-
이상엽 교수, 미생물 발효한 친환경 기술로 햄(haem) 생산 기술 개발
〈 이 상 엽 특훈교수 〉
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 대장균을 발효시켜 바이오매스로부터 헴(haem)을 생산하고 세포 밖으로 분비할 수 있는 기술을 개발했다.
이는 대사공학 전략을 통해 헴의 생산량을 대폭 높이고 생산된 헴을 효과적으로 세포 바깥에 분비하는 데 성공한 친환경적, 효율적 원천기술로 생산한 헴을 이용해 각종 산업의 확장에 기여할 수 있을 것으로 기대된다.
자오신루이, 최경록 연구원이 참여한 이번 연구는 국제 학술지 ‘네이처 카탈리시스(Nature Catalysis)’ 8월 28일자 온라인 판에 게재됐다.
헴은 생명 유지에 필수적인 철분으로 혈액에서 산소를 운반하는 헤모글로빈이나 세포 호흡에 필수적인 사이토크롬을 비롯한 여러 중요한 단백질 기능에 핵심적 역할을 한다. 특히 인체 흡수율이 높기 때문에 고급 철분제나 약물로 이용된다.
무분별한 가축의 사육이 여러 사회 이슈를 불러일으키는 상황에서 최근 헴이 고기 맛을 내는 핵심 요소로 밝혀지며 콩고기에 미생물이나 식물에서 추출한 헴을 넣어 맛과 영양, 환경 등을 고려한 콩고기 조리법이 주목받기도 했다.
그러나 기존의 헴 생산 방식은 유기 용매를 이용한 동물의 혈액과 일부 식물 조직으로부터의 추출에 의존하고 있기 때문에 비효율적일 뿐 아니라 친환경적이지 않다는 한계가 있다.
대장균을 이용한 헴 생산 기술이 개발된 바 있지만 생산량이 수 밀리그램(mg)에 그치고 생산된 헴이 세포 내에 축적되기 때문에 헴 추출 등의 문제를 해결하지 못했다. 따라서 고농도로 헴을 생산하면서도 세포 바깥으로 헴을 분비해 정제를 용이하게 하는 친환경 생산 시스템 개발이 필요했다.
연구팀은 바이오매스를 이용한 고효율 헴 생산 미생물을 제작하기 위해 대장균 고유의 헴 생합성 회로를 구성했다. 또한 기존에 사용되지 않았던 C5 대사회로를 사용해 헴 생산의 전구체인 5-아미노레불린산을 생합성했다.
이를 통해 원가가 비싸고 세포 독성을 일으키는 물질인 글리신을 사용하지 않고도 헴 생산량을 대폭 높였다. 이 과정에서 연구팀은 헴 생산량이 향상됨에 따라 생산된 헴이 상당 비율로 세포 바깥으로 분비되는 것을 발견했다.
연구팀은 구성한 대장균의 헴 분비량을 더욱 높이기 위해 사이토크롬 생합성에 관여한다고 알려진 단백질인 헴 엑스포터를 과발현함으로써 헴 생산량과 세포외 분비량 모두가 향상된 헴 분비생산 균주를 개발했다. 이를 통해 헴 엑스포터와 헴의 세포외 분비 사이의 연관성을 밝혔다.
이번 연구를 통해 개발된 기술을 활용하면 환경, 위생, 윤리적 문제없이 재생 가능한 자원을 통해 헴 생산을 할 수 있다. 향후 의료 및 식품 산업 등 헴을 이용하는 다양한 분야에 중요한 역할을 할 것으로 예상된다.
이 특훈교수는 “건강 보조제, 의약품, 식품 첨가물 등 다양한 활용이 가능한 헴을 미생물발효를 통해 고효율로 생산했다”며 “생산된 헴의 3분의 2 가량을 세포 바깥으로 분비하는 시스템을 개발함으로써 산업적 활용을 위한 헴의 생산 및 정제를 용이하게 했다는 의의를 갖는다”고 말했다.
이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’ 지원을 받아 수행됐다.
□ 그림 설명
그림1. 대장균을 이용한 헴 생산 및 세포외 분비 전체 개념도
2018.09.06
조회수 14795
-
조광현 교수, 섬유아세포 과활성 유발 분자피드백 회로 규명
〈 조 광 현 교수 〉
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 삼성병원 김석형 교수 연구팀과 공동연구를 통해 섬유증 및 암 악성화의 원인이 되는 섬유아세포 과활성을 유발하는 분자피드백 회로를 최초로 규명했다.
신동관 박사와 안수균 학생 등이 함께 참여한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 1일자 온라인 판에 게재됐다.
( https://www.nature.com/articles/s41467-018-05274-6 )
인간의 섬유아세포는 대부분의 정상조직에 비활성화된 상태로 존재하다가 상처회복을 위해 필요할 때 급진적으로 활성화된다. 하지만 이러한 급진적 활성화가 유발되는 원리는 아직 밝혀지지 않았다.
