNA 정보를 유지하는데 중요하다는 것이 밝혀졌다. 3. Nature communcations네이처를 출간하는 Nature Publishing Group (NPG)에서 발간하는 온라인 전용 과학저널. 생물학, 물리학, 화학, 공학, 천문학, 고고학 등 다양한 분야의 수준 높은 과학연구 주제를 다루고 있다. 2012년을 기준으로 하는 SCI (Science citation index, 과학분야 인용지수)는 10.015 이다. 4. 초파리1900년대 초반, Charles W. Woodworth, William E. Castle, Thomas H. Morgan등이 멘델유전학을 연구하기 위해 처음으로 사용하기 시작한 모델 동물. 진핵세포에서 일어나는 생명현상을 연구하기 위해 오랫동안 사용되어온 대표적인 모델 동물이다. □ 그림설명 그림1. TCTP단백질의 양이 줄어들면 방사능에 의해 쉽게 초파리 눈 세포의 형태가 비정상적으로 변형된다. (화살촉). Scale bars = 200mm 그림2. TCTP 단백질의 양이 줄어들면, 방사능에 의해 초파리의 염색체가 쉽게 끊어진다 (화살촉 표시). Scale bars = 10 mm. 그림3. TCTP와 ATM의 유전자발현이 줄어들면 눈의 정상적인 발생에 큰 결함이 생긴다.(왼쪽 : 초파리의 정상적인 눈, 오른쪽 : 성장이 결핍된 눈) 그림4. ATM은 끊어진 DNA의 위치를 표시하며, TCTP는 이 작용이 원활히 일어나도록 돕는다. 세포 핵 안에 들어있는 DNA(파란 선)는 히스톤 단백질(녹색 원통)에 감겨있다. DNA가 끊어지면(붉은 번개표시) 끊어진 자리에 ATM 단백질이 인산기(P)를 부착한다. 다양한 DNA 수리 단백질들은 이 인산기를 DNA에 수리가 필요하다는 신호로 인식하고 모여든다.
2013.12.20
조회수 19900
오래가는 리튬황 이차전지 개발
- 리튬이온전지 보다 에너지밀도가 5배 이상 높은‘리튬황 전지’개발 - 우리 학교 신소재공학과 김도경 교수는 EEWS 최장욱 교수와 공동으로 현재 상용화중인 리튬이온 배터리의 수명 및 에너지 밀도를 크게 뛰어넘는 리튬황 전지를 개발했다. 연구결과는 나노소재 분야 권위 있는 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 3일자 표지논문(frontispiece)으로 실렸다. 개발된 리튬황 전지는 △단위 무게당 에너지 밀도가 최대 2100Wh/kg로 상용화 중인 리튬이온전지(최대 387Wh/kg)의 5.4배에 달하고 △기존에 개발된 리튬황 전지가 갖는 충·방전에 따른 급격한 용량감소 문제를 해결해 수 백 번 충·방전이 가능하다. 김 교수 연구팀은 나노 전극 재료합성기술을 활용, 두께 75nm(나노미터) 길이 15㎛(마이크로미터)의 황 나노와이어를 수직으로 정렬해 전극 재료를 제작했다. 제작된 황 나노와이어 정렬 구조는 1차원 구조체로 빠른 전자의 이동이 가능해 전극의 전도도를 극대화시켰다. 이와 함께 황 나노와이어 표면에 균일하게 탄소를 코팅함으로써 황과 전해액의 직접적인 접촉을 막아 충·방전 중 황이 녹아나는 것을 방지, 리튬황 전지가 갖는 수명저하 문제를 해결했다. 기존에 개발된 리튬황 전지용 전극은 초기에 높은 용량을 보임에도 불구하고 충·방전을 반복함에 따라 지속적인 용량감소를 보였다.그러나 개발된 전극은 빠른 방전속도(3분마다 1회 충·방전 조건)에서 300회의 충·방전 후에도 초기 용량의 99.2%를 유지했고 1000회의 충·방전 후에도 70%이상 용량을 나타냈다. 따라서 이차전지에서 가장 중요한 특성인 수명, 에너지 밀도 등에서 기존의 어떠한 전극보다 성능이 우수한 세계 최고 수준으로 평가받고 있다. 