본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9E%90%EC%97%B0%EA%B3%BC%ED%95%99%EB%8C%80
최신순
조회순
수학으로 생물학적 리듬을 유지하는 원리 밝혀
김 재 경 교수 우리 몸엔 다양한 주기의 리듬을 만드는 시계들이 존재한다. 심장은 매 초 박동하고 체세포들은 일정한 주기로 분열한다. 생체 리듬은 다양한 호르몬 분비 시점을 조절함으로써 생명체가 24시간 주기의 환경에 적응해 살 수 있도록 한다. 과학자들은 어떤 원리로 우리 신체가 일정한 주기로 생체 리듬을 조절할 수 있는지 연구했다. 그리고 그 생체 리듬을 인공적으로 만들기 위한 노력도 끊임없이 계속됐다. 우리 대학 수리과학과 김재경(32) 교수가 미분방정식과 확률적 매개변수 샘플링을 바탕으로 한 수학적 모델링을 통해 다양한 환경에서도 안정적인 생체 리듬을 유지할 수 있는 생물학적 회로 디자인을 설계했다. 그리고 김 교수의 설계를 바탕으로 미국 라이스 대학 메튜 베넷 교수 연구팀이 합성생물학 기술을 통해 안정적인 리듬을 갖는 시스템을 실제로 제작하는 데 성공했다. 이번 연구는 저명 학술지 사이언스(Science) 8월 28일자에 게재됐다. 최근 생체 리듬 생성의 매커니즘을 밝히기 위해 생물학적 시스템을 직접 구현하는 합성생물학 (Synthetic biology)이 발전하고 있다. 이 방식은 전지, 전구, 모터 등을 연결해 전자 회로도의 작동 원리를 이해하듯이 유전자와 단백질로 구성된 생물학적 회로를 직접 만들어 생체 회로의 작동 원리를 연구하는 것이다. 김 교수 연구팀은 라이스 대학 연구팀에게 수학적 모델링을 제공해 합성생물학 연구에서 사용되는 바텀-업(Bottom-Up) 방식의 단점인 방대한 범위와 생물학적 회로를 테스트를 거쳐야 하는 문제 등을 해결했다. 실험을 위한 설계도를 제공한 것과 같은 이치이다. 김 교수는 이번 연구에서 이러한 융합적 접근을 통해 기존에 알려진 안정적인 리듬을 만들어내는 생물학적 회로 디자인과는 근본적으로 다른 디자인을 밝히고 설계했다. 생체 회로에서 특정 물질이 분비될 때 음성 피드백(Negative Feedback)은 물질 분비를 억제하는 역할을 하고, 양성 피드백(Positive Feedback)은 분비를 촉진하는 역할을 한다. 양성 피드백의 역할은 기존 연구들을 통해 알려졌으나 잉여로 존재하는 음성 피드백의 역할은 명확하지 않았다. 김 교수는 수학적 모델링을 통해 두 개의 전사적 음성 피드백 회로(Transcriptional negative feedback loops)가 안정적인 생체 리듬을 만들어낼 수 있음을 증명했다. 하나의 음성 피드백이 증가하고 감소하면서 물질의 분비 리듬을 조절하는 것이 가능하지만 안정적이지 못해 실제로 생체 회로를 구현하는 것은 한계가 있었다. 하지만 김 교수는 하나의 음성 피드백을 추가했을 때 다양한 환경에서도 생체 리듬을 만들 수 있고, 추가적인 음성 피드백이 변화에 대한 대응 역할을 해 안정적인 생체 리듬이 구현됨을 증명했다. 이 연구 결과는 다양한 생물학적 리듬 생성의 근본 원리를 밝히는데 새로운 방향을 제공할 것으로 기대된다. 김 교수의 모델링을 바탕으로 진행한 실험에서도 기존과 차별화된 성과를 얻었다. 합성생물학에서는 보통 단일 박테리아 안에 회로를 만드는 방식을 이용하는데 이번 연구에서는 기존과는 다른 방식을 채택했다. 서로 다른 두 종류의 박테리아 사이의 신호 물질을 바탕으로 생체 회로를 구현한 것이다. 이를 통해 인체의 내장 속에 존재하는 다양한 박테리아 간의 상호 작용을 이해하고 조절하는 기술을 개발하는데도 역할을 할 것으로 기대된다. 김 교수는 “이번 성과를 통해 우리나라에선 아직은 부족한 생물학과 수학의 교류가 활발해지길 기대한다”며 “수학이 생물학 연구에 기여할 수 있음을 알리고 싶다”고 말했다. 이번 연구는 김재경 교수 외에도 라이스 대학 생명과학과 매튜 베넷 (Matthew Bennett) 교수 연구팀, 휴스턴 대학 수학과 크레시미르 조식 교수 (Kresimir Josić)의 공동연구로 진행됐다. □ 그림 설명 그림 1. 두 개의 음성 피드백이 안정적인 주기로 활성화되는 모습 그림 2. 두 박테리아 사이의 생물학적 회로 디자인과 그 기능을 이해하는 데 사용된 미분방정식의 일부분
2015.08.31
조회수 15566
수 나노미터급으로 빛 모으는 3차원 광 장치 개발