조광현 교수 연구팀은 삼성병원 김석형 교수팀과 공동연구를 통해 Twist1, Prrx1, TNC 분자들이 연쇄적으로 활성을 유발하는 양성피드백회로를 구성함으로서 그와 같은 급진적인 섬유아세포의 활성을 유발한다는 것을 분자생물학실험과 수학모델링, 컴퓨터시뮬레이션 분석, 그리고 동물실험과 임상데이터 분석을 통해 밝혔다.
활성화된 섬유아세포는 상처가 치유된 뒤 다시 비활성화된 상태로 전환돼야 하는데 이 때 피드백회로가 계속 작동하면 섬유증의 발생이나 암 악성화의 원인이 된다.
따라서 이번에 밝혀낸 Twist1-Prrx1-TNC 분자피드백회로는 섬유증과 암의 새로운 치료 타겟으로 활용될 수 있을 것으로 기대된다.
□ 그림 설명
그림1. 섬유아세포의 급진적 활성화를 유발하는 Twist1-Prrx1-TNC 분자피드백회로 규명 과정
그림2. 정상적인 섬유아세포의 활성화 조절과 피드백회로의 비가역적 활성화에 따른 비정상적인 섬유아세포 활성화 조절과정의 비교
2018.08.10
조회수 10879
-
정우철 교수, 5분 코팅만으로 연료전지 전극반응성 1천배 향상 기술 개발
〈 정 우 철 교수, 서 한 길 박사과정 〉
우리 대학 신소재공학과 정우철 교수 연구팀이 5분 이내의 산화물 코팅만으로 연료전지의 수명과 성능을 획기적으로 향상시킬 수 있는 전극 코팅 기술을 개발했다.
서한길 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 7월 5일자 표지 논문(Inside Front Cover)에 게재됐다. (논문명 : Exceptionally Enhanced Electrode Activity of (Pr,Ce)O2-δ-Based Cathodes for Thin-Film Solid Oxide Fuel Cells, 박막 고체산화물연료전지용 (Pr,Ce)O2-δ 기반 공기극의 향상된 전극 활성)
연료전지는 대기오염 물질을 배출하지 않는 친환경 발전장치로 특히 고체산화물 연료전지는 다른 연료전지에 비해 발전효율이 높고 값비싼 수소 이외에 다양한 연료를 직접 사용할 수 있다는 장점을 가져 세계적으로 큰 주목을 받고 있다.
하지만 고체산화물 연료전지를 구동하기 위해서는 700℃ 이상의 높은 작동온도가 필요하며 이는 소재 및 시스템 비용의 증가, 장시간 구동 시 성능 저하 등의 문제를 일으켜 연료전지의 상용화에 걸림돌이 되고 있다.
최근에는 박막 공정을 도입해 전해질의 두께를 수백 나노미터 크기로 줄임으로써 작동온도를 600℃ 이하로 크게 낮추고 가격 경쟁력을 확보하려는 박막형 고체산화물연료전지가 새로운 해결책으로 제시되고 있지만, 낮은 작동온도에서 급격히 떨어지는 전극 성능의 한계를 극복하지 못하고 있다.
연구팀은 공기극으로 사용되는 백금 박막의 산소환원반응 활성점을 극대화하고, 백금 전극이 고온에서 응집되는 현상을 막기 위해 산화물 코팅 기술을 개발했다.
연구팀은 전자와 산소이온 모두에 대한 높은 전도성과 산소환원 반응에 대한 뛰어난 촉매 특성을 가진 ‘프라세오디뮴이 도핑된 세리아((Pr,Ce)O2-δ)라는 새로운 코팅 소재를 전기화학도금을 통해 백금 표면에 코팅하는 데 성공했다. 이를 통해 기존 백금 박막 전극에 비해 1천 배 이상의 성능을 향상시켰다.
추가적으로 연구팀은 백금을 전혀 사용하지 않고 (Pr,Ce)O2-δ의 나노구조화를 제어하는 것만으로도 고성능의 박막형 고체산화물연료전지 공기극을 구현하는데 성공했다.
정 교수는“이번 연구에서 사용된 전극 코팅 기술은 쉽고 대량생산이 가능한 전기화학도금을 활용했기 때문에 그 기술적 가치가 매우 뛰어나다”며 “향후 박막형 고체산화물연료전지의 백금 전극을 대체할 수 있어 가격 저감을 통한 시장경쟁력 제고가 기대된다.”고 말했다.
이번 연구는 한국에너지기술평가원과 한국전력공사의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 에너지 머티리얼즈 표지(Inside Front Cover)
그림2. 코팅된 (Pr,Ce)O2-δ 나노구조체 유무에 따른 전극성능 변화
2018.07.09
조회수 15161
-
김희탁, 정희태 교수, 수명 5배 늘린 바나듐레독스-흐름전지 개발
〈 김수현 박사과정, 김희탁 교수, 최정훈 박사과정 〉
우리 대학 생명화학공학과 정희태, 김희탁 교수 공동 연구팀(차세대배터리센터)이 용량 유지율 15배, 수명을 5배 향상시킨 바나듐레독스-흐름전지를 개발했다.