김도경 교수는 “개발된 리튬황 전지는 무인기, 전기자동차 및 재생에너지 저장장치 등에 필요한 차세대 고성능 이차전지의 실현을 앞당길 수 있는 기술”이라며 “대표적인 차세대 이차전지인 리튬황 전지의 오랜 난제인 수명저하의 해결방안을 찾아 세계 최고 수준의 성능을 구현해 내 이 분야에서 우리나라가 기술 우위를 선점할 수 있을 것으로 기대된다”고 연구 의의를 밝혔다. 한편, 연구팀은 관련 기술에 대해 국내 특허 1편과 PCT 국제 특허 1편의 출원을 완료했다. □ 그림설명 그림1. 개발된 리튬황 전지수명특성 그래프, 300회의 충·방전 시에도 초기 용량의 99.2%의 성능을 낸다.(좌측) 1000회 충·방전에도 높은 성능을 유지한다.(우측) 그림2. 탄소 코팅된 황 나노 와이어 정렬 구조(좌측상단 1, 2 프레임), 단일 황 나노와이어(좌측 하단), 황 나노 와이어 정렬 구조 모식도(우측)
2013.12.03
조회수 15596
건강한 망막혈관 생성을 유도하는 치료방법 개발
- 향후 당뇨망막병증 치료방법으로 적용 기대 우리 학교 연구진이 실명으로 이어질 수 있는 망막혈관 질환치료의 실마리를 찾아냈다. 혈액공급이 잘되지 않는 망막 부위로 건강한 망막혈관이 생성되도록 하여 망막신경을 보호하는 혈관생성단백질을 찾아낸 것. 향후 당뇨망막병증*과 미숙아망막병증**의 치료방법 개선을 위한 연구의 단초가 될 것으로 기대된다. 이번 연구결과는 국내에서 전문적인 기초과학 교육을 받고 있는 안과 전문의 연구원에 의해 이루어진 대표적인 중개연구의 결과여서 더욱 주목받고 있다. * 미숙아망막병증 : 망막 혈관의 발달이 완성되지 않은 시기에 출생한 미숙아에서 발생하는 망막 혈관질환으로 소아실명의 가장 흔한 원인 질환이다. * 당뇨망막병증 : 당뇨병의 합병증으로 망막조직으로의 불충분한 혈액공급으로 생기는 망막 혈관질환으로 성인실명의 중요한 원인 질환이다. 우리 학교 의과학대학원 이준엽 연구원이(안과 전문의, 지도교수: 고규영,유욱준) 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업(도약)의 지원으로 수행되었고, 연구결과는 사이언스 중개의학(Science Translational Medicine) 표지논문(9월 18일자)으로 소개되었다. 이 학술지는 임상의학과 기초과학을 연계하는 중개의학 분야 권위지로 사이언스지 자매지이다. (논문명 : Angiopoietin-1 Guides Directional Angiogenesis Through Integrin αvβ5 Signaling for Recovery of Ischemic Retinopathy) 당뇨망막병증의 치료에는 망막조직을 파괴하는 레이저광응고술이나혈관증식과 혈액누출을 억제하는 항체치료제*가 적용되고 있다. 항체치료제는 망막신경을 파괴하지 않는 장점이 있지만 한시적으로 혈관증식을 억제할 뿐, 근본적인 해결이 아니어서 반복적인 치료가 필요하다는 한계가 있었다. * 항체치료제 : 비정상적인 혈관증식과 혈액누출을 선택적으로 억제하기 위하여 개발된 항체로서, 현재 혈관내피세포성장인자 (VEGF)를 저해하는 아바스틴 (Avastin) 과 루센티스 (Lucentis) 가 대표적인 항체치료제이다. 연구팀은 개체의 발달과정에서 혈관의 생성과 안정화에 필수적이라고 알려진 안지오포이에틴-1* 단백질이 망막혈관의 생성과정에도 중요한 역할을 함을 동물실험을 통해 규명해냈다. 망막출혈에 의한 시력상실의 근본 원인이 되는 망막허혈**을 개선하고 망막신경을 보호하는 단백질을 알아낸 것이다. 망막조직으로 충분한 혈액을 공급해 망막신경의 기능을 보존하는 방식의 근본적인 치료방법 개발의 실마리가 될 것으로 기대된다. * 망막허혈 : 망막 조직에 충분한 혈액 공급이 되지 않는 상태 * 안지오포이에틴-1(Angiopoietin-1) : 건강한 혈관의 생성을 유도하고 생성된 혈관의 안정화를 유지하는 데 중요한 성장인자. 