-
새 인공 형광 단백질 나노 조립체 개발
정 용 원 교수
우리 대학 화학과 정용원 교수 연구팀이 새로운 모양과 다양한 크기의 인공적 형광 단백질 나노 조립체를 개발했다.
이 단백질 나노 조립체 연구로 단백질 기반 신약 및 백신 개발 등 새로운 나노구조체 분야에 활발한 적용이 가능할 것으로 기대된다.
이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 14일자 온라인 판에 게재됐다.
우리 몸의 필수 구성요소인 단백질은 나노미터 크기의 특성과 더불어 무한한 기능과 구조를 갖고 있다는 점에서 새로운 물질 및 구조체 개발에 매우 적합한 것으로 알려져 있다.
특히 단백질 다수가 조립된 다중 조립체는 새로운 성질과 모양, 크기를 가지며 생체친화적인 나노 구조체이기 때문에 많은 관심을 받고 있다. 단백질 다중 조립체는 다수의 단백질이 동시에 작용하기 때문에 결합력을 극대화 해 신약, 백신 기능 향상 연구에 중요한 방법론을 제시할 것으로 기대되기 때문이다.
이 조립체의 상업적, 연구적 이용을 위해선 조립된 단백질의 수가 정확히 조절되고, 다양한 크기의 조립체를 제작할 수 있어야 한다. 하지만 현재의 기술로는 조립체의 크기에 따라 정밀히 분리하는 것이 쉽지 않다.
연구팀은 문제 해결을 위해 인공적 형광 단백질 조립체를 세포 내 합성을 통해 다양한 크기로 제작했다. 또한 조립체 표면 개량을 통해 거대 생체분자의 안정성을 향상시켰고, 다양한 크기의 조립체를 분리할 수 있는 방법을 최초로 개발했다.
이 방법을 이용해 다각형 및 선형 배열을 갖는 형광 단백질 조립체 또한 제작해 관찰했다. 이 과정에서 나노크기 공간에서의 결합 단백질의 개수를 증가시켰고, 기존 단일 단백질보다 비약적으로 향상된 결합력을 확인했다.
정 교수는 “이번 단백질 조립체 제작 기술은 다양한 모양과 크기, 기능성을 갖는 새 조립체 제작의 기반이 될 것이다”며 “비약적으로 향상된 기능을 가진 단백질 신약, 백신, 혹은 결합 리셉터 연구에 핵심적 역할을 할 것”이라 말했다.
정용원 교수 지도 아래 김영은 박사과정 학생이 1저자로 참여한 이번 연구는 우리 대학 김호민 교수 연구팀이 참여했으며, 한국연구재단이 추진하는 글로벌프론티어사업(바이오나노 헬스가드 연구단) 및 기초연구실지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 형광단백질 조립체 모식도 및 전자현미경 사진
2015.05.26
조회수 12951
-
고효율의 단일광자원 소자 핵심기술 개발
조 용 훈 교수
우리 대학 물리학과 조용훈 교수 연구팀이 양자정보기술에 기여할 수 있는 고효율의 단일광자원(양자광원) 의 방출 효율과 공정 수율을 높일 수 있는 기술을 개발했다.
이번 연구 결과는 자연과학분야 학술지인 미국국립과학원회보(PNAS: Proceedings of the National Academy of Sciences) 4월 13일자 온라인 판에 게재됐다.
빛은 보통 파동의 성질을 갖는 동시에 입자의 성질도 가지고 있는데, 이 입자를 광자라고 한다. 단일광자원 혹은 양자광원은 광자가 뭉쳐서 나오는 고전적인 광원과는 달리 한 번에 한 개의 광자만 방출하는 소자이다. 반도체 양자점을 이용한 단일광자 방출 소자는 안정성 및 전기구동 가능성이 높아 상용화에 적합한 소자로 각광받고 있다.
하지만 빛의 파장은 양자점보다 수십~수백 배 정도 크기 때문에 상호 작용하기 어려워서 단일광자의 방출 효율이 매우 작다는 한계점이 있다. 따라서 고효율 단일광자원를 만들기 위해서는 양자점과 빛을 집속시키는 구조(광공진기)를 공간적으로 정확히 결합시키는 것이 필수적이다.
하지만 양자점은 불규칙하게 분포되어 있고 위치를 정확히 확인할 수 없어 우연성에 의존한 결합을 기대할 수밖에 없었다. 따라서 긴 공정시간에도 불구하고 소수의 단일광자소자를 제작하는 수준에 머물러 있었다.
연구팀은 문제 해결을 위해 피라미드 모양의 나노 구조체를 활용했다. 반도체 나노피라미드 구조에서는 양자점이 피라미드의 꼭지점에 자발적으로 형성된다. 그리고 그 위에 금속 필름을 얇게 증착하면 빛 역시 뾰족한 금속 끝에 모이는 성질 때문에 양자점과 동일한 위치에 집속되는 것이다.
특히 금속에서는 빛이 본래 가진 파장보다 작게 뭉칠 수 있다. 즉, 빛이 가진 파장보다 더 소형화를 시킬 수 있기 때문에 양자점과의 크기 차이로 인한 문제를 극복할 수 있게 되는데, 이 방법으로 단일광자 방출 효율이 기존의 방식보다 20배 정도 증가되었다.
