-
초대규모 그래프 프로세싱 시뮬레이션 기술 개발
우리 대학 연구진이 오늘날 정보통신(IT) 분야에서 광범위하게 사용되는 그래프 타입의 데이터를 실제로 저장하지 않고도 알고리즘을 계산할 수 있는 `그래프 프로세싱 시뮬레이션'이라는 신개념 기술을 세계 최초로 개발하는 데 성공했다. 데이터를 저장할 필요가 없어 1조 개 간선의 초대규모 그래프도 PC 한 대로 처리가 가능하다.
우리 대학 전산학부 김민수 교수 연구팀은 1조 개 간선의 초대규모 그래프에 대해 데이터 저장 없이 알고리즘을 계산할 수 있는 신개념 기술을 세계 최초로 개발했다고 23일 밝혔다.
오늘날 웹, SNS, 인공지능, 블록체인 등의 광범위한 분야들에서 그래프 타입의 데이터에 대한 다양한 알고리즘들의 연구가 매우 중요하다. 그러나 그래프 데이터의 복잡성으로 인해 그 크기가 커질 때 막대한 규모의 컴퓨터 클러스터가 있어야만 알고리즘 계산이 가능하다는 문제가 있다.
김 교수 연구팀은 이를 근본적으로 해결하는 T-GPS(Trillion-scale Graph Processing Simulation)라는 기술을 개발했다. 이 T-GPS 기술은 그래프 데이터를 실제로 디스크에 저장하지 않고도 마치 그래프 데이터가 저장돼 있는 것처럼 알고리즘을 계산할 수 있고, 계산 결과도 실제 저장된 그래프에 대한 알고리즘 계산과 완전히 동일하다는 장점이 있다.
그래프 알고리즘은 그래프 처리 엔진 상에서 개발되고 실행된다. 이는 산업적으로 널리 사용되는 SQL 질의를 데이터베이스 관리 시스템(DBMS) 엔진 상에서 개발하고 실행하는 것과 유사한 방식이다.
지금까지는 그래프 알고리즘을 개발하기 위해 먼저 합성 그래프를 생성 및 저장한 후, 이를 다시 그래프 처리 엔진에서 메모리로 적재해 알고리즘을 계산하는 2단계 방법을 사용했다. 그래프 데이터는 그 복잡성으로 인해 전체를 메모리로 적재하는 것이 요구되며, 그래프의 규모가 커지면 대규모 컴퓨터 클러스터 장비가 있어야만 알고리즘을 개발하고 실행할 수 있다는 커다란 단점이 있었다.
김 교수팀은 합성 그래프와 그래프 처리 엔진 분야에서 국제 최고 권위의 학술대회에 매년 논문을 발표하는 등 세계 최고의 기술력을 보유하고 있으며, 그 기술들을 바탕으로 기존 2단계 방법의 문제를 해결했다.
그래프 데이터상에서 그래프 알고리즘이 계산을 위해 접근하는 부분을 짧은 순간 동안 실시간으로 생성해, 마치 그래프 데이터가 존재하는 것처럼 알고리즘을 계산하는 것이다. 이때 그래프 데이터를 아무렇게 실시간 생성하는 것이 아니라 합성 그래프 모델에 따라 생성하고 저장한 것과 동일하도록 실시간 생성하는 것이 핵심 기술 중 하나다.
또한, 그래프 처리 엔진이 실시간으로 생성되는 그래프를 실제 그래프처럼 인식하고 알고리즘을 완전히 동일하게 계산하도록 엔진을 수정한 것이 또 다른 핵심 기술이다.
김민수 교수 연구팀은 T-GPS 기술을 종래의 2단계 방법과 성능을 비교한 결과, 종래의 2단계 방법이 11대의 컴퓨터로 구성된 클러스터에서 10억 개 간선 규모의 그래프를 계산할 수 있었던 반면, T-GPS 기술은 1대의 컴퓨터에서 1조 개 간선 규모의 그래프를 계산할 수 있어 컴퓨터 자원 대비 10,000배 더 큰 규모의 데이터를 처리를 할 수 있음을 확인했다. 또한, 알고리즘 계산 시간도 최대 43배 더 빠름을 확인했다.
교신저자로 참여한 김민수 교수는 "오늘날 거의 모든 IT 분야에서 그래프 데이터를 활용하고 있는바, 연구팀이 개발한 새로운 기술은 그래프 알고리즘의 개발 규모와 효율을 획기적으로 높일 수 있어 산업적 측면에서 파급 효과가 매우 클 것으로 기대한다ˮ 라고 말했다.
이번 연구에는 김 교수의 제자이자 캐나다 워털루 대학에 박사후 연구원으로 재직 중인 박힘찬 박사가 제1 저자로, 김 교수가 교신저자로 참여했으며 지난 22일 그리스 차니아에서 온라인으로 열린 데이터베이스 분야 최고 국제학술대회 중 하나인 IEEE ICDE에서 발표됐다. (논문명 : Trillion-scale Graph Processing Simulation based on Top-Down Graph Upscaling).
한편, 이 연구는 한국연구재단 선도연구센터 사업 및 중견연구자 지원사업, 과기정통부 IITP SW스타랩 사업의 지원을 받아 수행됐다.
2021.04.23
조회수 24712
-
남택진 교수팀, 레드닷 어워드 2021 대상 수상
우리 대학 남택진 산업디자인학과 교수팀이 세계 최대 규모의 디자인 공모전인 독일 ʻ레드닷 디자인 어워드(Red Dot Design Award) 2021ʼ 제품디자인 부문에서 대상(best of the best award)을 받았다. 수상작은 남 교수팀이 개발한 ʻ코로나 중증 환자 치료용 이동형 감염병동(mobile clinic module, MCM)ʼ이다. 올해 공모전에는 60여 개국에서 총 7천8백여 개의 작품이 출품돼 제품 디자인·커뮤니케이션 디자인·콘셉트 디자인 등 3개 분야에서 경쟁을 펼쳤다. 주최 측은 "수상작들이 자동차·로봇·의료 기술·포장에 이르기까지 디자인을 통해 현대 사회가 가진 문제를 해결하고 인류의 생활 수준을 향상하는 데 중요한 역할을 했다ˮ라고 밝혔다. 특히, 남 교수팀의 이동형 감염병동은 "제품 디자인이 감염병 확산을 방지하는 일에 얼마나 가치 있게 기여할 수 있는지를 보여줬다ˮ라고 평가했다.