우리 대학 물리학과 김명기, 이용희 교수 연구팀이 빛을 수 나노미터급 영역안으로 집속시킬 수 있는 초 고광밀도 삼차원 갭-플라즈몬 안테나(3D gap-plasmon antenna)를 개발했다. 이번 연구는 미국화학회의 나노분야 저널인 ‘나노 레터스(Nano Letters)’ 6월 10일자에 게재됐다. 빛을 한 점으로 집속시키는 연구는 최근까지도 활발하게 이뤄지고 있다. 빛을 고밀도로 집속시킬수록 다양한 분야에서 활용 가능하기 때문이다. 하지만 빛의 파장보다 작은 크기에서 발생하는 회절(回折, diffraction) 현상은 집속을 방해한다. 이를 극복하기 위해 학자들은 금속에서는 회절한계를 뛰어넘어 빛이 가둬지는 플라즈모닉 현상을 이용해 연구를 진행 중이다. 학자들은 2차원 형태의 플라즈모닉 안테나 개발에 집중했고 연구를 통해 5나노미터 이하로 빛을 집속하기도 했다. 하지만 2차원 안테나로는 아무리 작게 모아도 나머지 한 쪽 방향으로 빛이 퍼지는 한계가 있다. 즉, 빛을 3차원 방향으로 집속시킬 수 있어야 빛의 밀도를 최대로 끌어올릴 수 있는 것이다. 연구팀은 집속 이온빔 근접 식각 (Proximal Focused-Ion-Beam Milling) 기술을 도입해 3차원 구조의 4나노미터급 갭-플라즈몬 안테나를 제작했다. 이를 통해 삼차원 나노 공간(~4 x 10 x 10 nm3)안으로 빛을 집속시켜 입사파와 비교해 40만 배 이상의 빛의 세기를 만들었다. 또한 제작된 안테나 내 높은 광밀도를 이용해 금속에서 발생하는 이차조화파 세기의 극대화에 성공했고, 음극선 발광 측정(Cathodoluminescence)장치를 이용해 빛이 나노 갭 안으로 강하게 집속됨을 확인했다. 연구팀은 이 기술이 데이터 통신과 정보 처리 속도를 테라헤르츠(THz, 1초당 1조번) 수준으로 높이고, 하드디스크 면적당 용량을 현재의 100배로 늘릴 수 있을 것이라고 밝혔다. 더불어 전자 현미경 대신 직접 빛을 이용해 분자 이하 크기의 고해상도 이미지를 추출하거나 반도체 공정을 수 나노미터 수준으로 발전시키는 기술이 가능할 것이라고 말했다. 김명기 교수는 “간단하고 새로운 아이디어가 기존 2차원 플라즈모닉 안테나 중심 연구를 3차원 공간으로 확대시켰다”며 “정보통신, 데이터 저장, 영상의학, 반도체 공정 등 다양한 분야에 응용될 수 있을 것이다"고 말했다. 이번 연구는 한국연구재단의 일반연구자지원사업과 중견연구자지원사업, 첨단융합기술개발사업 프로그램 지원을 받아 수행됐다. □ 그림 설명 그림 1. 제작된 3차원 갭-플라즈몬 안테나 그림 2. 3차원 갭-플라즈몬 안테나 구조 및 시뮬레이션 결과 그림 3. 증폭된 이차조화파 발생과 나노갭 안으로 빛이 집속된 모습
2015.06.15
조회수 13330
새 인공 형광 단백질 나노 조립체 개발
정 용 원 교수 우리 대학 화학과 정용원 교수 연구팀이 새로운 모양과 다양한 크기의 인공적 형광 단백질 나노 조립체를 개발했다. 이 단백질 나노 조립체 연구로 단백질 기반 신약 및 백신 개발 등 새로운 나노구조체 분야에 활발한 적용이 가능할 것으로 기대된다. 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 14일자 온라인 판에 게재됐다. 우리 몸의 필수 구성요소인 단백질은 나노미터 크기의 특성과 더불어 무한한 기능과 구조를 갖고 있다는 점에서 새로운 물질 및 구조체 개발에 매우 적합한 것으로 알려져 있다. 특히 단백질 다수가 조립된 다중 조립체는 새로운 성질과 모양, 크기를 가지며 생체친화적인 나노 구조체이기 때문에 많은 관심을 받고 있다. 단백질 다중 조립체는 다수의 단백질이 동시에 작용하기 때문에 결합력을 극대화 해 신약, 백신 기능 향상 연구에 중요한 방법론을 제시할 것으로 기대되기 때문이다. 이 조립체의 상업적, 연구적 이용을 위해선 조립된 단백질의 수가 정확히 조절되고, 다양한 크기의 조립체를 제작할 수 있어야 한다. 하지만 현재의 기술로는 조립체의 크기에 따라 정밀히 분리하는 것이 쉽지 않다. 연구팀은 문제 해결을 위해 인공적 형광 단백질 조립체를 세포 내 합성을 통해 다양한 크기로 제작했다. 또한 조립체 표면 개량을 통해 거대 생체분자의 안정성을 향상시켰고, 다양한 크기의 조립체를 분리할 수 있는 방법을 최초로 개발했다. 이 방법을 이용해 다각형 및 선형 배열을 갖는 형광 단백질 조립체 또한 제작해 관찰했다. 이 과정에서 나노크기 공간에서의 결합 단백질의 개수를 증가시켰고, 기존 단일 단백질보다 비약적으로 향상된 결합력을 확인했다. 정 교수는 “이번 단백질 조립체 제작 기술은 다양한 모양과 크기, 기능성을 갖는 새 조립체 제작의 기반이 될 것이다”며 “비약적으로 향상된 기능을 가진 단백질 신약, 백신, 혹은 결합 리셉터 연구에 핵심적 역할을 할 것”이라 말했다. 정용원 교수 지도 아래 김영은 박사과정 학생이 1저자로 참여한 이번 연구는 우리 대학 김호민 교수 연구팀이 참여했으며, 한국연구재단이 추진하는 글로벌프론티어사업(바이오나노 헬스가드 연구단) 및 기초연구실지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림 1. 형광단백질 조립체 모식도 및 전자현미경 사진
2015.05.26
조회수 12957
빛 이용 나선형 구조체 방향조절 기술 개발