단일광자 방출소자는 양자광컴퓨터 및 양자암호기술 구현의 가장 기본적인 구성 요소이다. 이번 연구를 통해 기존의 까다로운 과정들 없이 단순한 방식으로 효율과 수율을 모두 높일 수 있으므로, 단일광자방출원 혹은 양자광원 관련 기술의 상용화 가능성이 높아질 것으로 기대된다.
조 교수는 “이 기술은 높은 공정 수율을 갖고 있기 때문에 상용 양자광원 소자 제작 한계를 해결하고, 양자정보통신 분야 구현에 중요 기술이 될 것”이라고 말했다.
조용훈 교수의 지도를 받아 공수현(1저자)·김제형(2저자) 박사가 수행한 이번 연구는 우리 대학 신종화·이용희 교수, 프랑스 CNRS의 레시당 박사, 미국 UC 버클리의 샹장 교수가 참여했으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다.
그림 1. 단일 광자가 높은 효율로 방출되는 모습의 개념도
2015.04.23
조회수 14032
-
종양 전역에 약물 전달하는 항암치료나노기술 개발
<박 지 호 교수>
우리 대학 바이오 및 뇌공학과 박지호 교수 연구팀이 종양의 전역에 약물이 골고루 전달되게 해 항암효과를 현저히 높일 수 있는 새 항암치료 나노기술을 개발했다.
이번 연구는 나노분야 학술지 ‘나노 레터스(Nano Letters)’3월 31일자 온라인 판에 게재됐다.
일반적으로 수술이 어려운 종양의 치료를 위해 항암약물치료법이 사용된다. 하지만 종양이 외부로 들어오는 약물의 접근을 여러 방법으로 막기 때문에 종양 전체에 항암효과를 보기 어려웠다. 혈류로 투여된 약물들의 대부분이 혈관주위의 종양세포들에만 전달되고, 중심부의 종양세포에는 전달되지 않아 재발 문제가 자주 발생한 것이다.
연구팀은 문제 해결을 위해 리포좀과 엑소좀이라는 소포체를 이용했다. 리포좀은 인공나노소포체로서 혈류를 통해 혈관 주위의 종양 세포 부위까지 약물을 전달한다. 종양 세포에서 자연적으로 분비되는 생체나노소포체인 엑소좀에 약물을 무사히 탑재하는 것이 리포좀의 역할이다.
엑소좀은 종양에서 세포 내부의 생물학적 물질들을 전달하기 때문에 종양의 진행 및 전이에 중요한 요소로 알려져 있다. 리포좀이 항암 약물을 엑소좀에 탑재하면, 엑소좀이 이동하는 종양 내의 모든 위치로 약물이 전달됨으로써 질병이 치료되는 것이 연구의 핵심이다.
연구팀은 이 기술을 이용해 빛에 반응해 항암효과를 내는 광과민제를 종양이 이식된 실험용 쥐에 주입했다. 이후 종양 부위에 빛을 노출시켜 항암효과를 유도한 후 분석한 결과 종양조직 전역에서 항암효과를 관찰할 수 있었다.
연구팀의 핵심 성과는 종양 및 다른 질병들의 미세 환경을 파악해 질병에 대항하는 맞춤형 약물전달 기술 개발의 발판을 마련한 것이다.
연구팀은 이 기술을 제약회사에서 개발 중인 항암제에 적용해 약물전달이 어려운 악성 종양의 치료효과를 실험 진행 중이다.
박 교수는 “엑소좀이 세포에서 끊임없이 분비되는 특성과 주변 세포로 생물학적 물질을 전달하는 특성을 응용해 종양 중심부까지 약물을 전달 가능하게 만든 최초의 연구”라고 말했다.
박지호 교수 지도아래 이준성 박사, 김지영 석사가 주 저자로 참여한 이번 연구는 한국연구재단이 추진하는 신진연구자지원사업, 글로벌프론티어사업, 미래유망융합기술파이오니어사업의 지원을 받아 수행됐다.
□ 그림설명
그림 1. 종양 전역에 약물이 골고루 전달되게 해 항암효과를 높이는 새 종양투과 약물전달 나노기술
세포막과 결합하는 리포좀에 의해서 세포로 전달된 물질이 그 세포가 분비하는 엑소좀에 효율적으로 탑재돼 주변세포로 전달되는 과정을 보여주는 모식도(좌). 이러한 엑소좀기반 세포간 약물전달이 실제로 종양 스페로이드 및 생체 내 종양모델에서 관찰된 결과들 (우).
2015.04.06
조회수 14379
-
광전환 효율 높인 고분자 태양전지 모델 개발
<김 범 준 교수>
국내 연구진이 차세대 에너지원으로 각광 받고 있는 플라스틱 태양전지의 광전환 효율을 크게 높이는데(5% 이상, 기존 대비 1%p 이상 증가) 성공하였다. 특히 기존의 태양전지를 대체할 수 있다는 점에서 의미가 크다.
우리 대학 김범준, 부산대 우한영 교수(공동 교신저자)가 주도하고, 우리 대학 강현범, 부산대 우딘 모하메드 아프사르 박사(공동 제1저자)가 참여한 이번 연구는 미래창조과학부와 한국연구재단에서 추진하는 기초연구사업(중견연구자), 글로벌프론티어사업 등의 지원으로 수행되었고, 화학분야의 권위지 JACS(Journal of the American Chemical Society) 2월 18일자에 게재되었다.
고분자-고분자 태양전지는 기존의 풀러렌 유기태양전지에 비해 상용화에 핵심요소인 기계적인 안정성뿐만 아니라 열에 대한 안정성도 크게 향상시킬 수 있다.