이동형 감염병동의 쾌거는 이뿐만이 아니다. 레드닷 디자인 어워드(Red Dot Design Award)와 함께 세계 최고 권위의 디자인 공모전으로 손꼽히는 iF 디자인 어워드(International Forum Design Award) 2021에서도 제품·실내건축·사용자인터페이스·사용자경험 등 총 4개 분야에서 본상을 수상했다.
이로써, 남 교수팀의 이동형 음압병동은 국제 권위의 디자인 공모전을 연이어 석권하며 기능성·경제성·효용성뿐만 아니라 독창적 디자인과 심미성까지 갖춘 의료 시설로서 가치를 인정받게 됐다.
이동형 음압병동은 고급 의료 설비를 갖춘 음압 격리 시설로 신속하게 변형하거나 개조해 사용할 수 있도록 디자인됐다. 음압 프레임·에어 텐트·기능 패널 등의 각 모듈을 조합해 단시간 내에 음압 병동이나 선별진료소 등을 구축할 수 있다. 또한, 소규모의 장비와 인력으로도 관리·이송·설치가 가능해 기존의 조립식 병동 대비 경제적·시간적 효율을 높인 것이 가장 큰 특징이다. 남택진 교수팀은 작년 7월부터 KAIST 코로나 대응 과학기술 뉴딜사업(단장 배충식)의 일환으로 이동형 음압병동을 개발했다. 조스리 스튜디오·20Plus 등과 협력해 디자인을 진행했고 신성이엔지가 제작을 담당했다. 배상민(산업디자인학과)·이태식(산업및시스템 공학과)·김형수(기계공학과) 교수 등이 자문했으며, 석현정(산업디자인학과), 박해원·김성수(기계공학과), 한동수(전산학과) 교수 등이 감염병원 서비스 주제로 연구에 참여했다. 현재 한국 원자력의학원·제주도 백신 접종센터에 시제품이 설치돼 코로나 환자 및 백신 접종자들을 대상으로 시범 운영 중이다. 향후, 건양대 병원 등으로 적용 범위를 확대해나갈 예정이다. 디자인 총괄한 남택진 교수는 "현실 세계의 문제를 발견하고 해결하여 책임지는 디자이너가 더 많아지기를 바란다ˮ라고 수상 소감을 전했다. 이어, 남 교수는 "MCM의 생산 효율성과 안정된 운영을 위해 엔지니어링 디자인 측면을 개선하는 연구를 진행 중이며, 빠른 시일 내에 상용화와 수출이 이뤄질 수 있도록 박차를 가할 예정이다ˮ라고 전했다. KAIST 코로나 대응 과학기술 뉴딜사업단은 KAIST의 과학기술 역량을 기반으로 감염 예방·보호·진단·치료 등 감염병의 전 주기에 대응하는 치료 분야에서 산·학·연·병이 협력해 방역 요소기술 개발과 과학기술 기반의 방역 시스템을 구축하는 연구를 수행하고 있다.
2021.04.19
조회수 43861
-
이수현 교수팀, 뇌 복부선조영역의 새로운 기억관련 기능 규명
우리 대학 바이오및뇌공학과 이수현 교수 연구팀과 서울대학교 생명과학부 김형 교수 연구팀이 공동연구를 통해 복부선조영역(ventral striatum)에서 습관행동을 제어하는데 필요한 장기기억이 자동적으로 인출된다는 사실을 밝혔다. 이러한 복부선조영역의 기능을 그 영역과 회로별로 규명하는 것은 인간에게 직접 적용할 수 있는 뇌질환 치료방법 개발과 뇌영역 맞춤형 치료의 이론적 기반이 될 수 있다.
뇌의 복부선조영역은 새로운 가치학습에 중요하며, 중독행동과 조현병 관련 행동에도 연관된 것으로 알려져 왔지만 이러한 행동에 기반이 될 수 있는 기억정보를 처리하고 있는지에 대해서는 불분명했다.
이에 연구팀은 기능적 자기공명뇌영상과 전기생리학적 뇌세포 활성측정법을 모두 이용해 과거에 학습한 물체를 의식적으로 인지하고 있지 않는 상황에서도 복부선조에서 과거에 배운 좋은 물체에 대한 장기기억정보가 활발하게 처리되고 있다는 사실을 밝혀냈다.
또한 자동적으로 인출된 좋은 물체에 대한 기억은 무의식적이며 자동적인 행동, 즉 습관행동을 제어하고, 이를 통해 동물이 장기기억을 기반으로 최대이익을 얻을 수 있는 자동적 의사결정(automatic decision-making) 과정에 사용된다는 실험적 증거를 제시했다.
바이오및뇌공학과 뇌인지공학프로그램 강준영 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제학술지 네이쳐 커뮤니케이션즈(Nature Communications)에 4월 8일(목) 게재됐다.
복부선조영역에서 기억의 자동적 인출과정을 이해함으로써 자동적 행동인 습관과 중독행동 제어의 이론적 기반을 다지고, 나아가 기억의 자동인출(automatic retrieval)과 연관된 현저성(salience) 이상으로 조현병을 이해할 수 있는 이론적 발판을 마련한 것에 이번 연구의 의의가 있다고 볼 수 있다.
이번 연구는 한국연구재단 뇌질환극복사업 및 개인기초연구지원사업 등의 지원을 받아 수행됐다.
2021.04.09
조회수 70105
-
미생물 이용한 천연 붉은 색소 생산 기술 최초개발
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 `식용으로 널리 쓰이는 붉은색 천연색소인 카르민산을 생산하는 미생물 균주 개발'에 성공했다고 9일 밝혔다.
이번 연구결과는 국제 학술지인 `미국화학회지(Journal of the American Chemical Society)'에 4월 2일 字 온라인 게재됐다.