김 상 율 교수 우리 대학 화학과 김상율 교수, 서명은 교수 연구팀이 빛의 파동을 이용해 특정한 방향으로 꼬인 나선형 나노 구조체를 형성하는 데 성공했다. 연구 결과는 국제 학술지 네이처 커뮤니케이션(Nature Communications) 23일자 온라인 판에 게재됐다. 키랄성이란 오른손과 왼손처럼 모양은 같지만 서로 거울에 비친 형태를 가지는 물질을 말한다. 키랄성 물질은 돌리고 방향을 바꾸어도 서로 겹칠 수 없는 구조적 특성을 갖는다. 자연에 존재하는 DNA나 단백질 등을 구성하는 분자들은 이 중 한쪽 형태로만 이루어져 있다. 다량의 특정 키랄성 물질이 자연계에 존재하는 이유는 명백히 밝혀지지 않았다. 한 가지 가설은 유기 물질이 처음 생성될 시점에 우주로부터 나선을 따라 진동하는 빛의 파동인 원편광이 쬐어져, 원편광의 나선 방향이 유기 물질에 전달되어 한쪽 키랄성을 갖는 분자가 보다 많이 만들어 지게 됐다는 것이다. 연구팀은 이 가설에 입각해 원편광의 키랄성이 비키랄성 분자에 전달 및 증폭이 가능한지 알아보기 위해 빛에 반응하는 비키랄성 분자를 이용했다. 그리고 비키랄성 분자에 오른원편광, 왼원편광을 따로 노출시켜 분자들이 원편광의 방향에 따라 다른 방향의 나선을 그리며 쌓이는 것을 확인했다. 기존의 방법으로 나선형 구조체를 만들 때 반드시 키랄성 분자가 필요했던 것을 뒤집는 결과가 나온 것이다. 이처럼 단순히 특정 방향의 원편광을 비추는 것만으로 원하는 방향의 나선형 구조체를 만들 수 있고, 다시 반대 방향의 원편광을 비추면 나선의 방향을 뒤집는 것 또한 가능하다는 것을 증명했다. 뿐만 아니라 광중합을 이용해 나선형 구조체를 굳히는 방법을 개발해 구조체의 제작부터 방향을 고정시키는 전 과정을 빛을 이용해 제어하는 데 성공했다. 김상율 교수는 “원평광의 방향에 따라 비키랄성 분자의 자기조립 경로가 좌우되고, 자기조립을 통해 키랄성이 증폭되므로 결국 원편광의 방향이 나선 방향을 결정할 수 있다는 것이다”며 “키랄성의 기원에 대해 흥미로운 가능성을 제시하고 있다”고 말했다. 연구팀은 키랄성 센서를 만들거나 키랄성 분자를 분리하는 등의 응용 분야에 개발된 나선형 나노 구조체가 유용하게 사용될 것으로 전망했다. 한국연구재단 중견연구자 지원사업과 선도연구센터 육성사업의 지원을 받아 진행된 이번 연구는 김상율 교수와 서명은 교수가 교신 저자로, 김지성 학생이 제1저자로 참여했다. □ 그림 설명 그림1. 빛에 의해 형성된 나노 구조체의 주사전자현미경 사진 그림2. 전체 실험과정 모식도
2015.04.30
조회수 10425
고효율의 단일광자원 소자 핵심기술 개발
조 용 훈 교수 우리 대학 물리학과 조용훈 교수 연구팀이 양자정보기술에 기여할 수 있는 고효율의 단일광자원(양자광원) 의 방출 효율과 공정 수율을 높일 수 있는 기술을 개발했다. 이번 연구 결과는 자연과학분야 학술지인 미국국립과학원회보(PNAS: Proceedings of the National Academy of Sciences) 4월 13일자 온라인 판에 게재됐다. 빛은 보통 파동의 성질을 갖는 동시에 입자의 성질도 가지고 있는데, 이 입자를 광자라고 한다. 단일광자원 혹은 양자광원은 광자가 뭉쳐서 나오는 고전적인 광원과는 달리 한 번에 한 개의 광자만 방출하는 소자이다. 반도체 양자점을 이용한 단일광자 방출 소자는 안정성 및 전기구동 가능성이 높아 상용화에 적합한 소자로 각광받고 있다. 하지만 빛의 파장은 양자점보다 수십~수백 배 정도 크기 때문에 상호 작용하기 어려워서 단일광자의 방출 효율이 매우 작다는 한계점이 있다. 따라서 고효율 단일광자원를 만들기 위해서는 양자점과 빛을 집속시키는 구조(광공진기)를 공간적으로 정확히 결합시키는 것이 필수적이다. 하지만 양자점은 불규칙하게 분포되어 있고 위치를 정확히 확인할 수 없어 우연성에 의존한 결합을 기대할 수밖에 없었다. 따라서 긴 공정시간에도 불구하고 소수의 단일광자소자를 제작하는 수준에 머물러 있었다. 연구팀은 문제 해결을 위해 피라미드 모양의 나노 구조체를 활용했다. 반도체 나노피라미드 구조에서는 양자점이 피라미드의 꼭지점에 자발적으로 형성된다. 그리고 그 위에 금속 필름을 얇게 증착하면 빛 역시 뾰족한 금속 끝에 모이는 성질 때문에 양자점과 동일한 위치에 집속되는 것이다. 특히 금속에서는 빛이 본래 가진 파장보다 작게 뭉칠 수 있다. 즉, 빛이 가진 파장보다 더 소형화를 시킬 수 있기 때문에 양자점과의 크기 차이로 인한 문제를 극복할 수 있게 되는데, 이 방법으로 단일광자 방출 효율이 기존의 방식보다 20배 정도 증가되었다. 단일광자 방출소자는 양자광컴퓨터 및 양자암호기술 구현의 가장 기본적인 구성 요소이다. 이번 연구를 통해 기존의 까다로운 과정들 없이 단순한 방식으로 효율과 수율을 모두 높일 수 있으므로, 단일광자방출원 혹은 양자광원 관련 기술의 상용화 가능성이 높아질 것으로 기대된다. 조 교수는 “이 기술은 높은 공정 수율을 갖고 있기 때문에 상용 양자광원 소자 제작 한계를 해결하고, 양자정보통신 분야 구현에 중요 기술이 될 것”이라고 말했다. 조용훈 교수의 지도를 받아 공수현(1저자)·김제형(2저자) 박사가 수행한 이번 연구는 우리 대학 신종화·이용희 교수, 프랑스 CNRS의 레시당 박사, 미국 UC 버클리의 샹장 교수가 참여했으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다. 그림 1. 단일 광자가 높은 효율로 방출되는 모습의 개념도