그러나 풀러렌 유기태양전지(10%)에 비해 고분자-고분자 태양전지의 광전환 효율은 매우 낮다(4% 이하). 이것은 광 활성층을 형성하는 두 고분자가 잘 섞이지 않고 과도하게 분리되는 현상(상 분리)이 발생하기 때문이다. 이러한 상 분리 현상은 전자의 생성과 운반을 저해하고 태양전지의 광전환 효율을 감소시킨다.
연구팀은 전도성 고분자의 분자량과 구조를 조절함으로써 두 고분자의 상 분리 현상을 효과적으로 제어하여 5% 이상의 높은 광전환 효율을 가진 태양전지를 개발하였다.
연구팀은 현재 태양전지의 광전환 효율을 6%까지 끌어올렸는데, 이 수치는 지금까지 학계에 보고된 것 중에서 가장 높은 효율이다.
김범준 교수는 “이번 연구는 고분자 플라스틱 태양전지가 미래 에너지원, 특히 유연성이 필요한 휴대용 차세대 전자소자의 에너지원으로서 높은 응용가능성을 보여주는 사례”라고 밝혔다.
□ 그림 설명
그림 1. 플렉서블 고분자 / 고분자 태양전지 샘플
2015.03.30
조회수 12691
-
신용카드 두께 플렉서블 리튬이온 배터리 개발
최장욱 교수
우리 대학 EEWS 대학원 최장욱(40) 교수와 한국표준과학연구원 송재용(44) 박사 공동 연구팀은 신용카드보다 얇고 무선 충전이 가능한 플렉서블 리튬이온 배터리를 개발했다고 밝혔다.
연구 성과는 나노과학분야 학술지 ‘나노 레터스(Nano Letters)’ 3월 6일자 온라인 판에 게재됐다.
이번 연구는 모바일 전자기기, 전기 자동차 등 폭넓은 분야의 전원으로 사용되는 리튬이온 배터리가 플렉서블 전자기기에도 적합한 전원으로 개발됐다는 의의를 갖는다.
기존 리튬이온 배터리는 양극, 분리막, 음극을 샌드위치처럼 층층이 쌓는 적층방식이기 때문에 두께를 줄이기 어려웠다. 또한 층 사이에 발생하는 마찰로 인해 구부리기 어렵고, 전극 필름이 벗겨져 성능 유지에 한계가 있었다.
연구팀은 적층이라는 고정관념에서 벗어나 분리막을 없애고 양극과 음극을 평면으로 동일선상에 배열한 뒤, 양극 간 격벽을 둬 리튬이온 배터리에서 발생할 수 있는 합선, 전압강하 등의 현상을 없애는 데 주력했다.
이후 5천 번 이상의 연속 굽힘 실험을 통해 배터리 성능 유지와 더불어 더 유연한 새로운 개념의 전극 구조가 가능함을 확인했다.
플렉서블 배터리는 통합형 스마트 카드, 미용 및 의료용 패치, 영화 ‘아이언 맨’처럼 목소리와 몸짓으로 컴퓨터에 명령할 수 있는 피부 부착형 센서 등에 적용될 수 있다.
더 나아가 연구팀은 이 배터리에 전자기 유도 및 태양전지를 적용해 무선 충전 기술도 함께 개발하는 데 성공했다.
현재는 이 동일 평면상 배터리 기술을 프린팅 기술과 접목해 대량 생산 공정을 개발 중이며, 궁극적으로 반도체, 배터리 등의 전자제품을 3D 프린터로 생산할 수 있는 새 패러다임을 목표로 하고 있다.
최장욱 교수는 “현재 개발된 기술은 피부 부착형 의료용 패치의 전원 역할을 해 패치 기능의 다양화에 기여할 것”이라고 말했다.
이번 연구는 한국연구재단의 중견연구자사업과 국가과학기술연구회 융합실용화 연구사업의 지원을 받아 수행됐다.
□ 사진설명
사진 1. 약물 전달 패치와 일체화된 플렉서블 이차전지
사진 2. 플렉서블 배터리 구성도
사진 3. 플렉서블 배터리를 이용해 제작한 스마트카드
2015.03.17
조회수 14839
-
휘어지는 10나노미터 고분자 절연막 개발
10나노미터 이하의 얇고, 유연하게 휘어지면서도 균일한 두께를 유지하는 고분자 절연막의 개발로 사물인터넷의 실현을 앞당길 수 있을 것으로 보인다.
우리 대학 생명화학공학과 임성갑 교수, 전기 및 전자공학과 유승협, 조병진 교수 공동 연구팀은 ‘개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, 이하 iCVD)’을 이용한 고분자 절연막을 개발했다고 밝혔다.
이번 연구는 재료분야 국제 학술지인 ‘네이처 머티리얼스(Nature Materials)’ 3월 10일자 온라인 속보판에 게재됐다.
사물인터넷 시대의 핵심인 웨어러블, 플렉서블 기술 촉진을 위해서는 가볍고 전력 소모가 적으면서도 유연성을 가진 소자 제작 기술이 필수적이다.
하지만 무기물 소재를 기반으로 한 절연막을 포함한 전자소자 재료들은 유연성이 부족하고, 고온에서만 공정이 가능해 열에 약한 다른 재료들과의 조합이 좋지 않다.
또한 용액을 이용해 만든 기존 고분자 소재 절연막은 표면장력에 의한 뭉침 현상으로 균일도에 한계가 있었고, 잔류 불순물로 인해 절연 특성도 좋지 못한 경우가 많았다.