※ 논문명 : Production of carminic acid by metabolically engineered Escherichia coli
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 양동수(한국과학기술원, 제1저자), 장우대(한국과학기술원, 제2저자), 포함 총 3명
카르민산은 붉은색 천연색소로 딸기우유, 사탕 등의 식품과 매니큐어, 립스틱 등 화장품 분야에서 널리 활용되고 있다. 카르민산은 연지벌레 추출을 통해 얻어지는데, 연지벌레는 한정된 지역(페루, 카나리아 제도 등지)에서만 재배할 수 있으며, 연지벌레로부터 카르민산을 추출하기 위해서는 복잡하고 비효율적인 다단계 반응을 거쳐야 한다.
또한, 카르민산은 대부분 연지벌레에서 기인한 단백질 오염물질을 포함하고 있는데 이는 알레르기 반응을 유발할 수도 있으며, 많은 사람이 벌레 기반 물질을 섭취하는 것을 꺼리고 있다. 이러한 이유로 몇몇 프랜차이즈 업체는 카르민산 사용을 중단하고 대체 식용색소를 활용하고 있다.
이에 따라 연지벌레를 사용하지 않는 카르민산 생산 방법 개발의 필요성이 제기됐으나, 카르민산 생합성 경로의 일부가 아직 밝혀지지 않았으며 곰팡이를 제외한 다른 미생물에서 카르민산 생산이 보고된 바가 없었다.
이에 이상엽 특훈교수 연구팀은 포도당으로부터 카르민산을 생산할 수 있는 대장균 균주 개발 연구를 수행했다.
연구팀은 우선 타입 II 폴리케타이드 생합성 효소를 최적화해 카르민산의 전구체(전 단계의 물질)를 생산하는 대장균 균주를 구축했다. 하지만 남은 두 단계의 반응을 수행하기 위한 효소가 아직 발굴되지 않았거나 대장균 내에서 작동하지 않는 문제가 있었다. 이러한 문제를 해결하기 위해 연구팀은 생화학 반응 분석을 통해 카르민산 생산을 위한 효소 후보군을 선정했다. 그 후 세포 배양 실험을 통해 성공적으로 작동하는 효소들을 선정했다.
이렇게 선정된 효소 두 종에 대해 컴퓨터 기반 상동 모형 및 도킹 시뮬레이션을 수행 후 활성이 증대된 돌연변이 효소를 예측했다. 그 후 이에 기반을 둔 효소 개량을 수행함으로써 증대된 활성을 지니는 효소를 개발하는 데 성공했다.
이번 연구를 통해 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스의 주원료인 포도당을 단일 탄소원으로 사용해 카르민산을 생산하는 대장균 균주를 최초로 개발했다고 연구팀 관계자는 설명했다.
연구팀이 개발한 대사공학 및 가상 시뮬레이션 기반 효소 개량 전략은 생산경로가 규명되지 않은 다른 천연물의 생산에도 유용하게 쓰일 것으로 기대된다. 연구팀은 이번 연구에서 개발한 C-글리코실 전이효소를 적용해 카르민산 뿐만 아니라 알로에로부터 생산 가능했던 미백제인 알로에신 생산에도 세계 최초로 성공함으로써 이를 증명했다.
이상엽 특훈교수는 “연지벌레를 사용하지 않는 카르민산 생산 프로세스를 세계 최초로 개발했으며, 이번 연구는 특히 천연물 생산의 고질적인 문제인 효소 발굴과 개량에 대한 효과적인 해결책을 제시했다는 점에 의의가 있다”며 “이번 기술을 활용해 의학적 또는 영양학적으로 중요한 다양한 천연물을 고효율로 생산할 수 있을 것”이라고 밝혔다.
한편 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 '바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제'의 지원을 받아 수행됐다.
2021.04.09
조회수 72456
-
양용수 교수팀, 나노물질 표면과 내부 3차원 원자구조 규명
우리 대학 물리학과 양용수 교수 연구팀이 인공신경망을 이용한 주사투과전자현미경(STEM) 기반 원자분해능 전자토모그래피 기술을 개발, 이를 적용해 백금 나노입자 표면과 내부의 3차원 원자 구조를 15 pm(피코미터)의 정밀도로 규명했다. 1 pm(피코미터)는 1 미터의 1조 분의 일에 해당하는 단위로, 15 pm의 정밀도는 수소 원자 반지름의 약 1/3 정도에 해당하는 매우 높은 수준이다.
전자토모그래피는 전자현미경으로 다양한 각도에서 측정된 2차원 투영된 이미지로부터 3차원 이미지를 얻어내는 기술이다. 최근 주사투과전자현미경과 3차원 토모그래피 재구성 알고리즘의 기술 발전으로 전자토모그래피의 분해능은 단일 원자까지 구분할 수 있는 수준에 이르렀다. 이를 통해 많은 나노물질의 구조와 물성의 근본적인 이해가 가능해졌다.
그러나 일반적인 전자토모그래피 실험에서는 시편을 탑재한 홀더 또는 그리드가 전자빔을 가리게 되는 실험적 제약으로 인해 고 각도(약 75도 이상)의 이미지 측정이 불가능하다. 이로 인해 고 각도 방향의 분해능이 저하되고, 재구성된 3차원 이미지에 원치 않는 노이즈들이 생겨난다. 이러한 현상을 손실 웨지 문제(missing wedge problem)라 부르며, 이러한 문제 때문에 기존의 전자토모그래피 방법으로는 표면/계면의 3차원 원자 구조를 고분해능으로 측정하기 힘들었다.
양용수 교수 연구팀은 인공신경망을 이용해 고 각도 방향의 데이터를 복원함으로써 이러한 손실 웨지 문제(missing wedge problem)를 해결하는 데 성공했다. 이를 통해 고분해능 3차원 표면/계면 원자 구조의 결정이 가능하게 됐고, 나노물질의 표면/계면에서 나타나는 물성의 메커니즘을 단일 원자 수준에서 근본적으로 해석할 수 있게 됐다.