신재생 에너지의 발전과 함께 이를 통해 생산된 에너지를 효율적이고 안전하게 저장할 수 있는 대용량 에너지 저장장치의 필요성이 커지고 있다. 바나듐레독스-흐름전지는 폭발 위험이 없는 이차전지로 대용량화에 적합해 기존 에너지 저장장치를 대체할 수 있을 것으로 기대된다.
김수현, 최정훈 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘나노 레터스(Nano letters)’ 5월 3일자 온라인 판에 게재됐다. (논문명 : Pore Size-Tuned Graphene Oxide Framework as lon-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox Flow Batteries)
기존의 바나듐레독스-흐름전지는 과불소계 분리막의 활물질 투과도가 높아 충․방전 효율과 용량 유지율이 매우 낮다는 한계가 있다. 이를 해결하기 위해 낮은 활물질 투과도를 갖는 탄화수소계 분리막을 적용시키고자 했지만 활물질인 바나듐5가 이온에 의해 열화 현상이 발생하고 전지 수명이 급감하는 문제가 있었다.
따라서 활물질인 바나듐 이온의 크기보다는 작으면서 전하 운반체인 수소 이온보다는 큰 기공 크기를 갖는 분리막 개발의 필요성이 커지고 있다.
공동 연구팀은 산화그래핀 간의 가교 반응을 통해 바나듐레독스-흐름전지에 적합한 기공 크기를 갖는 산화그래핀 골격체 분리막을 구현하는 데 성공했다. 가교에 의해 수화 팽창(moisture expansion, 습기나 물을 흡수해 팽창하는 현상)이 제한된 산화그래핀 간 층간 간격을 선택적 이온의 투과를 위한 기공으로 활용하는 원리이다.
이 산화그래핀 골격체는 기공 크기를 통한 분리 성능이 뛰어나 매우 높은 수소 이온-바나듐 이온 선택성을 갖는다.
연구팀의 분리막은 바나듐레독스-흐름전지의 용량 유지율을 기존 과불소계 분리막의 15배, 충․방전 사이클 수명 또한 기존 탄화수소계 분리막에 비해 5배 이상 향상시켰다.
연구팀의 산화그래핀 골격체를 통한 기공 크기 조절 기술은 다양한 크기의 이온을 활용하는 이차전지, 센서 등의 전기화학적 시스템에 적용 가능할 것으로 보인다.
김희탁 교수는 “레독스 흐름전지 분야의 고질적인 문제인 활물질의 분리막을 통한 크로스오버 및 이에 따른 분리막 열화문제를 나노기술을 통해 해결할 수 있음을 보여줬다”며 “바나듐레독스-흐름전지 뿐만 아니라 다양한 대용량 에너지 저장장치용 이차전지에 적용될 수 있을 것이다”고 말했다.
이번 연구는 한국화학연구원 주요사업, 에너지기술평가원과 기후변화연구허브사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 산화그래핀 골격체를 통한 수화 바나듐 이온과 수소 이온의 선택적 이온 투과에 대한 모식도
그림2. 바나듐레독스-흐름전지의 사이클 용량 특성
2018.06.07
조회수 12878
-
김희탁 교수, 도넛모양 황화리튬 이용 리튬황이온전지 개발
〈 팽민 예 연구교수, 김희탁 교수 〉
우리대학 생명화학공학과 김희탁 교수(나노융합연구소 차세대배터리센터) 연구팀이 기존 리튬이온전지보다 높은 에너지 밀도를 가지면서 저렴하고 600사이클 이상의 수명을 갖는 도넛 모양 활물질 구조의 리튬황이온전지를 개발하는데 성공했다.
전기자동차의 배터리로 사용되는 리튬이온전지는 낮은 에너지 밀도 때문에 1회 충전시 가능 주행 거리가 짧아 높은 에너지 밀도를 구현할 수 있는 리튬황전지의 개발이 10여 년 간 경쟁적으로 이뤄져 왔지만 리튬황전지는 음극인 리튬금속전극의 취약한 가역성으로 인해 전지의 사이클 수명을 확보하는데 어려움이 많았다.
이러한 문제 해결을 위해 연구팀은 리튬금속음극 대신 리튬이온전지에 사용되는 사이클 수명이 우수한 흑연음극 이용과 함께 용량이 높은 황화리튬(Li2S) 양극을 결합해 에너지 밀도와 수명 향상에 힘썼다. 그러나 황화리튬이 고가이고, 흑연음극과 황화리튬 양극의 사이클 수명을 동시에 만족하는 전극 및 전해액 설계기술이 없어 기술적인 한계가 있었다.
이에 연구팀은 저가의 황산리튬(Li2SO4)을 원재료로 도넛 모양의 황화리튬 양극 활물질을 제조했다. 그러면서 고농도 염 전해액을 이용해 흑연음극과 황화리튬 양극을 이용한 리튬황이온 전지를 구현했다. 내부가 비어있는 도넛 모양의 황화리튬은 리튬이온의 전달력을 향상시켜 높은 충, 방전 가역성을 보였고, 고농도 염 전해액은 흑연전극 표면에 안정적인 막을 형성해 우수한 내구성을 보였다.