공동 연구팀은 이러한 문제점을 해결할 수 있도록 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법인 iCVD를 사용했다.
액체 대신 기체 상태의 반응물을 이용해 균일도를 높이고 불순물을 최소화함으로써, 10nm 이하의 매우 얇은 두께에서도 무기물 기반 소재에 필적하는 절연성을 가지게 됐다.
공동 연구팀은 개발한 절연막을 유기반도체, 그래핀, 산화물반도체와 같은 차세대 반도체를 기반으로 한 트랜지스터에도 적용해 우수한 이동도를 갖는 저전압 트랜지스터를 개발했다.
그 외에도 우수한 유연성을 바탕으로 스티커 필름 형태의 전자 소자를 시연했고, 동국대 노용영 교수 연구팀과 협력해 iCVD 고분자 절연막이 대면적 유연 전자소자 기술에 적용할 수 있음을 확인했다.
이 기술은 향후 다양한 미래형 전자기기 제작에 핵심 요소소재로 활용되고, 이 분야의 기술경쟁력 우위 확보에도 역할을 할 것으로 기대된다.
임성갑 교수는 “이번에 iCVD로 구현된 박막의 절연특성은 고분자 박막으로는 구현할 수 없었던 매우 높은 수준”이며 “이번에 개발된 iCVD 고분자 절연막은 플렉서블 전자 소자 등 차세대 전자 기술에 핵심적인 역할을 할 수 있을 것”이라고 말했다.
문한얼, 신우철 박사(전기 및 전자공학과), 성혜정 학생(생명화학공학과)이 참여한 이번 연구는 미래창조과학부의 한국연구재단 신진연구자 지원사업 및 중견연구자 지원사업, 글로벌프론티어사업 나노기반 소프트일렉스토닉스 연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. iCVD 공정의 모식도
(i) 재료물질 (initiator, monomer) 주입, (ii) 개시제의 활성화, (iii), (iv): 활성화된 개시제에 의한 고분자(polymer) 합성
그림 2. 연구진이 개발한 고분자 절연막을 이용하여 제작한 대면적, 고유연성 전자소자
그림 3. 스티커처럼 붙이고 뗄 수 있는 전자소자 이미지
2015.03.10
조회수 17082
-
빛을 이용한 약물효소반응 촉진 플랫폼 개발
우리 대학 신소재공학과 박찬범 교수와 생명화학공학과 정기준 교수 연구팀은 빛으로 약물효소반응을 유도할 수 있는 새로운 반응 플랫폼을 개발했다.
연구결과는 지난 12일, 화학분야의 세계적 학술지인 ‘앙게반테 케미’에 후면 표지논문으로 게재됐다.
이 기술을 활용하면 저가의 염료로 고지혈증 등의 심혈관질환 치료제 및 오메프라졸과 같은 위궤양 치료제 등 고부가가치 의약품 생산이 가능할 것으로 보인다.
시토크롬 P450(cytochrome P450)은 생물체 안에서 약물 및 호르몬 등의 대사 과정에서 중요한 산화반응을 수행하는 효소이다. 사람에게 투여되는 약물의 75% 이상의 대사를 담당하고 있기 때문에 신약개발 과정에서 핵심적인 요소로 알려져 있다.
시토크롬 P450의 활성화를 위해선 환원효소로부터 전자를 받아야 하며 전달물질인 NADPH(생물 세포 내의 조효소)가 필요하다. 하지만 NADPH의 높은 가격 때문에 시토크롬 P450의 활용은 실험실 수준에 머무르고 있었으며, 산업적 활용에도 제 역할을 다하지 못했다.
연구팀은 NADPH 대신 빛에 반응하는 감광제인 에오신 Y를 활용해 대장균 기반의 ‘전세포 광-생촉매’ 방법을 개발했다. 저가의 에오신 Y를 빛에 노출시켜 시토크롬 P450의 효소반응을 촉진하여 고가의 대사물질을 생산한다는 원리다.
박 교수는 “이번 연구를 통해 산업적 활용에 제한이 컸던 시토크롬 P450 효소의 활용이 수월해졌다” 며 “우리의 기술은 시토크롬 P450 효소가 고부가가치 의약 물질을 생산하는데 큰 도움을 줄 것이다”라고 말했다.
박찬범, 정기준 교수(교신저자)의 지도아래 박종현 박사과정 학생, 이상하 박사가 주저자로 참여한 이번 연구는 한국연구재단이 추진하는 중견연구자사업과 글로벌프론티어사업, KAIST HRHRP (High Risk High Return Project)의 지원으로 수행됐다.
□ 그림설명
그림1. 빛으로부터 에오신 와이 (eosin Y, EY)를 통해 시토크롬 P450 효소로 전자를 전달하는 모식도
그림2. 연구결과를 설명하는 1월 12일자 ‘앙게반테 케미’ 후면 논문 표지
2015.01.21
조회수 16154
-
심장세포의 핵심 신호전달경로 스위치 규명
심장근육세포내 베타수용체 신호전달경로의 자극 세기에 따라 세포의 생존과 사멸이라는 상반된 운명이 어떻게 결정되는지 그 근본원리가 우리 학교 연구진에 의해 규명되었다. 향후 심부전을 비롯한 다양한 심장질환의 치료에 활용될 것으로 기대된다.