물리학과 이주혁 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 3월 30일 字 게재됐다. (논문명 : Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography)
연구팀은 모든 물질은 원자들로 구성돼 있다는 원자성(atomicity)에 근거해 원자 구조 토모그래피 3차원 데이터를 시뮬레이션을 통해 생성했다. 고 각도의 데이터가 손실된 불완전한 원자 구조 토모그래피 3차원 데이터와 이상적인 원자 구조 3차원 데이터 사이의 상관관계를 학습시키기 위해 인공지능 신경망(3d-unet기반 모델)을 지도학습했다. 원자성에 기반해 학습된 인공지능 신경망은 손실된 고 각도 데이터를 성공적으로 복원함으로써 손실 웨지 문제로 인한 분해능 저하 문제를 해결했다. 이는 높은 정밀도의 3차원 표면/계면 원자 구조 규명을 가능하게 한다.
연구팀은 개발된 인공신경망 기반 전자토모그래피 기술을 이용해 실제 백금 나노입자의 3차원 표면 및 내부 구조를 단일 원자 수준에서 규명할 수 있었다. 원자 구조의 정밀도는 인공신경망 적용 전 26 pm에서 적용 후 15 pm으로 큰 폭으로 향상됐다.
연구를 주도한 양용수 교수는 "인공신경망 기반 전자토모그래피는 구성 원소, 물질의 구조/형태에 의존하지 않는 매우 일반적인 방법으로서, 전자토모그래피로 얻은 원자 구조 부피데이터에는 종류에 상관없이 바로 적용할 수 있다ˮ며 "이를 통해 많은 물질의 3차원 표면/계면 원자 구조가 정밀하게 규명되고, 표면/계면에서 일어나는 물성과 이에 연관된 메커니즘의 근본적인 이해를 바탕으로 고성능 촉매 개발 등에 응용될 것ˮ이라고 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단 개인기초연구지원사업 및 KAIST 글로벌 특이점 사업(M3I3)의 지원을 받아 수행됐다.
2021.04.05
조회수 82068
-
조현병의 새로운 원인을 규명했다
우리 대학 의과학대학원 이정호 교수 연구팀이 미국 스탠리 의학 연구원(Stanley Medical Research Institute) 김상현 박사팀과 공동연구를 통해 후천적으로 발생한 뇌 특이적 체성 유전변이가 조현병(舊 정신분열증) 발병에 크게 기여하고 있음을 규명했다고 11일 밝혔다.
의과학대학원 김명희 박사, 김일빈 박사과정 연구원이 공동 제1 저자로 참여한 이번 연구내용은 정신의학 분야 국제 학술지 `생물 정신의학회지(Biological Psychiatry)'에 지난달 4일 字 온라인 게재됐다. (논문명 : Low-level brain somatic mutations are implicated in schizophrenia)
조현병은 전 세계적으로 100명당 1명의 높은 비율로 발병되는 질환이지만, 근본적인 원인은 분명히 규명되지 않고 있다. 기존의 연구들은 조현병의 유전적 원인 규명을 위해 주로 환자의 말초조직인 혈액이나 침에서 돌연변이 연구를 진행했으나, 혈액이나 침에서는 조현병의 분자 유전학적 원인을 완벽하게 밝혀내지 못하고 있었다.
이에 연구팀은 혈액이나 침에서 검출되지 않는, 환자 뇌에서만 존재하는 뇌 특이 체성 유전변이(Somatic mutation)가 조현병의 병리에 영향을 미칠 가능성을 주목했다.
연구팀은 27명의 조현병 환자에게서 얻은 사후 뇌 조직에 `전장 엑솜 유전체 서열(Whole-exome sequencing) 기법'을 적용해 조현병 환자의 뇌에 존재하는 뇌 특이 체성 유전변이를 찾아냈다. 이를 위해 연구팀은 고심도 전장 엑솜 유전체 서열 분석기법을 통해 저빈도의 체성 유전변이를 정확히 찾아내기 위한 독자적 분석 파이프라인을 구축했다.
또한 조현병 환자의 뇌 조직에서 발견된 뇌 특이적 체성 유전변이가 뇌 신경 정보 교환 및 신경 발달에 중요한 역할을 하는 유전자상에 주로 분포하는 것을 발견, 환자의 뇌 체성 유전변이가 뇌 신경회로를 망가뜨려 조현병의 원인이 될 수 있음을 보였다.
논문의 주저자인 김명희 박사는 "우리 주변에서 흔히 발견되지만, 원인이 분명하지 않아 배척돼 온 조현병의 원인 규명에 한 발짝 다가갈 수 있어 기쁘다ˮ며 "이번 연구를 기반으로 조현병의 발병 원인이 더 분명해져 환자뿐 아니라 그 주변 사람들까지 질병으로 인한 고통에서 벗어날 수 있게 되면 좋겠다ˮ라고 말했다.
연구팀의 발견은 조현병의 발병에 체성 유전변이가 중요한 역할을 하고 있음을 밝혀내 조현병의 새로운 발병 원리를 규명함과 동시에, 조현병 연구에 새로운 틀을 제시함으로써 향후 다른 신경정신질환의 연구에도 크게 기여할 수 있을 것으로 기대된다. 또한 연구팀은 우리 대학 교원 창업 기업인 소바젠(대표 김병태)과 협력을 통해 뇌 체성 돌연변이 연관 조현병 환자 진단과 치료법 개발을 진행할 계획이다.
한편 이번 연구는 서경배 과학재단, 보건복지부 및 스탠리 의학 연구원의 지원을 받아 수행됐고, 신속한 유전체 빅데이터 분석을 위해 KISTI의 슈퍼컴퓨터 5호기 누리온 시스템이 활용됐다.
2021.03.11
조회수 97314
-
천 배 넘게 응축된 빛 관측 성공
우리 대학 전기및전자공학부 장민석 교수가 이끄는 국제 공동 연구팀이 그래핀 나노층 구조에 천 배 넘게 응축돼 가둬진 중적외선 파동의 이미지를 세계 최초로 얻어내 초미시 영역에서 전자기파의 거동을 관측했다고 2일 밝혔다.
연구팀은 수 나노미터 크기의 도파로에 초고도로 응축된 `그래핀 플라즈몬'을 이용했다. 그래핀 플라즈몬이란 나노 물질 그래핀의 자유 전자들이 전자기파와 결합해 집단으로 진동하는 현상을 말한다. 최근 이 플라즈몬들이 빛을 그래핀과 금속판 사이에 있는 아주 얇은 유전체에 가둬 새로운 모드를 만들 수 있다는 사실이 밝혀졌다.