실제 안지오포이에틴-1을 망막병증 생쥐모델의 안구에 투약한 결과 건강한 망막혈관의 생성이 촉진되어, 망막허혈에 따르는 비정상적인 혈관증식이나 망막출혈, 시력상실이 예방되었다. 이준엽 연구원은 “이번 연구는 안지오포이에틴-1이 망막혈관의 생성과 안정화에 중요한 인자라는 사실을 새롭게 규명함으로써 혈관생성을 억제하는 현재의 치료법에서 건강한 혈관을 생성하고 혈관의 기능을 강화하는 방식의 치료법으로 패러다임이 전환될 것을 기대한다”고 연구 의의를 밝혔다. 그림 1. 망막병증 생쥐모델에서의 안구 내 투여한 Angiopoietin-1의 역할 대조군에 비해 VEGF-Trap 치료군과 Angiopoietin-1 (Ang1) 치료군은 병적인 혈관의 증식을 유의하게 억제함 (아래), 추가적으로 Ang1 치료군은 망막 중심부의 무혈관부위(망막허혈)를 향하여 혈관이 생성되었고, 이러한 현상은 VEGF-Trap 치료군에서는 관찰되지 않음 (위). 그림 2. Angiopoietin-1에 의한 망막허혈과 망막 출혈의 감소 및 혈관의 정상화 (좌) 대조군에 비해 Angiopoietin-1 (Ang1) 치료군은 망막허혈부위 면적(화살표)을 유의하게 감소시켰으며, 망막 출혈의 양도 Ang1 치료에 의해 감소함. (우) Ang1 에 의해 새롭게 형성된 혈관은 정상 망막 혈관과 같이 혈관주위세포에 의한 지지를 받는 구조적으로 안정된 혈관임. 그림 3. Angiopoietin-1에 의한 망막 신경 보호 효과 (위) 대조군에 비해 Angiopoietin-1 (Ang1) 치료군은 망막 중앙부 와 주변부의 신경세포의 세포자멸사를 유의하게 억제함. (아래) 이러한 Ang1에 의한 망막 신경 보호 효과는 전기 생리학적 검사인 망막전위도 검사를 통해 확인됨. 그림 4. Angiopoietin-1 이 망막 혈관 생성을 유도하는 기전 Angiopoietin-1은 망막 혈관의 내피세포 (Endothelial cell) 에 작용하여 혈관의 안정성 유지에 중요한 역할을 할 뿐만 아니라 망막의 별아교세포 (Astrocyte) 의 integrin 수용체를 통하여 fibronectin 이라는 세포외기질의 생성을 증가시켜 망막 조직 내로의 혈관 생성의 경로를 안내하는 역할을 함.
2013.09.22
조회수 18997
세포 내 단백질분해 복합체 조립과정 규명
- 바이오 투과전자현미경을 사용한 고해상도 3차원 구조분석 성공 - - “신규 항암제 개발에 커다란 도움 될 것” -- 네이처(Nature) 5월 5일자 게재 - 단백질분자도 전자현미경을 이용해 관찰하고, 고해상도 3차원 구조를 분석하는 것이 가능해졌다. 우리 학교 의과학대학원 김호민 교수가 바이오 투과전자현미경을 이용해 세포 내 단백질의 분해를 담당하는 프로테아좀(proteasome) 복합체의 고해상도 구조를 규명했다. 이번 연구는 세계 최고 권위 학술지 ‘네이처(Nature, IF= 36.28)’ 5월 5일자 온라인판에 게재됐다. 우리 몸은 단백질의 생성과 소멸을 통해 세포 내 여러 가지 작용을 조절하고, 항상성을 유지한다. 프로테아좀 복합체는 폐기물 처리시설처럼 세포 내부에 있는 필요 없는 단백질들을 적절한 시기에 없애주면서 생체 조절의 핵심기능을 맡고 있다. 그러나 프로테아좀 복합체에 돌연변이가 생기면 사람에게 발생하는 주요 질병인 암, 퇴행성 뇌질환, 면역질환 등으로 이어질 수 있다. 현재 혈액암의 일종인 다발성 골수종의 치료제로 사용되고 있는 벨케이드(Velcade)가 바로 이 프로테아좀의 기능을 억제해 암세포 분열을 억제하는 항암제인데, 보다 더 약효가 좋고 부작용이 적은 항암제 및 질병치료제 개발을 위해 프로테아좀 복합체 관련 연구가 20년 이상 꾸준히 진행되고 있다. 30여개의 단백질이 모여서 만들어진 프로테아좀 복합체의 경우 크기가 매우 크고 구조가 복잡하기 때문에 기능을 이해하기 위한 3차원 구조 분석에 많은 어려움을 겪어왔다. 