2015.04.23
조회수 14037
미세 입자의 3차원 영상 촬영기술 개발
우리 대학 물리학과 박용근 교수 연구팀은 CT촬영의 원리와 비슷한 광회절 단층촬영법을 이용해, 광학 집게로 포획한 입자의 3차원 위치를 고속으로 측정할 수 있는 기술을 개발했다. 이 기술로 광학 집게를 사용한 세포 단계의 수술 작업을 실시간 촬영할 수 있어 세포의 반응, 수술 예후 등을 모니터링 할 수 있게 됐으며, 기존에는 어려웠던 세포 내부 성분 및 총량에 대한 정확한 수치 측정이 가능해졌다. 연구 결과는 미국 광학회지 ‘옵티카(Optica)’ 4월 20일자 온라인 판 표지 논문으로 선정됐다. 광학 집게는 빛을 이용해 미세 입자를 포획해 힘을 가하거나 3차원 위치를 자유자재로 움직일 수 있는 기술이다. 렌즈를 이용해 레이저 빔을 머리카락의 수백분의 일 크기의 초점으로 모으면 자석에 철가루가 끌려오듯 주변의 미세입자들이 달라붙는다. 초점의 위치를 옮기거나 힘을 가해서 미세 입자의 3차원 위치를 조절하는 것이 광학 집게의 원리이다. 광학 집게로 움직인 미세 입자의 위치를 측정하기 위해서 광학 현미경을 이용하는데, 입자의 2차원 움직임은 미세 입자에 의해 산란된 빛의 정보를 측정함으로써 쉽게 알 수 있었다. 하지만 다른 물체가 시선 방향의 미세 입자를 가로막아 산란된 빛의 정보가 왜곡되거나, 생물 세포처럼 복잡한 형상인 경우에는 3차원 위치의 정확한 측정이 어려웠다. 연구팀은 병원의 CT촬영 원리와 비슷한 광회절 단층촬영법을 이용해 입자의 3차원 영상화에 성공했다. 다각도로 CT 영상을 찍어 환자 몸 내부를 들여다보듯이, 광학 집게로 포획한 미세 입자에 레이저 빔을 여러 각도로 입사해 촬영한 뒤 이를 분석하는 방식이다. 2 마이크로미터 크기의 유리구슬을 광학 집게로 집어 백혈구 세포 위에 얹은 뒤 백혈구의 반응을 1초당 60장의 속도로 영상화했다. 앞쪽에 위치한 백혈구가 구슬을 가려 기존의 기술로는 촬영이 어려웠지만, 연구팀의 광회절 단층촬영법으로 구슬의 3차원 위치 뿐 아니라 백혈구 내부의 물질 분포도 측정이 가능했다. 박 교수는 “포획한 입자의 3차원 위치와 내부 구조를 별도의 표지 없이 빠른 속도로 측정 가능한 기술이다” 며 “향후 물리학, 광학, 나노기술 및 의학 등의 다양한 분야에 응용될 것으로 기대한다”고 말했다. 김규현 학생(제1저자)은 "물리적, 화학적 자극에 따른 세포 반응을 단일 세포 단계에서 관찰하는 것이 중요하다"며, "이 방법을 이용해 부유 입자와 세포, 조직 등의 다양한 시스템에 광학 집게로 힘을 가하고 이를 3차원으로 실시간 영상화하는 실험을 수행할 예정이다"고 말했다. □ 그림 설명 그림 1. 광집게로 집은 유리구슬을 백혈구 세포에 얹은 모습 그림2. 일반 현미경 관찰 영상과 광회절 단층촬영법 관찰 영상 비교
2015.04.21
조회수 11344
이효철 교수, 분자 결합 과정 실시간 관측 성공
이효철 교수 연구팀 (좌 : 김경환 박사, 중 : 이효철 교수, 우 : 김종구 박사과정 학생) 우리 대학 화학과 이효철 교수 연구팀이 세계 최초로 원자가 결합해 분자를 이루는 순간을 실시간으로 관측하는 데 성공했다. 2005년 분자결합이 끊어지는 과정을 밝혀 사이언스지에 논문을 게재했던 이효철 교수는, 10년 만에 분자의 결합과정까지 관측함으로써 화학반응의 시작과 끝을 밝혀냈다. 이번 연구 결과는 세계 최고권위 저널 네이처지 2월 18일자에 게재됐다. 연구진은 화학결합의 순간포착을 위해 평소에는 가까운 곳에 흩어져 있다가 레이저를 쏘면 반응해 화학적으로 결합하는 성질의 금 삼합체를 실험모델로 삼았다. 화학결합이 이뤄지는 1조분의 1초의 찰나를 관측하기 위해 펨토초(1천조 분의 1초) 엑스선 펄스라는 특수 광원을 이용했다. 이를 통해 광반응에 따른 금 삼합체 원자의 구조 변화를 엑스선 회절 이미지로 구현해 냈다. 연구진은 모든 화학반응의 근본이 되는 원자 간 결합을 관측하기 위해 특수한 광원과 화합물을 이용했다. 원자의 지름은 1옹스트롬(1억 분의 1센티미터)이고 화학결합의 순간은 1조 분의 1초 정도여서 원자를 감지하려면 빛의 파장이 원자 수준으로 짧아야 한다. 또 빛의 시간 길이는 원자간 결합의 순간보다 짧아야 하는 데 이를 만족하는 광원이 엑스선 자유전자 레이저에서 얻어지는 펨토초 엑스선 펄스이다. 레이저 기술과 엑스선 회절법 기술을 결합한 펨토초 엑스선 회절법을 이용하면 빠른 분자의 움직임을 정확한 위치 정보와 함께 측정할 수 있고, 이 방법을 이용해 금 삼합체 내부의 금 원자들 사이에서 화학결합이 형성되는 순간을 실시간으로 관측할 수 있었다. 연구진은 펨토초 엑스선 회절법을 통해 단백질의 탄생 순간과 단계별 구조 변화를 밝힐 계획이다. 향후 단백질 반응의 제어, 질병 치료, 신약 개발 등에 필요한 기초정보 제공이 가능할 것으로 기대된다. 이효철 교수는 “펨토초 엑스선 회절법을 통해 이번 연구 결과 외에도 분자의 진동, 회전 등을 관측할 수 있을 것”이라며, “축적한 기술과 경험을 토대로 국내 연구진이 세계 과학계의 흐름을 주도하길 바란다”고 말했다.