이러한 그래핀-유전체-금속판 구조에서는, 그래핀의 전하들이 금속판에 영상 전하(image charge)를 만들게 되고 빛의 전기장에 의해 그래핀의 전자들이 힘을 받아 진동하게 되면 금속에 있는 영상 전하들도 잇따라 진동하게 된다. 이러한 새로운 형태의 그래핀-유전체-금속판에서의 집단적인 전자 진동 모드를 `어쿠스틱' 그래핀 플라즈몬(Acoustic Graphene Plasmon; 이하 AGP)이라고 한다.
하지만 AGP는 광학적 파동을 수 나노미터 정도의 얇은 구조에 응집시키기 때문에, 외부로 새어 나오는 전자기장의 세기가 매우 약하다. 이 때문에 지금까지 직접적인 광학적 검출 방법으로는 그 존재를 밝혀내지 못했으며 원거리장 적외선 분광학이나 광전류 매핑과 같은 간접적인 방법으로 AGP의 존재를 보일 수밖에 없었다.
이러한 한계점을 극복하기 위해, 국제 공동 연구팀은 새로운 실험 기법과 나노 공정 방법론을 제안했다. KAIST 전기및전자공학부의 장민석 교수와 메나브데 세르게이(Sergey Menabde) 박사 후 연구원은 민감도가 매우 높은 산란형 주사 근접장 광학현미경(s-SNOM)을 이용해 나노미터 단위의 도파로를 따라 진동하는 AGP를 세계 최초로 직접적으로 검출했고, 중적외선이 천 배 넘게 응축된 현상을 시각화했다. 해당 나노 구조들은 미국의 미네소타 대학(University of Minnesota)의 전자 및 컴퓨터 공학부의 오상현 교수팀이 제작했으며, 그래핀은 성균관대학교의 IBS 나노구조물리연구단(이하 CINAP) 이영희 연구단장팀이 합성했다.
연구팀은 AGP 에너지의 대부분이 그래핀 아래에 있는 유전체층에 집중된 상황에서도 AGP를 검출했는데, 이는 오상현 교수와 이인호 박사 후 연구원이 만든 고도로 반듯한 나노 도파로와 CINAP에서 합성한 순도 높은 대면적 그래핀 덕분에 플라즈몬이 보다 긴 거리를 전파할 수 있는 환경이 조성됐기 때문이다.
중적외선 영역의 전자기파는 다양한 분자들이 가지고 있는 진동 주파수와 일치하는 주파수를 가지고 있어 이들의 화학적, 물리적 성질을 연구하는데 막대한 비중을 차지한다. 예를 들어, 많은 중요한 유기 분자들이 중적외선 흡수 분광학으로 검출될 수 있다. 하지만 한 개의 분자와 빛 간의 상호작용은 매우 작아 성공적인 검출을 위해서는 분자의 개수가 많아야 한다. AGP는 초고도로 응축된 전자기장을 통해 분자와 빛의 상호작용을 크게 높일 수 있으며 결국 한 개의 분자로도 작동하는 단분자 검출 기술을 가능하게 한다.
또한, 일반적인 그래핀 플라즈몬 기반의 광학 장치들은 그래핀에서의 큰 에너지 흡수율 때문에 높은 성능을 보이기 어렵다. 반면 AGP의 전자기장은 대부분이 그래핀이 아닌 유전체층에 존재하기 때문에 그래핀에서 에너지 손실에 덜 민감하므로 고성능 소자 구현에 유리하다. 이번 연구 결과는 AGP가 중적외선 영역에서 작동하는 다른 그래핀 기반의 메타 표면, 광학적 스위치, 다양한 광전류 장치 등을 대체할 수 있을 것이라는 희망을 보여준다.
장민석 교수는 "이번 연구를 통해 어쿠스틱 그래핀 플라즈몬의 초고도로 응축된 전자기장을 근접장 측정을 통해 관측할 수 있었다.ˮ라며 "앞으로 강한 물질-빛 상호작용이 필요한 다른 상황에서도 어쿠스틱 그래핀 플라즈몬을 이용한 연구가 활발해지기를 기대한다ˮ라고 말했다.
메나브데 세르게이(Sergey Menabde) 박사와 이인호 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 에 2월 19일 字 게재됐다. (논문명: Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition).
한편 이번 연구는 삼성전자 미래기술육성센터 및 한국연구재단(NRF), 미국의 National Science Foundation(NSF), 삼성 글로벌 공동연구 프로그램(GRO), 기초과학연구원(IBS)의 지원으로 진행됐다.
2021.03.02
조회수 92046
-
해상도 높인 초박형 4D 카메라 개발
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 금속 나노 광 흡수층을 통해 고해상도 4D 영상 구현이 가능한 초박형 라이트필드 카메라를 개발했다고 4일 밝혔다.
`라이트필드 카메라'는 곤충의 시각 구조에서 발견되는 형태에 착안해 미세렌즈와 대물렌즈를 결합한 진보된 형태의 카메라다. 한 번의 2차원 촬영으로 빛의 공간 뿐만 아니라 방향까지 4차원 정보를 동시에 획득한다. 그러나 기존 라이트필드 카메라는 미세렌즈 배열의 *광학 크로스토크(Optical crosstalk)로 인한 해상도 저하와 대물렌즈의 위치로 인한 크기의 한계가 존재한다.
☞ 광학 크로스토크(Optical Crosstalk): 어떤 통신회선의 전기 신호가 다른 통신회선과 전자기적으로 결합해 혼선을 일으키는 통신 용어를 크로스토크라고 하며, 광학에서는 한 렌즈를 통과한 빛이 다른 렌즈로부터 들어온 빛과 겹쳐 생기는 현상으로 영상이 중첩되어 촬영되는 것을 의미한다.
연구팀이 개발한 `4D 카메라'는 나노 두께의 광 흡수 구조를 미세렌즈 배열(Microlens arrays) 사이에 삽입해 대비도 및 해상도를 높였으며, 기존의 카메라가 가지는 외부 광원, 추가 센서 부착의 한계를 극복할 수 있다. 이러한 특징을 이용해 의료영상, 생체인식, 모바일 카메라 또는 다양한 가상현실/증강현실 카메라 분야에 적용 가능할 것으로 기대된다.