연구팀은 기존에 널리 사용되던 단백질 구조분석기술인 단백질결정학 기술 대신, 바이오 투과전자현미경 안에 얼려진 단백질샘플을 넣고 수백 장의 사진을 찍은 후 여러 각도에서 찍힌 단백질 사진을 고성능 컴퓨터를 이용해 분석함으로써 프로테아좀 복합체의 3차원 구조를 규명하는데 성공했다. 이 기술은 단백질결정학을 이용한 방법 보다 적은 단백질 샘플로 분석이 가능하며, 크기가 아주 큰 복합체 분석에 용이하다는 장점이 있다. 김호민 교수는 이번 연구에 대해 “프로테아좀 복합체 조립과정 이해 및 3차원 구조 규명은 생체 내 단백질 소멸 조절 과정에 대한 이해를 높일 뿐 아니라 이를 활용한 신약 개발이 활발히 이루어 질 것”이라고 말했다. 또 “국내 처음으로 도입된 바이오 투과전자현미경을 이용한 고해상도 단백질 구조분석은 기존의 단백질 결정학 기술로 접근이 어려웠던 매우 큰 단백질 복합체의 구조 분석을 가능케 할 것”이라며 “단백질결정학 기술과 바이오 투과전자현미경기술을 상호보완적으로 사용한다면 향후 여러 단백질복합체 3차 구조 연구에 큰 시너지효과를 가져올 수 있을 것으로 기대된다”고 말했다. 이번 연구는 KAIST 김호민 교수가 미국 캘리포니아대학 샌프란시스코 캠퍼스에서 박사 후 연구원으로 있을 당시부터 수행해 온 연구로 이판 쳉(Yifan Cheng) 교수의 지도를 받았으며, 하버드대, 콜로라도대와 공동으로 수행됐다. 그림1. 바이오 투과전자현미경으로 찍은 얼려진 상태의 단백질 샘플(프로테아좀 복합체) 사진 그림2. 바이오 투과전자현미경 이미지 분석을 통한 단백질 3차 구조
2013.05.06
조회수 14021
단백질의 생체분자 인식 메커니즘 규명
- “단백질이 생체분자를 인식하고 결합하는 기작을 규명해 50년 동안의 수수께끼 풀었다” - - 생명현상의 이해와 효능이 높은 치료제 개발에 활용 가능성 기대 - 우리 학교 생명과학과 김학성 교수가 서울대학교 물리학과 홍성철 교수와 공동으로 단백질이 생체 내 분자를 인식하고 결합하는 메커니즘을 규명했다. 연구 결과는 생명과학분야의 권위지인 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)’ 3월 18일자 온라인 판에 발표됐다. 단백질이 생체분자를 인식하고 결합하는 메카니즘을 밝혀낸 이번 연구로 인해 단백질의 조절기능을 보다 정확하게 파악할 수 있게 돼 앞으로 복잡한 생명현상을 이해하는데 핵심적인 역할을 할 것으로 기대된다. 이와 함께 단백질의 생체분자 인식은 각종 질병의 발생과도 밀접하게 연관돼 있어 향후 효능이 높은 치료제 개발에도 기여할 것으로 전망된다. 핵산, 단백질 등으로 알려진 생체분자는 생물체를 구성하거나 생물의 구조, 기능, 정보전달 등에도 꼭 필요한 물질이다. 특히, 단백질은 생체분자를 특이적으로 인지하고 결합하면서 모든 생명현상을 조절해 생명현상을 유지하는데 가장 중요한 역할을 한다. 단백질의 생체분자 인식에 오류가 발생하면 비정상적 현상으로 각종 질병이 유발되기도 한다. 연구팀은 단백질이 다양한 구조를 갖는데 구조적으로 가장 안정한 ‘열린 구조’와 상대적으로 불안정한 ‘부분 닫힘 구조’를 반복한다는 점에 주목했다.김 교수 연구팀은 단백질의 생체분자 인식 메커니즘을 설명하기 위해 생체분자가 결합하면서 단백질의 구조가 변하는 현상을 단 분자 수준에서 실시간으로 분석했다. 연구결과 생체분자는 가장 안정된 구조의 단백질을 주로 선호하며 결합과 동시에 단백질을 가장 에너지 수준이 낮은 안정된 구조로 변화시킨다는 사실을 세계 최초로 규명했다. 