2015.02.23
조회수 14346
흡착이 빠르게 일어나는 다공성 고분자 물질 개발
우리 학교 나노과학기술대학원 서명은 교수 연구팀이 10나노미터 수준의 세공이 그물처럼 연결된 다공성 고분자 물질 내에 2나노미터보다 작은 미세 세공을 형성하는 방법을 개발함으로써 흡착이 빠르게 일어나는 새로운 다공성 고분자 물질을 만드는데 성공했다. 제올라이트와 같이 2나노미터보다 작은 미세 세공을 지니는 다공성 물질은 표면적이 매우 넓기 때문에 수소와 같은 분자를 흡착하여 보관하는 저장 물질이나 표면에서 반응을 일으켜 원하는 물질로 전환할 수 있는 촉매 지지체로 사용된다. 그러나 분자가 지나가는 길에 해당하는 세공 크기가 작다 보니 물질이 세공 안으로 확산하여 표면에 닿기까지 시간이 오래 걸리는 문제가 있었다. 우리 몸의 폐나 식물의 잎맥 등은 이러한 문제를 극복하기 위해서 마치 나뭇가지처럼 세공이 세분되면서 분자가 기관 전체로 잘 퍼질 수 있는 구조를 하고 있는데, 이러한 구조를 구현하기 위해서는 미세 세공뿐만이 아니라 그보다 더 큰 크기의 세공을 동시에 잘 구현할 수 있는 기술이 필요했다. 연구팀은 서명은 교수가 개발한 10나노미터 수준의 세공(메조 세공)이 3차원적으로 서로 연결된 그물 형태의 나노구조를 손쉽게 만들 수 있는 블록 공중합체 자기 조립 방법을 사용하여 이 문제를 해결하였다. 연구팀은 블록 공중합체 자기조립 방법과 함께 고분자 사슬을 움직이지 못하도록 화학 결합으로 묶어서 사슬 사이의 틈을 미세 세공으로 바꾸는 고분자 반응 방법(“초가교반응”(hypercrosslinking reaction))을 사용하여 크기가 서로 다른 두 종류의 세공이 존재하는 계층적 세공 구조의 다공성 고분자 물질을 만드는 데 성공하였다. 이 다공성 고분자 물질은 10나노미터 수준의 메조 세공이 3차원 그물상 구조를 이루는 가운데 메조 세공의 벽에는 2나노미터보다 작은 미세 세공이 가득한 구조로 이루어져 있으며, 블록 공중합체 자기 조립 방법을 사용한 만큼 메조 세공의 크기를 6-15나노미터 사이에서 정밀하게 조절할 수 있다. 이는 다공성 고분자 물질로 구조가 잘 정의된 메조 세공과 미세 세공을 동시에 구현한 최초의 사례이다. 연구팀은 이 다공성 고분자 물질이 미세 세공만을 지니는 고분자 물질보다 질소를 빠르게 흡착하는 것을 확인함으로써 계층적 세공 구조가 흡착에 미치는 영향을 입증하였다. 서명은 교수는 “이번 연구결과는 마치 고속도로와 골목길처럼 서로 다른 크기의 세공을 한 고분자 내에 쉽게 구현할 수 있는 방법을 제시한 데에 의의가 있다”며 이와 같은 다공성 고분자 물질은 물질이 빠르게 확산하는 것이 중요한 반응의 촉매 지지체나 물질 포집용으로 의미 있게 활용될 수 있을 것으로 전망했다. 이번 연구는 서명은 교수가 제1저자 및 교신저자로 연구를 주도한 가운데 서명은 교수가 지도하는 나노과학기술대학원 학생들과 미국 미네소타 주립대 힐마이어 교수가 연구에 참여하였으며, 한국연구재단 신진연구자 지원사업의 지원을 받았다. 연구 성과는 화학 분야의 권위지인 ‘미국화학회지(Journal of the American Chemical Society)’ 8일자 온라인판에 실렸다. 끝. 그림1. 물상 구조의 메조 세공과 메조 세공의 벽에 분포하는 미세 세공을 지니는 계층적 세공구조 다공성 고분자 물질의 도식도와 주사전자현미경 사진 그림2. 메조 세공을 지니는 다공성 고분자 물질(왼쪽)과 본 연구에서 개발한 메조 세공과 미세 세공을 동시에 지니는 계층적 세공구조 다공성 고분자 물질(오른쪽)의 차이