연구팀은 미세렌즈 배열의 광학 크로스토크를 제거하기 위해 200나노미터(nm) 두께 수준의 금속-유전체-금속 박막으로 이루어진 광 흡수층을 렌즈 사이에 배치하고, 대물렌즈와 미세렌즈 사이의 간격을 일정 수준으로 줄여 초박형 라이트필드 카메라를 개발하는 데 성공했다.
높은 광학적 손실성과 낮은 분산성을 갖는 크로뮴(Cr) 금속과 높은 투과율을 갖는 유리층을 나노미터 두께로 적층한 구조(Cr–SiO2–Cr)는 가시광선 영역의 빛을 완전히 흡수할 수 있다. 나노 광 흡수층을 미세렌즈 배열 사이에 배치해 미세렌즈들 사이의 광학 크로스토크를 제거하고 고 대비 및 고해상도 3차원 영상을 획득하는 데 도움을 준다.
연구팀은 광 흡수 구조를 갖는 미세렌즈 배열을 포토리소그래피(Photolithography), 리프트 오프(Lift-off), 열 재유동(Thermal reflow) 공정을 통해 양산 제작했다. 또한, 라이트필드 카메라의 전체 두께를 최소화하기 위해 미세렌즈의 방향을 이미지센서 방향의 역방향으로 배치하고 대물렌즈와 미세렌즈 사이 거리를 2.1mm 수준으로 줄여, 전체 5.1mm의 두께를 갖는다. 이는 현재까지 개발된 라이트필드 카메라 중 가장 얇은 두께다.
나노 광 흡수 구조를 갖는 미세렌즈에 의해 이미지센서에 기록되는 원시 영상은 기존 미세렌즈를 통한 영상에 비해 높은 대비도와 해상도를 가지며, 연구팀은 이를 영상처리 기법을 통해 시점 영상 및 3차원 영상으로 재구성했을 때 향상된 정확도를 가짐을 확인했다.
정기훈 교수는 "초박형이면서 고해상도의 라이트필드 카메라를 제작하는 새로운 방법을 제시했다ˮ며 "이 카메라는 생체인식, 의료 내시경, 휴대폰 카메라와 같이 다시점(Multi-view), 재초점(Refocusing)을 요구하는 초소형 영상장치로 통합돼, 초소형 4D 카메라의 새로운 플랫폼으로 활용될 것ˮ이라고 말했다.
우리 대학 바이오및뇌공학과 배상인 박사과정이 주도한 이번 연구 결과는 국제 학술지 `어드밴스드 옵티컬 머티리얼즈(Advanced Optical Materials)'에 1월 20일 字 게재됐다. (논문명: High Contrast Ultrathin Light-field Camera using inverted Microlens arrays with Metal-Insulator-Metal Optical Absorber)
한편 이번 연구는 과학기술정보통신부의 개인연구지원사업, 산업 통산 자원부의 기술혁신프로그램, 보건복지부의 보건의료기술연구개발사업으로 수행됐다.
2021.02.04
조회수 79623
-
피부 땀 발생량을 뛰어넘는 고발습 피부 부착 유연 소재 개발
우리 대학 바이오및뇌공학과 조영호 교수 연구팀이 피부에서 발생하는 땀의 양을 뛰어넘는 발습(습기를 밖으로 내보내는) 효과를 가진 다공성 폴리머 유연 소재와 제조공정을 개발했다고 27일 밝혔다.
기존의 피부부착형 유연 소재는 피부에서 발생하는 땀을 모두 증발시키지 못해 웨어러블 기기를 장기적으로 피부에 부착할 때 피부 발진이나 홍조를 유발하는 단점을 갖고 있었다.
연구팀이 새로 개발한 고발습 유연 소재와 제조공정 기술은 폴리머 소재 내에 미세공극(구멍)을 균일하게 형성해 높은 수분 투과도를 가지도록 한 것으로, 유연 소재 표면에 피부의 생리 신호를 감지할 수 있는 센서들을 제작할 수 있어 상시 착용이 가능한 피부부착형 패치 개발이 가능하다.
바이오및뇌공학과 윤성현 박사가 주도한 이번 연구는 국제학술지 네이처(Nature)의 자매지인 `사이언티픽 리포트(Scientific Reports)' 1월 13일 字 온라인판에 게재됐다. (논문명: Wearable Porous PDMS Layer of High Moisture Permeability for Skin Trouble Reduction)
기존의 다공성 폴리머는 설탕 등의 고형 입자를 폴리머에 혼합한 후 용액으로 입자를 녹여서 공극을 형성하는데, 고형 입자의 크기와 분포가 불균일하며 얇은 박막 형성이 불가능하다.
이에 연구팀은 고형 입자 대신 구연산 용액을 폴리머에 혼합한 후 온도조절로 용액을 결정화해 작고 균일한 입자를 분리해내고 이를 에탄올로 녹여냈다. 그 결과 공극 크기가 작고 균일하며 얇은 막 형성이 가능한 새로운 방식의 다공성 폴리머 유연 소재와 제조공정을 개발하는 데 성공했다.
연구팀이 개발한 다공성 폴리머 유연 소재는 기존 대비 공극 크기를 약 1/15로 줄이고, 크기 균일도를 2배로 증가시켰으며, 스핀 코팅을 통해 21~300마이크로미터(μm) 두께의 얇은 막을 만들 수 있다. 또한 피부의 하루 땀 발생량(432g/m2)보다 1.8배 높은 수분 투과율(770g/m2)을 가지므로 연구팀은 피부에 장시간 부착해도 피부홍조나 발진이 생기지 않음을 실험으로 검증했다.
조영호 교수는 "고발습 유연 소재 박막 위에 인간의 생체신호를 측정할 수 있는 센서를 집적해 상시 착용이 가능한 반창고형 감정 측정 패치를 개발하고 있다ˮ며, "이번 연구로 피부부착형 웨어러블 소자의 착용 시간을 늘릴 수 있는 계기를 마련했다ˮ며 개발 소감을 밝혔다.
한편 이번 연구는 알키미스트 프로젝트의 지원을 통해 수행됐다.