우리 학교 바이오및뇌공학과 조광현 석좌교수(교신저자)가 주도하고 신성영 박사(제1저자), 이호성 박사과정학생, 강준혁 박사과정학생이 참여하였으며, 광주과학기술원 생명과학부 김도한 교수팀이 공동으로 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업(도약/전략연구)과 바이오·의료기술개발사업 및 KAIST 미래형 시스템헬스케어사업의 지원으로 수행되었고, 연구결과는 네이처(Nature) 자매지인 네이처 커뮤니케이션스(Nature Communications)지에 12월 17일자로 게재되었다. * (논문명) The switching role of β-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes
베타수용체 신호전달경로는 심장근육세포의 생존을 촉진(베타2수용체 매개)하지만 동시에 심장근육세포의 사멸을 유도하기도 하여 심장독성을 유발(베타1수용체 매개)함으로써 심부전 등 다양한 심장질환을 일으킨다. 지금까지 베타수용체 신호전달경로에 의해 조절되는 심장근육세포의 상반된 운명결정과정(생존 혹은 사멸)에 대한 근본 원리를 밝히고자 하는 많은 시도가 있어왔으나 아직 밝혀지지 않았다. ※ 베타수용체(β-adrenergic receptor): 심장근육세포의 세포막에 존재하는 단백질로서 에피네프린이나 노르에피네프린 등의 신경호르몬에 의해 자극받으면 심장근육세포가 더 강하고 빠르게 수축하도록 촉진하는 신호를 전달한다.
연구팀은 대규모 컴퓨터시뮬레이션 분석과 세포생물학 실험의 융합연구인 시스템생물학 연구를 통하여 ERK* 신호전달경로와 ICER** 신호전달경로가 매개하는 피드포워드회로가 심장근육세포의 생존과 사멸을 결정하는 핵심 분자스위치임을 밝혀냈다.
* ERK(Extracellular signal-regulated kinases): 세포생존에 관여하는 신호전달분자 ** ICER(Inducible cAMP early repressor): 세포사멸에 관여하는 신호전달분자
약한 베타수용체의 자극에 대해서는 ERK 신호전달경로가 활성화되고 이로 인하여 Bcl-2*** 단백질의 발현량이 증가되어 심장근육세포의 생존이 촉진되지만, 강한 베타수용체의 자극에 대해서는 ICER 신호전달경로가 활성화되고 Bcl-2 단백질의 발현량이 감소하게 되어 심장근육세포의 사멸이 유발되는 것이다. *** Bcl-2(B-cell lymphoma 2): 세포생존 촉진에 핵심적인 역할을 하는 신호전달분자
또한 연구팀은 시스템생물학적 접근을 통해 실제 심부전 환자에게 널리 사용되는 약물인 베타차단제(β-blocker)****의 작동원리를 밝혀내었다. 심장근육세포에 베타1차단제를 처리하였을 때 강한 베타수용체 자극에서의 Bcl-2 발현량이 증가하고 이로 인하여 심장근육세포의 생존율이 향상되어 세포보호효과가 일어난다는 것을 발견함으로써, 베타차단제의 근본약리기전을 신호전달경로 수준에서 규명하였다. **** 베타차단제(β-blocker): 베타수용체의 활성화를 저해하는 약물이며, 심부전의 진행을 억제시키는 효과가 있어서 임상에서 가장 널리 처방되는 심부전 치료약물이다.
조광현 교수는 “정보기술(IT)과 생명과학(BT)의 융합연구인 시스템생물학 연구를 통해 지금껏 밝혀지지 않았던 베타수용체 신호전달경로에 의해 조절되는 심장근육세포의 상반된 운명결정과정에 대한 핵심 원리를 성공적으로 규명한 것으로 향후 심장근육세포운명의 제어 및 이를 통한 심부전 등의 다양한 심장질환 치료에 널리 활용될 것으로 기대된다.”고 밝혔다.
조광현 교수 연구팀은 IT와 BT가 융합된 시스템생물학 분야를 세계 최초로 개척해왔으며 특히 인체의 복잡한 질병과 관련된 신호전달네트워크의 모델링과 시뮬레이션 분석, 실험적 증명에 관한 혁신적인 연구를 수행해오고 있다. 지금까지 140여편의 국제저널논문을 게재하였으며, 2014년에는 Cell, Science, Nature 자매지에 연이어 연구성과를 게재하였다.
심장근육세포의 상반된 운명결정과정을 조절하는 핵심회로의 규명 및 제어기술 개발: 수학모델링과 대규모 컴퓨터시뮬레이션 분석을 통해 규명된 심장근육세포의 상반된 운명결정과정을 조절하는 핵심회로의 규명. ERK 신호전달경로와 ICER 신호전달경로가 매개하는 피드포워드회로는 심장근육세포의 생존과 사멸을 결정하는 핵심 분자스위치이다. 약한 베타수용체의 자극에 대해서는 ERK 신호전달경로(파란색 화살표)가 활성화되고 이로 인하여 Bcl-2의 발현량이 증가되어 결과적으로 심장근육세포의 생존이 촉진된다. 반면 강한 베타수용체의 자극에 대해서는 ICER 신호전달경로(빨간색 화살표)가 활성화되고, 이로 인해 Bcl-2의 발현량이 감소하게 되어 심장근육세포의 사멸이 유발된다. 이로서 심장근육세포의 사멸을 방지하면서 심장박동의 기능을 유지시킬 수 있는 원천제어기술의 토대가 마련되었다.