2015.01.08
조회수 14442
신개념 DNA 나노구조 형성법 개발
우리 학교 물리학과 윤태영 교수 연구팀이 자기집게를 이용해 DNA 나노구조의 형성을 실시간으로 관측 및 유도하며 새로운 DNA 나노구조를 형성하는 방법을 개발했다. 이 기술은 열처리를 사용하는 기존의 방법과는 전혀 다른 역학적 방법을 이용해 DNA 나노구조 형성을 10분 이내로 빠르게 끝낼 수 있는 게 큰 특징이다. 2006년 개발된 DNA 오리가미 기술은 하나의 긴 뼈대 DNA를 여러 개의 짧은 ‘스테이플러’ DNA들을 이용해 종이접기 하듯 접어서 임의의 형태를 가지는 DNA 기반의 나노구조를 만들어 낼 수 있는 방법으로 DNA 나노기술에서 중요한 위치를 차지하는 기법이었다. 하지만 현재까지 사용되는 열처리 과정을 통한 DNA 나노구조 형성 방법에서는 DNA들 사이의 모든 상호작용들이 동시에 일어나기 때문에 DNA의 상태를 도중에 제어하기가 매우 어려웠다. 따라서 일반적으로 수십 시간이 걸리는 열처리 과정을 여러 번 반복해 최적의 조건을 찾아야 했다. 윤 교수 연구팀은 DNA 분자 하나에 역학적 힘을 가하면서 동시에 DNA의 상태도 측정할 수 있는 단분자 자기집게 기술을 이용해 DNA 나노구조의 형성과정을 유도하는 동시에 관측했다. 기존 열처리 과정의 첫 단계인 고온 열처리에서는 긴 뼈대 DNA의 내부구조가 풀리게 되는데 연구팀은 이 상태를 유도하기 위해 긴 뼈대 DNA의 한쪽을 유리 표면에 부착하고 다른 쪽에 자성체를 부착한 뒤 자기력을 이용해 잡아당겨 뼈대 DNA의 내부구조를 풀어냈다. 이렇게 뼈대 DNA의 내부구조를 풀어내면 숨겨져 있던 반응부위들이 상온에서 드러나기 때문에 열처리 과정과는 달리 스테이플러 DNA들이 1분 안에 빠르게 붙을 수 있다. 스테이플러 DNA들이 모두 붙은 이후에 자기력을 제거하면 자가조립과정을 통해 하나의 스테이플러 DNA가 뼈대 DNA의 다른 여러 부분에 붙게 되면서 구조가 접히게 되는 것이다. 윤태영 교수는 “기존의 열처리 방법에서는 DNA들의 반응이 동시에 섞여서 일어나기 때문에 어떤 온도에서 어떤 반응이 일어나는지 구분할 수 없었다”며 “자기집게를 이용해 구조형성 과정을 일련의 잘 연구된 DNA 반응들로 분해하면서 동시에 구조형성에 걸리는 시간도 10분 정도로 단축할 수 있었다”고 말했다. 더불어 “이번에 개발한 나노구조 형성방법을 이용하면 더욱 고도로 프로그램된 DNA 나노구조의 형성이 가능할 것”이라고 덧붙였다. 한편, 물리학과 윤태영 교수 지도하에 배우리 박사가 주도한 이번 연구는 세계적인 과학저널 네이처가 발행하는 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 12월 4일자 온라인판에 게재됐다. 그림1. 단분자 자기집게를 이용해 DNA 나노구조의 형성을 프로그램 하는 것에 대한 개념도 그림2. 단분자 자기집게를 이용하여 DNA 나노구조의 형성을 실시간으로 유도하고 관찰한 결과. 약 8분 만에 21 나노미터 크기의 DNA나노구조 형성이 완료 된 것을 볼 수 있다.