2021.01.29
조회수 71770
-
무선 충전 가능한 부드러운 뇌 이식 장치 개발
우리 연구진이 무선 충전 가능한 뇌 이식 장치를 개발했다. 이 장치는 이식 후 생체 내에서 장기간에 걸쳐 배터리 교체 없이 스마트폰을 이용해 빛으로 뇌의 신경회로를 정교하게 조절할 수 있다.
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 연세대 의대 김정훈 교수팀과 공동 연구를 통해 뇌 완전 이식형 무선 광유전학 기기를 개발했다고 26일 밝혔다.
이번 개발 기술은 장기간에 걸친 동물 실험이 필요한 뇌 기능 연구뿐 아니라 향후 인체에 적용돼 중독과 같은 정신질환 및 파킨슨병과 같은 퇴행성 뇌 질환 치료에도 적용될 수 있을 것으로 기대된다.
우리 대학 전기및전자공학부 김충연 박사과정, 연세대 의대 구민정 박사과정 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 1월 22일 字에 게재됐다. (논문명 : Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics)
광유전학은 빛을 이용해 목표로 하는 특정 신경세포만을 선택적으로 정교하게 제어할 수 있다는 점에서, 뇌 기능을 밝히고 각종 뇌 질환을 치료할 해결책으로 뇌과학 및 신경과학 분야에서 주목받고 있다.
기존의 광유전학은 외부기기와 연결된 광섬유를 통해 신경세포에 빛을 전달하는 방법을 사용하고 있는데, 이러한 유선 방식은 동물의 자유로운 움직임을 크게 제한한다는 점에서 복잡한 동물 실험을 구현하는데 제약이 있다. 반면 최근에 개발된 무선 임플란트 기기들은 동물의 행동을 제약하지는 않지만, 주기적인 배터리의 교체가 필요하거나 외부 장비로부터 무선으로 전력을 공급받아야 하므로 독립적이지 못하고 동작이 안정적이지 못하다는 한계가 있다.
연구팀은 배터리의 무선 충전과 디바이스의 무선 제어를 가능하게 만드는 무선 회로를 개발해 마이크로 LED 기반의 탐침과 결합했다. 이를 통해 동물이 자유롭게 움직이는 상태에서도 배터리의 무선 충전이 가능하고, 스마트폰 앱을 통해 광자극을 무선으로 제어할 수 있는 무게 1.4그램(g)의 뇌 완전이식형 기기를 구현했다. 나아가 생체 이식 후 기기에 의해 주변의 조직이 손상되는 것을 방지하고자, 기기를 매우 부드러운 생체적합성 소재로 감싸 생체조직과 같이 부드러운 형태가 되도록 개발했다.
이번 연구를 주도한 정재웅 교수는 "개발된 장치는 체내 이식 상태에서 무선 충전이 가능하므로 배터리 교체를 위한 추가적인 수술 필요 없이 장기간 사용이 가능하다ˮ며 "이 기술은 뇌 이식용 기기뿐 아니라 인공 심박동기, 위 자극기 등 다양한 생체 이식용 기기에 범용적으로 적용될 수 있을 것이다ˮ고 말했다.
연구팀은 이 기기를 LED 탐침이 쥐의 뇌에 삽입된 상태에서 두피 안으로 완전히 이식하고 쥐가 자유롭게 움직이는 상태에서 배터리가 자동으로 무선 충전될 수 있음을 확인했다. 또한 연구팀은 중독성 약물인 코카인에 반복적으로 노출된 쥐의 특정 뇌 부위에 무선으로 빛을 전달해 코카인으로 인한 행동 민감화 발현을 억제함으로써 광유전학이 코카인에 의한 중독 행동 제어에 적용될 수 있음을 보였다.
아울러 공동연구자 연세대 의대 김정훈 교수는 "자유롭게 움직이는 동물을 바라보며, 단지 스마트폰 앱을 구동해 뇌에 빛을 전달하고, 그로 인해 동물의 특정 행동을 제어할 수 있다는 사실이 매우 흥미롭고, 많은 상상력을 자극한다ˮ라고 말했다.
연구팀은 이 기술을 궁극적으로 인체에 적용할 수 있도록 기기를 더욱 소형화하고 MRI 친화적인 디자인으로 발전시키는 확장 연구를 계획하고 있다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 기초연구실 지원사업과 신진연구자지원사업, KAIST 글로벌 특이점 연구사업의 지원을 받아 수행됐다.
2021.01.26
조회수 75588
-
시스템생물학 이용 세계 최초 알츠하이머성 치매 환자 맞춤형 치료 효능 예측 기술 개발
우리 대학 바이오및뇌공학과 조광현 교수 연구팀 (장소영 박사과정(제1저자), 강의룡 박사과정, 장홍준 박사과정)은 서울대학교 의과대학 묵인희 교수 연구팀과 공동연구를 통해 시스템생물학*과 알츠하이머 환자 유래 뇌 오가노이드** 모델의 융합으로 환자 맞춤형 약물 효능평가 플랫폼(Drug-screening platform)을 세계 최초로 개발했다고 13일 밝혔다.
* 시스템생물학: IT의 수학모델링 및 컴퓨터시뮬레이션과 BT의 분자세포생물학 실험을 융합하여 복잡한 생명현상을 규명하고 설명하는 연구 패러다임
** 뇌 오가노이드: 환자의 역분화 줄기세포(iPSC) 유래 인공 미니 뇌
알츠하이머병은 치매의 약 70%를 차지하는 대표적 치매 질환이나 현재까지 발병 원인이 불명확하며, 근본적인 치료제도 없는 인류가 극복하지 못한 질병 중 하나다.
알츠하이머병 치료제 개발 난제 중 하나는 실제 살아있는 환자의 뇌를 직접 실험 샘플로 사용할 수 없다는 것이었다. 이는 수많은 치료제 후보군의 약물 효능을 정확히 평가하기가 어려워 치료제 개발의 걸림돌로 작용해왔다.
조광현 교수 공동 연구팀은 실제 치매환자에서 유래한 뇌 오가노이드 기반으로 생물학적 메커니즘에 대한 수학 모델링을 융합하여 약물효능 예측이 가능한 플랫폼을 세계 최초로 개발했다. 환자 혈액으로부터 역분화줄기세포(Induced-pluripotent stem cell)*를 구축 후 이를 이용하여 3D 뇌 오가노이드를 제작해 실제 환자의 뇌와 유사한 환경 구축을 통해 실험적 한계를 극복했다.