이와 함께 생체분자는 불안정한 ‘부분 닫힘 구조’에도 결합해 단백질 구조를 변화시킨다는 사실도 밝혀냈다. 연구팀의 이번 결과는 단백질의 생체분자 인식 메커니즘을 설명하기 위해 현재까지 제안된 모델인 단백질이 생체분자와 결합하면서 구조가 변한다는 ‘유도형 맞춤 모델’과 단백질의 다양한 구조 중에서 최적의 하나만을 선택적으로 인지한다는 ‘구조 선택 모델’에 대해 처음으로 실험을 통해 완벽히 입증해 낸 것으로 학계는 평가하고 있다. 김학성 교수는 이번 연구에 대해 “생체분자가 존재하는 경우 단백질의 구조 전환 속도가 변하는 현상을 단 분자 수준에서 분석해 단백질의 생체분자 인식 메카니즘을 처음으로 직접 증명한 것”이라며 “생물 교과서에 50년 동안 가설로만 인식되어지던 것을 세계 최초로 실험으로 증명해 풀리지 않을 것만 같았던 수수께끼를 풀어냈다”고 의의를 밝혔다. 그림1. 열린 구조와 부분적으로 열린 구조를 갖고 있는 단백질이 생체분자를 인지하고 결합하는 양상 그림2. 단백질의 다양한 구조 중에서 가장 안정한 상태인 열린 구조(open form)에 생체분자(ligand) 가우선적으로 결합해 더욱 안정한 완전히 닫힌 구조(closed form)로 변함. 또한 단백질의 불안정한 구조(partially closed form)에도 생체분자가 결합해 완전히 닫힌 구조로 변하게 함.
2013.03.21
조회수 14709
노화를 억제하면서 건강히 장수할 수 있도록 돕는 新물질 발견
김대수 교수 - PLoS One 발표,“암, 치매 및 파킨슨병 예방․치료에 한걸음 다가가”- 노화를 억제하면서 건강히 오래살 수 있도록 돕는 새로운 물질이 국내 연구진에 의해 발견됨에 따라, 건강한 삶을 오래 유지하고 싶은 인류의 꿈에 한걸음 다가서게 되었다. 우리 학교 생명과학과 김대수 교수(43세) 연구팀과 충남대 의과대학 및 산업체와의 공동연구로 진행된 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(전략연구)의 지원으로 수행되었고, 생물학 분야의 권위 있는 학술지인 ‘플로스 원(PLoS One)’ 최신호(10월 11일자)에 게재되었다.(논문명: Beta-lapachone, a modulator of NAD metabolism, prevents health declines in aged mice) 사람이 건강하게 오래 살 수 있는 효과적인 방법은 식사량을 줄이거나(小食) 달리기와 같은 유산소운동을 하는 것이다. 김대수 교수 연구팀은 우선 소식이나 유산소운동이 보조효소(NAD+*)를 증가시켜 세포의 노화를 억제한다는 점에 착안하였다. 연구팀은 천연화합물(베타-라파촌)로 효소(NQO1)를 활성화시키면, 적게 먹거나 별도의 운동을 하지 않아도 NAD+의 양이 증가됨을 규명하였다. *) NAD+(니코틴아미드 디욱시뉴클레오타이드) : 이 보조효소가 세포내에서 증가하면 노화방지 효과가 있는 것으로 알려져 있음 **) 베타-라파촌(beta-lapachon) : 라파초 나무, 단삼 등 식물에 고농도로 함유된 천연화합물 또한 이미 노화가 진행된 생쥐들에게 베타-라파촌을 사료에 섞여 먹인 결과, 3개월이 경과되면 운동기능과 뇌기능이 모두 향상되어 건강하게 오래살 수 있음을 확인하였다. 특히 베타-라파촌은 동․서양에서 오랜 기간 사용해 온 약초의 주성분으로 만들어져, 머지않아 쉽게 상용화할 수 있는 것이 특징이다. 김대수 교수는 “지금까지 노화를 억제하는 약물들이 다수 개발되었지만, 사람에게 적용하는데 한계가 있었다. 우리 연구팀이 찾아낸 새로운 물질은 소식이나 운동으로 나타나는 효과를 그대로 모방하여 밝혀낸 것으로서, 향후 암, 치매 및 파킨슨병과 같은 노인성 질환을 예방하고 치료하는데 크게 기여할 것으로 기대한다”고 연구의의를 밝혔다.