2015.01.02
조회수 11185
다빈치가 르네상스 이후에 태어났다면 모나리자를 어떻게 그렸을까
우리 학교 물리학과 정하웅 교수와 한양대학교 응용물리학과 손승우 교수는 중세부터 사실주의까지 약 1000년에 걸친 서양화 1만 여점의 빅데이터를 복잡계 이론으로 분석해 서양 미술의 변천사를 밝혀냈다. 또 이를 바탕으로 르네상스 시대의 대표 작품인 모나리자를 시대별로 재구성했다. 연구결과는 세계적인 과학저널 네이처(Nature)가 발행하는 ‘사이언티픽 리포트(Scientific Reports)’ 11일자 온라인판에 실렸으며 리서치 하이라이트로 선정되어 네이처 홈페이지 메인 화면에 소개되기도 했다. 최근 빅데이터가 관심을 받으면서 과학자들은 예술·인문학 자료를 전산화해 분석하려는 시도가 많이 있다. 이 같은 자료는 방대하고 복잡해서 다루기가 쉽지 않다. 연구자들은 빅데이터에서 질서를 찾기 위해 복잡계(Complex Systems) 과학 방법론을 이용하며 이를 ‘데이터 과학’이라고 한다. 그동안 회화에 사용된 물감의 구성 성분, 연대측정, 회화의 진위여부를 정량적으로 판별하는 방법 등에 관한 연구결과는 꾸준히 있었다. 하지만 서양 미술사 전반을 아우르는 대규모 분석에는 데이터가 충분하지 않았다. 연구팀은 헝가리 부다페스트 물리학 컴퓨터 네트워킹 연구센터(Computer Networking Centre of the Wigner Research Centre for Physics)에서 운영하는 온라인 갤러리에서 중세부터 19세기까지 디지털 형태의 서양회화 1만여 점을 모은 데이터를 기반으로 서양 미술을 객관적으로 분석할 수 있었다. 연구팀은 물리학에서 사용하는 상관 함수를 온라인 갤러리에서 취합된 서양 미술의 빅데이터에 적용해 분석한 결과 시간이 흐를수록 명암대비 효과가 점점 높아지는 경향이 있다는 사실을 밝혀냈다. 연구팀은 여기서 사용한 상관 함수를 잭슨 폴록의 드립 페인팅에 적용한 결과, 공간적인 명암대비 효과가 거의 없어 무작위로 만든 그림에 상당히 가깝다는 것을 분석해내기도 했다. 이와 함께 이 기간 동안 서양미술은 그림 속 물체의 윤곽선이 모호해지다 낭만주의 시대 무렵 다시 뚜렷해지는 변화가 있었다. 아울러 중세 시대에는 색상을 다양하게 사용하지 않았고 정치 및 종교적인 이유로 특정 염료만을 선호했다. 같은 이유로 당시에는 색을 직접 혼합하지 않고 오직 덧칠로만 다양한 색을 표현했다. 즉, 연구팀은 염료와 채색 방식으로 인한 중세 시대 색상 표현의 한계와 그 이후 변화를 분석해냈다. 정하웅 교수는 “물질세계의 복잡성에 대한 연구는 자연과학에서 오래된 주요 관심사였지만, 예술 및 인문사회분야와 관련한 체계적인 복잡성 연구는 인터넷 대중화 이후의 일”이라며 “이번 연구는 물질세계의 복잡성을 다루던 방법으로 인류의 귀중한 문화유산인 회화에서 숨은 복잡성을 찾아 구체적인 숫자로 제시했다는데 의의가 있다”고 말했다. 손승우 교수는 “학문 사이의 통섭은 이제 융·복합이라는 키워드로 우리 사회에 자리매김하고 있다”며 “학문간 더욱 활발한 대화를 통해 미술 분야를 넘어 예술 및 인문사회 분야에 숨겨진 복잡성을 더욱 폭넓게 이해하는 것이 필요하다”고 설명했다. 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업의 지원으로 수행한 이번 연구는 KAIST와 한양대 교수진의 지도아래 KAIST 물리학과 김영호(28) 박사과정 학생이 주도했다. 동영상 링크 http://youtu.be/SFo0h1EU2aw [자료 그림] 중세 회화와 드립 페인팅 비교: a은 중세 회화로 구성한 밝기 표면, b은 잭슨 폴록의 드립 페인팅 작품으로 구성한 밝기 표면이다. 각 픽셀의 밝기를 픽셀 위치의 높이로 두어 표면을 구성하고 각 밝기 표면에서 거리에 따른 평균 밝기차이 상관함수를 구했다. c와 d에서 빨간색 점은 그림에서 거리에 따른 평균 밝기차이 상관함수, 파란색 점은 그림을 무작위로 섞어서 만든 이미지에서 거리에 따른 평균 밝기차이 상관함수이다. 중세 회화와 다르게 잭슨 폴록의 드립 페인팅은 무작위로 섞어서 만든 이미지와 거리에 따른 평균 밝기차이 상관함수가 거의 차이가 없다. © 2014 The Polock-Krasner Foundation/ARS, NY - SACK, Seoul 1. 르네상스 시대의 대표 작품인 모나리자를 시대별 스타일에 맞게 재구성 2. 각 그림으로 표면을 구성하고 명암 대비 기법의 강도를 측정하는 짧은 영상. 선별한 그림을 중심으로 명암 대비 기법의 강도가 시대에 따라 증가하는 경향을 영상에서 확인할 수 있다. 3. 회화에서 밝기 표면을 구성하는 방법 4. 네이처 홈페이지(12월 11일)
2014.12.15
조회수 14491
나선형 나노구조체 제조 원천기술 개발