* 역분화줄기세포: 다능성이 없는 혈액 면역세포에 역분화를 일으키는 4가지 특정 유전자를 도입하여 배아 줄기세포와 같이 모든 종류의 세포로 분화할 수 있는 성질(다능성)을 가진 줄기세포
또한, 시스템생물학 기반 수학 모델링 기법으로 알츠하이머병의 신경세포 특이적 네트워크망을 구축하고, 이를 실제 알츠하이머병 환자 및 정상군 유래 뇌 오가노이드를 통하여 신경세포 컴퓨터 모델의 실효성을 검증했다.
이 연구결과는 알츠하이머병의 시스템생물학 기반 신경세포 컴퓨터 모델을 실제 환자 유래 뇌 오가노이드로 검증한 세계 최초의 사례이다. 이는 환자 맞춤형 치료(Precision medicine)의 불모지로 여겨졌던 뇌 질환분야에서도 알츠하이머병 환자의 유전형에 따른 최적의 약물 효능 예측이 가능하게 됨을 의미하며 향후 약물 타겟 발굴에 기여할 것으로 기대된다.
조광현 교수는 “이번에 개발한 시스템생물학 기반 알츠하이머성 치매환자 약물 효능평가 플랫폼을 통해 향후 치매 치료제 개발 경쟁에서 우리나라가 국가적 우위를 선점할 수 있을 것으로 기대한다”고 밝혔다.
이번 연구는 보건복지부 한국보건산업진흥원의 국가치매극복기술개발 사업 및 한국연구재단의 중견연구자지원사업으로 수행됐으며, 연구성과는 국제학술지 네이처 커뮤니케이션즈(Nature Communications)의 2021년 1월 12일자 논문으로 게재됐다.
(https://www.nature.com/articles/s41467-020-20440-5)
2021.01.13
조회수 70658
-
신소재 레이저 제작기술 개발
우리 대학 물리학과 박용근 교수, 이상민 교수, 신소재공학과 김도경 교수 공동연구팀이 기존에는 활용할 수 없었던 소자와 재료로 레이저를 구현할 수 있는 새로운 비공진 방식의 레이저 제작기술을 개발했다고 12일 밝혔다.
일반적인 레이저는 거울 등을 이용해 빛을 가두는 구조(공진기) 내부에 빛을 증폭시키는 레이저 소재(이득 물질)을 배치하는 방식이다. 하지만 공진기 내부에서 빛의 경로가 일정하게 유지돼야 레이저가 작동하기 때문에, 매우 투명한 크리스탈 구조의 이득 물질에서만 레이저가 구현될 수 있었다. 따라서 자연계에 존재하는 많은 재료 중에 투명한 크리스탈로 제작할 수 있는 특수한 레이저 소재들만 활용됐다.
연구팀은 불투명한 이득 물질에서도 빛을 가둘 수 있는 공진기 구조를 내부에 만드는 새로운 방식의 레이저를 개발했다. 마치 `통발' 형태의 공간에서 빛이 갇힌 채로 주변 이득 물질에 의해 계속 산란되면서 증폭되는 원리다. 이 새로운 레이저는 이득 물질이 꼭 투명할 필요가 없으므로 기존에 이득 물질로 사용되지 못했던 다양한 불투명 소재들을 활용해 새로운 레이저를 만들 수 있다.
우리 대학 물리학과 이겨레 박사, 신소재공학과 마호진 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 1월 4일 字 출판됐다. (논문명 : Non-resonant power-efficient directional Nd:YAG ceramic laser using a scattering cavity).
박용근 교수 연구팀은 크리스탈 구조로 만들 수 없는 소재로 레이저를 구현하기 위해 공진기 사방을 모두 산란체로 막는 아이디어를 구상했다. 물고기 통발의 구조처럼 산란체로 사방이 막혀있고 좁은 입구를 가진 `빛 통발' 형태의 텅 빈 공간을 공진기로 활용하는 아이디어다.
연구팀은 불투명한 이득 물질로 제작된 산란체 내부에 작은 공간을 파내어 레이저 공진 공간을 만들었다. 이렇게 만들어진 구형 공간의 벽면에서 빛이 반사될 때마다 증폭하도록 만들어졌다.
연구팀은 제안한 형태의 `빛 통발'에서 성공적인 레이저 발진을 구현하는 데 성공했다. 3차원 공간에서 무작위로 형성되는 공동 내 빛의 경로 때문에, 구현된 레이저는 일반적인 공진(resonant) 기반 레이저와 다르게 비공진(non-resonant) 형태로 발진 됐다.
연구팀이 개발한 레이저의 가장 큰 특징은 투명한 이득 물질을 필요로 하지 않는다는 점이다. 불투명한 성질 때문에 기존 레이저 이득 물질로 활용되지 못했던 소재들을 활용해 더욱 다양한 레이저 개발이 가능할 것으로 기대된다. 기존에 활용되지 못하던 새로운 소재를 레이저 이득 물질로 활용할 수 있으므로 레이저에서 나오는 빛의 파장을 크게 확장할 수 있고, 국방 목적과 같은 고출력 레이저로도 활용될 수 있다.
공동 제1 저자이자 교신저자인 물리학과 이겨레 박사는 "구현한 레이저는 비공진 레이저이면서 동시에 높은 에너지 효율과 방향성을 가지는 것이 장점이다. 또한, 고된 소재의 결정화 과정 없이도 효율적인 레이저를 제작할 수 있다면 이득 물질로 사용될 수 있는 소재의 폭이 월등히 넓어질 것ˮ이라며 "기존에는 레이저로 활용하지 못했던 새로운 재료로 레이저를 발진시킬 수 있어 다양한 파장과 광 특성을 가진 새로운 레이저 소자 개발이 가능하고 이를 활용하면 의료, 생명과학, 산업기술, 국방 등 여러 분야로 적용이 가능할 것으로 기대한다ˮ라고 말했다.
한편 이번 연구는 한국연구재단 리더연구사업의 지원을 받아 수행됐다.
2021.01.12
조회수 59766