연구팀은 이 기술을 통해 기존 리튬이온전지보다 30% 높은 에너지 밀도를 구현함과 동시에 600사이클 이상의 수명을 확보하는 데 성공했다. 연구팀의 도넛모양 황화리튬 전극은 저가의 원재료를 이용하면서 단일 열처리 공정으로 제조할 수 있고, 기존 리튬이온전지에 적용할 수 있어 산업적으로 활용할 수 있을 것으로 보인다.
김희탁 교수는 “저가 황 화합물을 리튬이온전지에 적용해 에너지 밀도와 수명을 동시에 향상시킬 수 있음을 증명했다”고 말했다. 이번 연구는 KAIST 나노융합연구소와 한국과학기술연구원 및 한국연구재단 기초연구지원사업의 지원으로 수행됐다.
팽민 예(Fangmin Ye) 연구교수가 1저자로 참여한 이번 연구 결과는 재료과학분야 국제학술지 ‘어드밴스드 사이언스(Advanced Science)’ 지난 7일자 온라인 판 논문에 게재됐다.
□ 그림 설명
그림1. 도넛 모양 황화리튬 활물질 구조 및 제조 원리
2018.05.24
조회수 13974
-
이상엽 특훈교수, 대장균 이용한 나노재료 생물학적 합성법 개발
〈 최 유 진 박사과정, 이 상 엽 특훈교수 〉
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 대장균을 이용해 다양한 나노재료를 생물학적으로 합성할 수 있는 기술을 개발했다.
이번 연구를 통해 기존의 물리, 화학적 방법으로 합성되지 않는 새로운 나노재료도 생물학적으로 합성할 수 있는 가능성을 제시했다.
중앙대학교 박태정 교수 팀과 공동으로 진행하고 우리 대학 최유진 박사과정이 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘미국 국립과학원 회보(PNAS)’ 5월 22일자 온라인 판에 게재됐다.
기존의 생물학적 나노재료는 주로 고온, 고압의 조건에서 합성되고 유독한 유기용매와 값비싼 촉매를 사용하기 때문에 환경오염과 높은 에너지 소모의 문제가 있었다.
대안으로 친환경적이고 경제적인 미생물을 활용한 생물 공학적 나노재료 합성법에 대한 연구가 진행되고 있다. 그러나 현재까지 보고된 합성기술은 나노재료의 종류가 다양하지 않고 결정질과 비결정질 나노재료의 합성 원리가 규명되지 않아 다양한 결정질의 나노재료를 만드는 데 어려움이 있다.
이 교수 연구팀은 유전자 재조합 대장균을 이용해 주기율표 기반의 35개 원소로 이뤄진 60가지의 다양한 나노재료를 친환경적으로 생물학적 합성하는 기술을 개발했다.
다양한 금속 이온과 결합할 수 있는 단백질인 메탈로싸이오닌(metallothionein)과 펩타이드인 파이로킬레틴(phytochelatin)을 합성하는 파이오킬레틴 합성효소(phytochelatin synthase)를 대장균 내에서 동시에 발현해 다양한 나노재료를 합성하는 데 성공했다.
연구팀은 각 원소별 푸베 다이어그램(pourbaix diagram)을 분석해 생물학적 나노재료의 합성 과정에서 열역학적 안정성을 갖는 화학종의 상태를 파악했다. 이를 기반으로 생물학적으로 합성 가능한 물질을 예측 및 생산하는 데 성공했다.
또한 용액의 pH를 조절해 기존 생물학적 합성 조건에서 합성이 불가능하거나 비결정질 나노재료로 합성되는 물질을 합성이 가능하게 만들었다.
연구팀의 이번 연구는 화학적 방법으로 합성하기 어렵거나 아직 보고되지 않은 다양한 나노소재의 종류를 확장시켰다는 의의를 갖는다.
이상엽 특훈교수는 “기존의 물리, 화학적인 공정을 통한 나노재료 합성이 아닌 박테리아를 대사공학적으로 개량한 뒤 생물 공학적 배양을 통해 원하는 나노입자를 쉽고 효율적으로 합성 가능한 기술이다”고 말했다.
또한 “생물공학적 방법으로 합성된 60개의 나노재료들은 나노입자, 나노막대, 나노 판상형 등의 모양을 가지며 향후 에너지, 의료, 환경 분야 등 다양한 산업적 응용이 가능하다”고 말했다.
이번 연구는 과학기술정보통신부 기후변화대응사업의 ‘바이오리파이너리를 위한 시스템대사공학 연구과제’의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 재조합 대장균을 이용한 다양한 나노재료들의 생물학적 합성 기술의 전체 모식도 및 이미지
2018.05.23
조회수 13920
-
정연식 교수, 2차원 반도체 공중 부양시켜 고성능 소자 제작
우리 대학 신소재공학과 정연식 교수 연구팀이 차세대 2차원 반도체를 빈 공간이 90%가 넘는 나노크기 돔 구조체 위에 올려 고성능 전자소자를 구현하는 데 성공했다.
연구팀은 이 기술을 활용해 2차원 반도체의 전자이동 능력이 기존 기술에 비해 2배 이상, 빛 감지 성능은 10배 이상 향상시켰다.