우리 학교 나노과학기술대학원 윤동기 교수 연구팀은 자기조립(self-assembly) 현상을 이용해 매우 정밀한 나선형 나노구조체를 개발해 세계적 학술지인 미국립과학원회보(PNAS) 10월 7일자에 논문이 게재됐다. 이번에 개발된 기술로 3차원구조 중에서도 가장 구현하기 어렵다는 나선형 구조를 넓은 면적에 다양하게 변형해 만들 수 있다. 액정(액체와 결정의 중간상태)물질로 만든 이 구조는 20~200nm(나노미터) 크기의 제한된 공간에서 균일한 나선 형태를 유지했다. 또 나노구조체의 지름이 커짐에 따라 나선 패턴의 간격도 일정하게 늘어나는 특성을 보였다. 이 기술을 활용하면 전자기장에 민감하게 반응하는 액정 소재의 고유성질과 융합해 고효율의 광전자 소자 개발에 도움이 될 것으로 학계는 기대하고 있다. 나아가 현재 반도체 제조공정에서 사용 중인 2차원 광식각공정에서 벗어나 3차원 패터닝 기술로도 발전시킬 수 있다. 연구팀의 기술을 기반으로 3차원 반도체가 개발되면 지금보다 최소 수백배 많은 데이터를 저장할 수 있게 된다. 또 공정을 획기적으로 줄여 제조비용도 크게 절감할 수 있을 것으로 전망된다. 이번 연구의 핵심 기술인 ‘한정된 공간에서의 자기조립’이란, 아이들의 장난감인 레고블럭 놀이처럼 주위의 환경(온도, 농도, pH 등)에 따라 물리적으로 조립과 분리가 가능한 다양한 연성재료(고분자, 액정, 생체분자 등)를 수십 나노미터의 공간 속에서 복잡한 나노구조체를 제어하는 기술이다. 연구팀은 전기화학적 반응을 통해 만들 수 있는 다공성 양극산화알루미늄막을 이용해 수십 나노미터 수준의 한정된 공간을 만들었다. 이후 수 나노미터 수준에서 휘어져 있는 액정 분자가 형성하는 나선형 나노구조체를 그 공간 속에서 형성시켜 독립적으로 제어된 나선 나노구조체를 구현하는 데 성공했다. 윤동기 교수는 이번 연구에 대해 “액정물질이 형성하는 나선 나노구조체 제어의 물리·화학적 원리 규명에 세계최초로 성공했다”며 “이번 기술로 다양한 유기분자가 이루는 복잡한 나노구조체들을 기판의 표면 개질 및 한정된 공간을 이용해 제어할 수 있어 향후 유기분자 기반 나노구조체 연구에 커다란 기여를 할 것”이라고 연구 의의를 설명했다. 이와 함께 “개발된 원천기술을 바탕으로 NT(나노테크놀로지)와 IT(정보테크놀로지)가 접목될 수 있는 전기가 마련돼 LCD 등 액정관련 분야에서 차세대 신성장동력을 창출할 수 있을 것”이라고 말했다. KAIST 나노과학기술대학원 윤동기 교수팀(제1저자: 김한임 박사과정, 이선희 박사과정)이 주도하고 포항가속기연구소 신태주박사, 미국 메릴랜드주립대학 이상복 교수와 콜로라도주립대학 노엘 클락(Noel Clark) 교수가 참여한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 일반연구자지원사업(우수신진), 나노소재원천기술개발사업, BK21 플러스사업의 지원으로 수행됐다. 그림1. 나선 나노구조체의 전자현미경 사진과 개념도 A. 다공성 양극알루미늄 나노채널 속에서 형성된 단일 나선 나노구조체(노란선 기준 아래)와 미처 나노 채널속에 들어가지 못해 형태 및 성장 방향이 불규칙하게 존재하는 나선 나노구조체(노란선 기준 위) B. 나선 나노구조체가 양극산화물 속에 들어가는 현상을 보여주는 개념도. 양극산화물 나노채널의 지름은 20~200nm, 전체 막 두께는 5 um~ 수십 um로 조절이 가능C. B방법을 통해 형성된 나선 나노구조체는 나선 반주기(half-pitch)가 100~120nm 범위에서 1nm 간격으로 조절이 되며 지름이 20~80 nm까지 자유롭게 제어할 수 있음 그림2. 제조된 나선 나노구조체의 전자현미경 사진 30nm(A), 60nm(B), 80nm(C) 지름의 다공성 양극알루미늄 나노채널(왼쪽-위) 속에서 형성된 나선 나노구조체 단면의 주사전자현미경 사진(왼쪽-아래)과 나노채널이 제거된 나선 나노구조체의 투과전자현미경 사진(오른쪽) 나노채널의 지름이 증가할수록 아주 서서히 나선 나노구조체의 나선 반주기가 100nm(A)에서 117nm(C)까지 증가함을 관찰할 수 있었고, 꼬인 부분의 각도(Ψ)의 증가를 통해 나선 나노구조체의 크기를 1nm수준에서 미세하게 제어 가능함을 보였음 그림3. 대표 그림
2014.10.20
조회수 13328
슈퍼렌즈로 초고해상도 2차원 실시간 영상획득 성공
우리 학교 물리학과 박용근·조용훈 교수 공동연구팀은 빛의 회절한계 때문에 광학렌즈로는 볼 수 없었던 100nm(나노미터, 10억분의 1미터) 크기 이미지를 2차원으로 실시간 관찰하는데 성공했다. 이번 연구는 지난해 4월 박 교수 연구팀이 페인트 스프레이를 이용해 기존 광학렌즈보다 3배가량 해상도가 뛰어난 ‘슈퍼렌즈’를 세계 최초로 개발해 초점을 형성한 기술의 후속 연구로 향후 초정밀 반도체 공정이나 세포 내 구조 관찰 등에 응용 가능하다. 빛의 굴절을 이용하는 광학렌즈는 빛의 파장보다 작은 초점을 만들 수 없는 특성(회절한계) 때문에 가시광선 영역에서 200~300nm 이하 크기의 물체를 관찰할 수 없다. 연구팀은 빛의 산란 때문에 소멸하는 고주파 근접장을 산란 물질이 밀집한 나노입자로 구성된 페인트 스프레이를 뿌려 미세한 크기의 이미지 정보를 얻어냈다. 이후 빛을 시간 가역성을 이용해 최초의 산란 형태를 계산해 복구함으로써 회절한계를 넘는 나노 이미지를 구현했다. 복잡한 궤적으로 물체를 투사할 때 피사체의 특정위치에서 피사체가 지나온 궤적에 대해 시간을 되돌리는 방식으로 계산하면 피사체의 처음 위치를 알 수 있는 원리다. 이번 연구를 주도한 박용근 교수는 “개발된 기술은 광학 측정과 제어가 요구되는 모든 분야에서 핵심 기반기술로서 사용될 수 있다”며 “기존의 전자현미경은 세포가 파괴되는 단점이 있었지만 이 기술을 이용하면 세포파괴 없이 초고해상도로 관찰할 수 있다”고 말했다. 연구결과는 물리학분야에서 귄위 있는 국제학술지인 ‘피지컬 리뷰 레터스(Physical Review Letters)’ 9일자 온라인판에 게재됐다. 그림1. 관찰영상 그림2. 산란을 통한 나노 이미징의 원리
2014.09.22
조회수 12413
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
>
다음 페이지
>>
마지막 페이지 19