2014.12.26
조회수 17556
-
다빈치가 르네상스 이후에 태어났다면 모나리자를 어떻게 그렸을까
우리 학교 물리학과 정하웅 교수와 한양대학교 응용물리학과 손승우 교수는 중세부터 사실주의까지 약 1000년에 걸친 서양화 1만 여점의 빅데이터를 복잡계 이론으로 분석해 서양 미술의 변천사를 밝혀냈다. 또 이를 바탕으로 르네상스 시대의 대표 작품인 모나리자를 시대별로 재구성했다.
연구결과는 세계적인 과학저널 네이처(Nature)가 발행하는 ‘사이언티픽 리포트(Scientific Reports)’ 11일자 온라인판에 실렸으며 리서치 하이라이트로 선정되어 네이처 홈페이지 메인 화면에 소개되기도 했다.
최근 빅데이터가 관심을 받으면서 과학자들은 예술·인문학 자료를 전산화해 분석하려는 시도가 많이 있다. 이 같은 자료는 방대하고 복잡해서 다루기가 쉽지 않다. 연구자들은 빅데이터에서 질서를 찾기 위해 복잡계(Complex Systems) 과학 방법론을 이용하며 이를 ‘데이터 과학’이라고 한다.
그동안 회화에 사용된 물감의 구성 성분, 연대측정, 회화의 진위여부를 정량적으로 판별하는 방법 등에 관한 연구결과는 꾸준히 있었다. 하지만 서양 미술사 전반을 아우르는 대규모 분석에는 데이터가 충분하지 않았다.
연구팀은 헝가리 부다페스트 물리학 컴퓨터 네트워킹 연구센터(Computer Networking Centre of the Wigner Research Centre for Physics)에서 운영하는 온라인 갤러리에서 중세부터 19세기까지 디지털 형태의 서양회화 1만여 점을 모은 데이터를 기반으로 서양 미술을 객관적으로 분석할 수 있었다.
연구팀은 물리학에서 사용하는 상관 함수를 온라인 갤러리에서 취합된 서양 미술의 빅데이터에 적용해 분석한 결과 시간이 흐를수록 명암대비 효과가 점점 높아지는 경향이 있다는 사실을 밝혀냈다.
연구팀은 여기서 사용한 상관 함수를 잭슨 폴록의 드립 페인팅에 적용한 결과, 공간적인 명암대비 효과가 거의 없어 무작위로 만든 그림에 상당히 가깝다는 것을 분석해내기도 했다.
이와 함께 이 기간 동안 서양미술은 그림 속 물체의 윤곽선이 모호해지다 낭만주의 시대 무렵 다시 뚜렷해지는 변화가 있었다.
아울러 중세 시대에는 색상을 다양하게 사용하지 않았고 정치 및 종교적인 이유로 특정 염료만을 선호했다. 같은 이유로 당시에는 색을 직접 혼합하지 않고 오직 덧칠로만 다양한 색을 표현했다. 즉, 연구팀은 염료와 채색 방식으로 인한 중세 시대 색상 표현의 한계와 그 이후 변화를 분석해냈다.
정하웅 교수는 “물질세계의 복잡성에 대한 연구는 자연과학에서 오래된 주요 관심사였지만, 예술 및 인문사회분야와 관련한 체계적인 복잡성 연구는 인터넷 대중화 이후의 일”이라며 “이번 연구는 물질세계의 복잡성을 다루던 방법으로 인류의 귀중한 문화유산인 회화에서 숨은 복잡성을 찾아 구체적인 숫자로 제시했다는데 의의가 있다”고 말했다.
손승우 교수는 “학문 사이의 통섭은 이제 융·복합이라는 키워드로 우리 사회에 자리매김하고 있다”며 “학문간 더욱 활발한 대화를 통해 미술 분야를 넘어 예술 및 인문사회 분야에 숨겨진 복잡성을 더욱 폭넓게 이해하는 것이 필요하다”고 설명했다.
미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업의 지원으로 수행한 이번 연구는 KAIST와 한양대 교수진의 지도아래 KAIST 물리학과 김영호(28) 박사과정 학생이 주도했다.
동영상 링크 http://youtu.be/SFo0h1EU2aw
[자료 그림] 중세 회화와 드립 페인팅 비교: a은 중세 회화로 구성한 밝기 표면, b은 잭슨 폴록의 드립 페인팅 작품으로 구성한 밝기 표면이다. 각 픽셀의 밝기를 픽셀 위치의 높이로 두어 표면을 구성하고 각 밝기 표면에서 거리에 따른 평균 밝기차이 상관함수를 구했다. c와 d에서 빨간색 점은 그림에서 거리에 따른 평균 밝기차이 상관함수, 파란색 점은 그림을 무작위로 섞어서 만든 이미지에서 거리에 따른 평균 밝기차이 상관함수이다. 중세 회화와 다르게 잭슨 폴록의 드립 페인팅은 무작위로 섞어서 만든 이미지와 거리에 따른 평균 밝기차이 상관함수가 거의 차이가 없다. © 2014 The Polock-Krasner Foundation/ARS, NY - SACK, Seoul
1. 르네상스 시대의 대표 작품인 모나리자를 시대별 스타일에 맞게 재구성
2. 각 그림으로 표면을 구성하고 명암 대비 기법의 강도를 측정하는 짧은 영상. 선별한 그림을 중심으로 명암 대비 기법의 강도가 시대에 따라 증가하는 경향을 영상에서 확인할 수 있다.