박사과정 임순민 연구원이 제1 저자로 수행한 이번 연구는 미국화학회가 발간하는 국제학술지 ‘나노 레터스(Nano Letters)’ 온라인 판 4월 3일에 게재됐다.
2차원 반도체 소재는 기존 실리콘 반도체의 물리적인 성능 한계를 극복할 수 있는 대안으로 떠오르고 있다.
하지만 원자층 수준의 얇은 두께 때문에 주변 영향에 매우 민감하다는 특성이 있다. 특히 2차원 반도체가 올려진 기판으로부터의 불규칙한 영향에 의해 성능과 신뢰성이 확보되지 못하고 있다.
이러한 문제점을 해결하기 위해 해외 연구팀들이 기판의 영향을 원천적으로 차단할 수 있는 방법을 연구하고 있다. 그 중 2차원 반도체를 공중에 매달린 구조로 설계하는 기술이 보고된 바가 있지만 반도체 층 하단을 받쳐주는 구조물이 존재하지 않아 기계적 내구성이 크게 떨어지는 단점이 있다.
정 교수 연구팀은 2차원 반도체 하단에 산화규소 재질의 초미세 돔형 구조물을 촘촘히 형성하는 아이디어로 문제를 해결했다.
기판 위에 올라가 있는 돔형 구조물은 초미세 나노크기이기 때문에 빈 공간이 90%가 넘는다. 그러한 돔 형태의 구조물 위에 2차원 반도체를 올리면 마치 기판 위에 반도체가 공중 부양하는 것과 유사한 효과를 보이게 된다. 이를 통해 기계적으로 안정적이면서 접촉 면적 및 기판의 영향을 최소화할 수 있다.
이러한 둥근 돔 구조 형상 덕분에 2차원 반도체와 기판 사이의 접촉면적을 최소화할 수 있어 반도체의 물리적 성능이 대폭 향상된다.
일반적으로 초미세 돔형 구조물을 제작하기 위해서는 패턴을 일일이 새겨주는 고가의 장비가 필요하다. 그러나 정 교수 연구팀은 분자가 스스로 움직여 나노구조물을 형성하는 자기조립 현상을 이용해 저비용으로 미세한 돔 구조 배열을 구현하는 데 성공했다. 또한 기존 반도체 공정과도 높은 호환성을 보임을 확인했다.
정연식 교수는 "이번 연구가 다양한 2차원 반도체 소재 이외에도 금속성 2차원 소재인 그래핀의 특성 향상에 동일하게 적용될 수 있다“며 ”활용범위가 커 차세대 유연디스플레이의 구동 트랜지스터용 고속 채널 소재 그리고 광 검출기의 핵심 소재인 광 활성층으로 활용될 수 있다"고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 미래소재디스커버리사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 돔 구조체 이용한 2차원 반도체 제작 이미지
2018.04.24
조회수 14918
-
이상엽, 김현욱 교수, 약물 상호작용 예측기술 DeepDDI 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 김현욱 교수 공동 연구팀이 약물-약물 및 약물-음식 간 상호작용을 정확하게 예측하기 위해 딥 러닝(deep learning)을 이용해 약물 상호작용 예측 방법론인 딥디디아이 (DeepDDI)를 개발했다.
김현욱 교수, 류재용 연구원이 공동 1저자로 참여한 이번 연구는 국제학술지 ‘미국 국립과학원 회보(PNAS)’ 4월 16일자 온라인판에 게재됐다.
기존의 약물 상호작용 예측 방법론은 약물-약물 간의 상호작용 가능성만을 예측할 뿐, 두 약물 간의 구체적인 약리작용에 대한 정보는 제공하지 못했다. 이러한 이유로 맞춤형 약물 처방, 식이요법 등 응용 연구에서 체계적인 근거를 제시하거나 가설을 세우는 데에 한계가 있었다.
연구팀은 딥 러닝(deep learning) 기술을 적용해 19만 2천 284개의 약물-약물 상호작용을 아우르는 86가지의 약물 상호작용을 92.4%의 정확도로 예측하는 시스템 딥디디아이 (DeepDDI)를 개발했다.
딥디디아이는 두 약물 A, B 간의 상호작용에 대한 예측 결과를 다음과 같이 사람이 읽을 수 있는 영문 문장으로 출력한다 : “The metabolism of Drug B can be decreased when combined with Drug A (약물 A를 약물 B와 함께 복용 시 약물 B의 약물 대사가 감소 될 수 있다)”
연구팀은 딥디디아이를 이용해 두 약물 복용 시 일어날 수 있는 유해반응의 원인, 보고된 인체 부작용을 최소화시킬 수 있는 대체 약물, 특정 약물의 약효를 떨어뜨릴 수 있는 음식 및 음식 성분, 지금껏 알려지지 않은 음식 성분의 활성 등을 예측했다.
이번 연구성과로 약물-약물 및 약물-음식 상호작용을 정확하게 예측할 수 있는 시스템을 활용하는 것이 가능해졌으며 이는 신약개발, 복합적 약의 처방, 투약시의 음식조절 등을 포함해 헬스케어, 정밀의료 산업 및 제약 산업에 중요한 역할을 할 것으로 기대된다.