2012.10.24
조회수 18036
C형 간염 바이러스의 간 손상 메카니즘 규명
- 부작용 없이 간세포 손상 억제하는 치료제 개발 길 열어 -- 의학분야 세계 최고수준 학술지 ‘헤파톨로지’ 9월호 표지논문 장식 - 의사출신으로 구성된 KAIST 연구진이 C형 간염 바이러스 기전을 밝혀내 치료제 개발에 탄력을 받게 됐다. 우리 학교 바이오및뇌공학과 최철희 교수와 의과학대학원 신의철 교수팀이 공동으로 C형 간염 바이러스에 감염된 환자의 간 손상에 대한 메카니즘을 세계 최초로 규명했다. 이번 연구결과로 앞으로 부작용이 없으면서도 간세포 손상이 적은 C형 간염 바이러스 치료제가 개발될 수 있을 것으로 기대된다. C형 간염은 C형 간염 바이러스(HCV, Hepatitis C virus)에 감염되었을 때 이에 대응하기 위한 신체의 면역반응으로 인해 간에 염증이 생기는 질환이다. C형 간염 바이러스는 전 세계적으로 약 1억 7천만 명, 그리고 우리나라에서도 1%정도가 감염되어 있는 것으로 추정된다. 감염되면 대부분 만성으로 변하며, 간경변증이나 간암을 유발해 사망할 수 있는 무서운 질병이다. 하지만 2005년 시험관 내 세포에서 C형 간염 바이러스의 감염이 성공하기 전까지는 세포실험이 불가능했고, 침팬지 이외에는 감염시키는 동물이 없어 동물실험이 어려워 연구에 한계가 있었다. 연구팀은 C형 간염 바이러스에 감염시킨 세포주를 이용해 바이러스가 면역을 담당하는 세포에 의해 분비되는 단백질인 종양괴사인자(TNF-α)에 의한 세포의 사멸이 크게 증가하는 메카니즘을 세계 최초로 밝혀냈다. 이와 함께 이러한 작용을 일으키는 바이러스 구성 단백질도 규명에도 성공했다. 기존에는 C형 간염 바이러스가 간 손상을 일으키는 기전을 밝혀내지 못해 주로 바이러스의 증식을 억제하는 데 초점을 맞춰 신약이 개발돼 부작용이 많았다. 이번 연구결과를 통해 바이러스에 의한 간세포 손상을 억제하는 부작용 없는 신약개발이 가능하게 될 것으로 전망된다. 최철희 교수는 “이번 연구를 통해 C형 간염 바이러스가 숙주의 간세포와 어떤 상호 작용을 하는지 밝혀내 감염 환자의 치료법을 획기적으로 개선할 수 있을 것”이라고 말했다. 신의철 교수는 “이번 연구는 기초의학과 응용의학의 융합연구가 성공한 대표적 사례”라며 “앞으로도 다학제간 융합연구를 실시하면 그동안 풀지 못했던 난제들을 효율적으로 해결할 수 있을 것”이라고 강조했다. 한편, 교육과학기술부 미래기반기술개발사업(신약타겟검증연구사업)의 지원을 받아 수행된 이번 연구 결과는 의학 분야의 세계적 학술지인 헤파톨로지(Hepatolog, Impact Factor=11.665) 9월호 표지 논문으로 선정됐다. □ 연구 세부사항 설명 TNF-α(종양괴사인자)는 면역을 담당하는 세포에 의해 분비되는 단백질이다. HCV에 감염되면 바이러스의 증식을 억제하기 위해 체내의 면역작용이 활발해지고 TNF-α의 분비도 늘어난다. TNF-α는 세포의 생존을 담당하는 NF-κB 신호전달과 세포의 죽음을 담당하는 JNK 신호 전달을 동시에 활성화시킨다. HCV에 감염되면, 세포의 생존을 담당하는 NF-κB 쪽 신호전달 경로만 선택적으로 활성을 억제하게 되고, TNF-α의 역할은 세포의 죽음 쪽으로 균형이 기울게 된다. 바이러스의 증식을 억제하기 위해 분비된 TNF-α가 오히려 간세포를 죽이게 되는 것이다. 이는 곧 간 손상을 뜻하며, HCV를 구성하는 10가지의 단백질 중 core, NF4B, NS5B 라는 단백질이 이러한 작용을 한다고 규명해냈다.
2012.09.04
조회수 14969
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
>
다음 페이지
>>
마지막 페이지 17