3. 회화에서 밝기 표면을 구성하는 방법
4. 네이처 홈페이지(12월 11일)
2014.12.15
조회수 14484
-
초광대역 편광 회전 3D 메타물질 개발
우리 학교 기계공학전공 민범기 교수는 자연에 존재하지 않는 인공적인 메타물질*을 통해 빛의 편광을 광대역에서 제어하는데 성공했다.
*메타물질 : 자연계에 존재하지 않는 특성을 구현하기 위해 빛의 파장보다 작은 인공원자로 구성된 물질
향후 이 기술을 활용해 광대역 통신 및 디스플레이에 적용 가능한 다양한 광대역 광소자가 개발될 수 있을 것으로 기대된다.
레이저와 같이 편광돼 있는 빛으로 어떠한 물질이나 구조를 분석할 때는 일반적으로 빛의 편광 상태에 따라 결과가 달라지기 때문에 광학 실험실에서는 여러 가지 방법으로 빛의 편광을 조절해 사용한다.
이때 흔히 사용되는 것이 파장판이나 광활성 물질인데 이러한 광학 소자들의 성능은 파장에 따라 크게 달라지기 때문에 광대역에서 빛의 편광 조절기로 사용하기에는 한계가 있었다.
최근까지 강한 공진을 갖는 메타물질을 통해 매우 큰 광활성을 보이는 인공 물질을 개발하려는 연구가 활발히 진행돼 왔으나, 공진 주파수 부근에서 필연적으로 나타나는 분산으로 인해 광대역에서의 활용이 불가능했다.
* 광활성 : 특정 물질에서 빛이 진행할 때 빛의 편광면이 회전하는 현상 * 분산 : 파장에 따라 굴절률 등 빛의 성질이 달라지는 현상
민 교수 연구팀은 빛의 파장보다 매우 작은 크기의 나선형 구조들을 원대칭을 이루어 배열하고 연결해 빛의 파장 대비 약 1/10의 매우 얇은 두께에서도 편광을 파장에 상관없이 일정하게 회전 시킬 수 있음을 이론적, 실험적으로 증명했다. 이론 검증을 위한 실험은 마이크로파 대역에서 이뤄졌다.
‘광대역 편광 회전 3D 메타물질’은 입사된 마이크로파의 편광을 0.1GHz 부터 40GHz 까지 주파수에 상관없이 45도 회전시키는 것으로 나타났다. 이러한 비분산 성질은 매우 비자연적인 것으로, 이 정도의 넓은 파장 대역에서 성질이 변하지 않는 물질은 자연계에서 찾기 힘들다.
이와 함께 민 교수팀은 편광 회전량을 결정하는 성질인 ‘나사선성(chirality)’을 파장에 비례한 값을 갖도록 메타 물질의 구조를 인위적으로 설계해 광대역 비분산 편광 회전 성질을 구현해냈다.
민 교수는 “이번 연구는 파장보다 매우 얇은 두께에서도 빛의 편광을 광대역에서 효과적으로 조절할 수 있어 초박형 광대역 광소자를 구현하기 위한 가능성을 열었다”고 연구 의의를 밝혔다.
미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업과 파동에너지 극한제어 사업의 지원을 받아 민범기 교수 지도아래 박현성 박사과정 학생(제1저자, 27)이 주도한 이번 연구결과는 네이처(Nature)의 자매지인 네이처 커뮤니케이션즈(Nature Communications) 11월 17일자 온라인 판에 게재됐다.
그림1. 3D 프린터를 통해 제작된 ‘초광대역 편광 회전 3D 메타물질’
그림2. ‘초광대역 편광 회전 3D 메타물질’의 개념도
2014.11.25
조회수 14635
-
공기를 이용한 가스하이드레이트 생산법 개발
그동안 전 세계적으로 석탄이나 석유를 능가하는 막대한 미래 에너지자원인 가스하이드레이트를 안정적으로 생산할 수 있는 방법을 찾으려고 심혈을 기울여 왔으나 뚜렷한 해답을 찾지 못하고 있다.
기존의 기술들이 지닌 한계성도 있지만, 해저 지층의 일부를 이루고 있는 가스하이드레이트 층의 붕괴로 인한 지반 침하 및 해저 생태계 파괴와 같은 엄청난 지구적 재앙과 피해를 극복할 획기적 기술이 아직 나오지 않고 있다.
우리 학교 생명화학공학과 이흔 교수팀은 해저에 묻혀 있는 가스하이드레이트 층을 거의 손상하지 않고 얼음 결정 형태로 이루어진 하이드레이트 구조에 갇혀있는 막대한 양의 천연가스를 회수하고, 대신 그 빈자리에 지상에서 주입된 공기나 공기와 혼합가스를 집어넣는 획기적인 개념을 수립했다.
연구팀은 다양한 조건의 가스하이드레이트 층에 해리와 맞교환이 동시에 일어나는 새로운 개념의 회수원리를 직접 적용해 자발적 천연가스 생산을 완벽히 입증했다.
이러한 공기 주입법은 이산화탄소 격리 저장과 해저 에너지 자원을 개발 생산하는 문제를 동시에 해결할 수 있는 새로운 개념의 원천기술이다.
자연현상 원리로 진행되는 천연가스 생산과정은 국내외에 특허 등록 및 출원됐으며 우리나라의 독보적인 기술로 KoFAST-2(Korea Field-Adapted Swapping Technology, 한국 필드 적응형 맞교환기술)라고 명명했다.