이상엽 특훈교수는 “이번 연구결과는 4차 산업혁명 시대의 정밀의료를 선도할 수 있는 기반 기술을 개발한 것이다”며, “복합 투여되는 약물들의 부작용을 낮추고 환자 맞춤형 약물 처방과 식이요법 제안을 통한 효과적인 약물치료 전략을 수립할 수 있다. 특히 고령화 사회에서 건강한 삶을 유지하는데 필요한 약-음식 궁합에 대한 제안을 해 줄 수 있는 시스템으로 발전해 나갈 것이다”고 말했다.
이 연구성과는 과학기술정보통신부의 바이오리파이너리를 위한 시스템대사공학 연구사업, KAIST의 4차 산업혁명 인공지능 플래그십 이니셔티브 연구사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 딥디디아이 (DeepDDI)의 모식도 및 예측된다양한 약물-음식성분의 상호작용들의 시각화
2018.04.18
조회수 16276
-
김유천 교수, 부작용 낮춘 레이저 치료제 개발
〈 노 일 구 박사과정, 김 유 천 교수 〉
우리 대학 생명화학공학과 김유천 교수 연구팀이 기존 광역학 치료제(PhotoDynamic Therapy, 이하 PDT)의 단점을 보완한 근적외선 형광물질 기반의 PDT를 개발했다.
노일구 박사과정이 1저자로 참여하고 바이오및뇌공학과 박지호 교수 연구팀이 공동으로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2018년도 3월 25일자 표지논문에 게재됐다.
PDT는 약물이나 유전자가 아닌 빛을 이용하는 치료법으로 레이저를 특정부위에 쬐어 산소를 독성을 갖는 활성산소로 변화시켜 세포를 자가 사멸(apoptosis)로 유도할 수 있는 기술이다.
이 기술은 피부병 치료 등 일상에서도 많이 활용되는 치료법이다. 그러나 기존에 이용하는 PDT 조영제의 경우 낮은 효율을 가질 때 오히려 암세포의 유전변형이 발생해 치료효과 감소 등의 부작용이 나올 수 있다.
따라서 치료효과를 극대화하기 위해선 원하는 위치에 많은 물질을 전달하는 것이 중요하며 이를 위해 세포 소기관인 미토콘드리아에 치료효과를 집중시키는 연구가 진행 중이다.
PDT 조영제로 인해 만들어진 활성산소는 미토콘드리아의 막을 공격해 세포 사멸을 일으킨다. 암세포의 미토콘드리아는 일반 세포와 비교했을 때 미토콘드리아 막의 전위 차이가 높아 양전하의 소수성 물질이 더 잘 투입되는 특성이 있다.
연구팀은 이러한 PDT 조영제 효과를 극대화하기 위해 미토콘드리아 타겟팅 그룹인 트리페닐포스포늄, PDT 증강제인 브롬화물, 그리고 용해도 증가를 위한 아민 그룹으로 구성된 물질을 개발했다.
연구팀은 이 기술을 종양이 이식된 실험용 쥐에 주입한 후 종양 부위에 빛을 조사해 항암효과를 유도했고 이를 분석했을 때 효과적으로 표적 치료가 이뤄지는 것을 확인했다.
이 물질은 근적외선 영역에서의 흡광 및 발광을 통한 662 나노미터(nm) 영역 레이저를 사용한다. 이를 통해 기존 가시광선 조영제가 마이크로미터 수준의 깊이를 보였다면 연구팀의 기술은 밀리미터까지 투과성을 가지며 진단 시 가시광역 조영제 보다 100배 이상 감도가 우수한 특성을 갖고 있다고 밝혔다.
연구를 주도한 노일구 박사과정은 “암세포 미토콘드리아에 오래 머물러 있어 레이저를 조사했을 때 원하는 부분에만 부작용 없이 효과적인 치료가 가능하다는 장점이 있다”며 “치료 후 독성이 없이 분해돼 기존 조영제의 단점을 극복할 수 있을 것이다”고 말했다.
김유천 교수는 “기존에 이용되는 진단 및 치료제를 한 단계 더 발전시킨 새로운 플랫폼의 개발을 통해 부작용을 최소화하고 다양한 질병을 치료하는 데 유용하게 사용될 것으로 기대한다”고 말했다.
이번 연구는 글로벌프론티어 지원사업 ABC 바이오매스 사업단 및 한국연구재단의 중견연구자지원사업, 바이오의료기술개발지원사업을 통해 수행됐다.
□ 그림 설명
그림1. Advanced science 3월 25일자 3호 표지
그림2. 완성된 물질의 화학구조, 미토콘드리아 타겟팅 효과 및 레이저에 따른 ROS 생성 그래프
2018.04.17
조회수 17391
-
박인규, 정연식 교수, 모바일 기기 탑재 가능한 고성능 수소센서 개발
〈 가오민 연구원, 박인규 교수, 조민규 연구원 〉
우리 대학 기계공학과 박인규 교수, 신소재공학과 정연식 교수 공동 연구팀이 폴리스티렌(Polystyrene) 구슬의 자기 조립(self-assembly) 현상을 이용해 고성능의 실리콘 기반 수소센서를 개발했다.
연구팀이 개발한 수소 센서는 제작 과정이 단순하고 비용이 저렴해 모바일 기기에 탑재할 수 있어 전력 소모에 어려움을 겪는 모바일 분야에 기여할 수 있을 것으로 기대된다.
가오 민(Gao Min) 연구원, 조민규 박사후 연구원, 한혁진 박사과정이 참여한 이번 연구는 나노 분야 국제 학술지 ‘스몰(Small)’ 3월 8일자 표지논문에 선정됐다.
청정에너지인 수소 가스는 차세대 에너지원으로 각광받고 있다. 현재도 냉각 시스템이나 석유 정제시설 등 다양한 산업분야에서 활용되고 있지만 무색, 무취의 가연성 물질이기 때문에 조기 발견이 어려워 고성능 수소 센서를 개발하는 것이 중요하다.
그러나 기존 수소 센서들은 부피가 크고 소모 전력이 높으며 제작비용이 상대적으로 높은 단점이 있다.
공동 연구팀은 수백 나노미터 (nm) 직경의 폴리스틸렌 구슬들을 자기조립 현상을 이용해 규칙적으로 실리콘 기판 위에 배열시켰다. 이를 이용해 수십 나노미터 수준의 그물 모양 패턴을 구현해 초소형 고성능 수소 센서를 개발했다.
이 기술은 수소가스가 센서에 노출되면 팔라듐 나노입자와 반응해 팔라듐의 일함수(work function)가 변화하고 그에 따라 실리콘 나노 그물 내 전자의 공핍 영역(depletion region)의 크기가 변화하면서 전기 저항이 바뀌는 원리이다.
이번에 개발한 수소 센서는 최소 선폭 50 나노미터 (nm) 이하의 실리콘 나노 그물 구조 센서를 저비용으로 구현할 수 있다.
일반적으로 수소 센서의 성능은 민감도, 반응속도, 선택성 등에 따라 구분된다. 연구팀의 센서는 0.1%의 수소 농도에서 10%의 민감도와 5초의 반응속도를 기록해 기존 실리콘 기반 수소 센서보다 50% 이상 빠르고 10배 이상 높은 민감도를 보였다.
박인규 교수는 “기존의 값비싸고 복잡한 공정을 거치지 않고도, 단순한 방법으로 초미세 나노패턴 구현이 가능하며, 수소센서 뿐만 아니라 다양한 화학, 바이오센서에도 응용이 가능할 것이다”고 말했다.
과학기술정보통신부의 나노소재기술개발사업, 한국연구재단의 국민위해인자에 대응한 기체분자식별․분석기술개발사업, 해양수산부의 해양수산환경기술개발사업, KUSTAR-KAIST 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스몰(Small) 2018년 3월 8일자 Issue 표지논문
그림2. 완성된 수소센서의 일반 사진 (왼쪽), 전자현미경 사진 (중간, 오른쪽)
그림3. 수소 농도 변화에 따른 수소센서의 감지 그래프
2018.04.04
조회수 21280
-
변혜령 교수, 빠른 충전 가능한 리튬-산소전지 개발
〈 변 혜 령 교수 〉
우리 대학 화학과 변혜령 교수 연구팀과 EEWS 정유성 교수 연구팀이 높은 충전 속도에서도 약 80%의 전지 효율 성능(round-trip efficiency)을 갖는 리튬-산소 전지를 개발했다.
기존에 개발된 리튬-산소 전지는 충전 속도가 높아지면 전지 효율 성능이 급속히 저하되는 단점이 있었다. 이번 연구에서는 방전 생성물인 리튬과산화물의 형상 및 구조를 조절해 난제였던 충전 과전위를 낮추고 전지 효율 성능을 향상시킬 수 있음을 증명했다.
특히 값비싼 촉매를 사용하지 않고도 높은 성능을 가지는 리튬-산소 전지를 제작할 수 있어 차세대 전지의 실용화에 기여할 것으로 보인다.
이번 연구결과는 네이처 커뮤니케이션즈(Nature Communications) 2월 14일자 온라인 판에 게재됐다.
리튬-산소 전지는 리튬-이온 전지보다 3~5배 높은 에너지 밀도를 가지고 있어 한 번 충전에 장거리 주행을 할 수 있는, 즉 장시간 사용이 요구되는 전기차 및 드론 등의 사용에 적합한 차세대 전지로 주목받고 있다.
하지만 방전 시 생성되는 리튬과산화물이 충전 시 쉽게 분해되지 않기 때문에 과전위가 상승하고 전지의 사이클 성능이 낮은 문제점을 갖고 있다. 리튬과산화물의 낮은 이온 전도성과 전기 전도성이 전기화학적 분해를 느리게 만드는 것이다.
리튬과산화물의 전도성을 향상시키고 리튬-산소 전지의 성능을 높이기 위해 연구팀은 메조 다공성 탄소물질인 CMK-3를 전극으로 사용해 일차원 나노구조체를 갖는 비결정질 리튬과산화물을 생성하는 데 성공했다.