이에 앞서 이흔 교수팀이 개발해 국내외에 특허가 등록된 KoFAST-1은 이미 전 세계에 주목을 받고 있으며, 미국 메이저 석유가스회사인 코노코필립스(ConocoPhillips)가 2012년 4월 미국 알라스카 노스슬로프(North Slope)에 이산화탄소와 질소 혼합가스를 주입해 천연가스를 성공적으로 시험 생산함으로써 KoFAST 기술의 상업화 검증이 이루어졌다.
이번에 개발된 KoFAST-2에서는 대기 중의 공기를 직접 이용함으로써 생산 비용과 효율을 획기적으로 향상시켰다.
KoFAST-2는 KoFAST-1 보다 광범위한 천연 가스하이드레이트 필드에 적용 가능한 기술로, 기존 맞교환 기술의 잠재성을 최대한으로 끌어올린 신기술이다.
이흔 교수는 이번 연구에 대해 “셰일가스와 함께 차세대 에너지 양대 축인 가스하이드레이트 생산 원천기술을 국내에서 확보함으로써 전 세계 에너지자원 개발에 전환적 돌파구를 마련했다”며 “우리나라 동해에 부존된 막대한 양의 에너지자원 확보에도 절대적 기여가 가능할 것으로 기대된다”고 말했다.
이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업과 산업통상자원부 가스하이드레이트사업으로 수행됐다.
<그림설명> 공기를 이용한 심해 가스하이드레이트 생산 모식도
2014.10.27
조회수 13263
-
신기루 현상 착안해 테라헤르츠파 광학렌즈 개발
무더운 여름, 아스팔트 도로에 물웅덩이가 보이다가 가까이 다가가면 사라지고 좀 가다보면 또 물웅덩이가 나타난다. ‘신기루’라고 불리는 이 현상은 지표면 가까운 공기층의 큰 온도차로 인한 공기밀도 변화로 빛이 굴절되기 때문이다.
우리 학교 바이오및뇌공학과 정기훈 교수는 물리학과 안재욱 교수와 신기루 현상에서 착안한 물리적 효과를 이용해 테라헤르츠파 굴절률 분포형 렌즈를 세계 최초로 개발했다.
실리콘 소재를 곡면으로 가공해 만드는 카메라렌즈에 사용되는 기존방식과는 달리 이번에 개발된 렌즈는 평평한 실리콘 웨이퍼를 소재로 반도체 양산공정으로 제작해 비용을 최대 1/100 수준으로 낮출 수 있으며 제작시간도 훨씬 단축시킬 수 있다. 광원 추출효율은 4배 이상 향상시켰다.
테라헤르츠파는 0.1THz~30THz(테라헤르츠, 1조헤르츠) 대역의 전자기파로 가시광선이나 적외선보다 파장이 길어 X선처럼 물체의 내부를 높은 해상도로 정확히 식별할 수 있어 보안검색, 의료영상기술 등 비파괴 검사 도구나 의료용 진단기구의 성능을 획기적으로 향상시킬 수 있을 것으로 전망된다.
그러나 넓은 대역의 주파수 특성으로 인해 손실되는 전자기파의 비율이 높아 테라헤르츠파를 높은 효율로 집중시킬 수 있는 광학소자 개발이 요구됐다.
정 교수 연구팀은 평평한 실리콘에 테라헤르츠파 파장(약 300㎛) 보다 작은 80~120㎛ 크기의 구멍을 반도체 양산방법인 광식각공정으로 만들었다. 렌즈 가장자리로 갈수록 홀 사이즈는 크게 만들었다.
테라헤르츠파를 쪼이자 공기와 실리콘 중 공기 비율이 높은 가장자리는 굴절률이 낮았으며, 상대적으로 공기의 비율이 낮은 가운데는 굴절률이 높았다. 평평한 소재를 광학특성을 공학적으로 설계해 빛을 모으는 볼록렌즈와 같은 기능을 한 것으로 신기루 현상과 같은 물리적 효과와 같다.
이번 연구를 주도한 정기훈 교수는 “자연현상에서 착안해 자연계에 존재하지 않는 다양한 광학특성을 띄는 메타물질을 인공적으로 만든 것”이라며 “물질적 제약으로 인해 다양한 광학소자개발이 더딘 테라헤르츠파 기술 진보에 상당한 도움이 될 것”이라고 연구의의를 밝혔다.
미래창조과학부가 지원하는 한국연구재단의 도약연구자지원사업, 그린나노기술개발사업, 글로벌프론티어사업의 일환으로 수행된 이번 연구는 미국물리협회에서 발간하는 귄위 있는 국제학술지인 ‘어플라이드 피직스 레터(Applied Physics Letter)’에 9월자 특집논문 및 표지논문(제1저자 박상길 박사과정)으로 게재됐다.
그림1. 유전체 메타물질을 이용한 실리콘 굴절률 분포형 렌즈. 머리카락 굵기(80~120µm) 수준의 구멍이 실리콘 기판에 서로 다른 크기로 형성돼 있다.
그림2. 굴절률 분포형 렌즈 원리
그림3. 신기루 현상신기루는 아스팔트 도로 위에서 흔하게 나타나는 대기 굴절 현상이다. 이 현상은 도로면이 물체를 반사하는 것처럼 보이게 하는데 이 때문에 도로면에 물웅덩이가 있는 것처럼 착각하게 된다. 아래 사진에는 멀리서 다가오는 차의 상이 도로면을 통해 보인다. <사진 : 경기북과학고등학교 조영우 선생님 제공>
그림4. 논문표지
2014.09.24
조회수 20145