전극을 따라 생성되는 비표면적이 큰 비결정질의 리튬과산화물은 충전 시 빠르게 분해돼 과전위의 상승을 막고 충전 속도를 향상시킬 수 있다. 이는 기존의 결정성을 갖는 벌크(bulk) 리튬과산화물과 달리 높은 전도성을 갖기 때문이다.
이번 결과는 촉매나 첨가제의 사용 없이도 리튬과산화물의 크기 및 구조를 제어해 리튬-산소 전지의 근본적 문제를 해결할 수 있는 방법을 제시했다는 의의를 갖는다.
변혜령 교수는 “리튬과산화물의 형상, 구조 및 크기를 제어해 전기화학 특성을 변화시킬 수 있음을 증명함으로써 리튬-산소 전지뿐만이 아닌 다른 차세대 전지의 공통된 난제를 해결할 수 있는 실마리를 찾았다”고 말했다.
이론 해석을 제공한 정유성 교수는 “이번 연구 결과로 기존에 절연체로 여겨진 리튬과산화물이 빠르게 분해될 수 있는 반응 원리를 이해할 수 있었다”고 말했다.
이번 연구는 한국연구재단의 지원을 받아 수행됐으며 일본의 리츠메이칸(Ritsumeikan) 대학 가속기 센터와 공동연구로 진행됐다.
□ 그림 설명
그림1. 리튬과산화물 도식 및 투과전자현미경 사진
그림2. 충전 속도 특성 비교
그림3. DFT 계산을 통한 (a) 결정질 및 (b) 비결정질 리튬과산화물의 충방전 에너지 다이어그램
2018.03.29
조회수 16948
-
강정구 교수, 수십 초 내 충전가능한 물 기반 저장소자 개발
우리 대학 EEWS대학원 강정구 교수 연구팀이 수십 초 내 급속충전이 가능한 물 기반의 융합에너지 저장소자를 개발했다.
이 기술은 그래핀 기반의 고분자 음극 및 나노 금속 산화물 양극 개발을 통한 높은 에너지 밀도를 가지며 급속 충전이 가능한 융합 에너지 저장소자로 향후 휴대용 전자기기에 적용 가능할 것으로 기대된다.
옥일우 박사과정이 1저자로 참여한 이번 연구 결과는 에너지재료분야 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 1월 15일자에 게재됐다.
기존의 물 기반 에너지 저장장치는 낮은 구동전압과 음극재료의 부족으로 에너지 밀도가 낮고 급속 충전에 한계가 있었다.
에너지 저장장치는 두 전극에 의해 에너지 저장 용량이 정해지며 양극, 음극의 균형이 이뤄져야 고안정성을 갖는다. 일반적으로 두 전극은 전기적 특성에 차이를 보이고 이온 저장 과정이 다르기 때문에 불균형에 의한 낮은 용량 및 안정성을 보이곤 한다.
연구팀은 전극의 표면에서 빠른 속도로 에너지 교환을 이루게 하고 양극 사이의 에너지 손실을 최소화시킴으로써 고성능 에너지 저장장치를 구현하는 데 성공했다.
연구팀이 개발한 음극소재는 전도성 고분자 물질로 배터리, 슈퍼커패시터 전극 재료로 활용 가능하다. 그래핀 표면과 층 사이에서 그물 모양의 최적화된 외형으로 기존 음극소재에 비해 높은 에너지 저장용량을 갖는다.
양극소재는 나노크기 이하의 금속 산화물이 그래핀 표면에 분산된 외형을 이루고 원자와 이온이 일대일로 저장되는 형식이다.
두 전극을 기반으로 한 연구팀의 에너지 저장 소자는 고용량과 함께 높은 에너지 및 출력 밀도를 보이며 음극과 양극의 물리적 균형을 통해 매우 안정적인 충, 방전 결과를 보였다.
연구팀이 개발한 물 기반 융합에너지 저장소자는 기존의 물 기반 배터리에 비해 100배 이상으로 높은 최대 출력 밀도를 보이며 급속 충전이 가능하다. 또한 10만 번 이상의 높은 충, 방전 전류에서도 용량이 100퍼센트 유지되는 고 안정성을 보였다.
연구팀의 에너지 저장 소자는 USB 충전기나 소형태양전지 등의 저전력 충전 시스템을 통해서도 2~30초 내에 충전이 가능하다.
강 교수는 “친환경적인 이 기술은 제작이 쉽고 활용성이 뛰어나다. 특히 기존 기술 이상의 고용량, 고안정성은 물 기반 에너지 저장장치의 상용화에 기여할 것이다”며 “저전력 충전 시스템을 통해 급속 충전이 가능하기 때문에 휴대 가능한 전자 기기에 적용할 수 있을 것이다”고 말했다.
강원대학교 정형모 교수와 공동으로 진행한 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반미래소재연구단(단장 김광호)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 실험을 통해 구동된 저장소자 사진
그림2. 물 기반 융합 에너지 저장소자 모식도
그림3. 고분자 사슬 음극 및 금속 산화물 양극 표면 이미지
2018.02.20
조회수 16277