-
민범기 교수, 찌그러진 형태의 광학 공진기 내부에 속삭임의 회랑 모드 구현
〈 민 범 기 교수 〉
우리 대학 기계공학과 민범기 교수와 경북대 최무한 교수 공동 연구팀이 변환광학을 이용해 찌그러진 형태의 광학 공진기 내부에 ‘속삭임의 회랑 모드’를 구현했다.
기계공학과 김유신 박사과정이 1저자로 참여한 이번 연구 결과는 네이처 자매지 ‘네이처 포토닉스(Nature Photonics)’ 9월 27일자 온라인 판에 게재됐다.
속삭임의 회랑 모드는 광 공진기에서 알려진 모드 중 가장 높은 품위 값을 갖는 것으로 알려진 모드로서 구형 대칭성이 있는 공진기에서 경계면을 따라 전반사에 의해서 빛이 오랫동안 갇히면서 발생하는 현상이다.
속삭임의 회랑 모드는 품위값이 매우 높아 초소형 레이저, 초고감도 바이오센서 등과 같은 광전 소자 개발에 유용하게 사용된다.
그러나 공진기 밖으로 빠져 나오는 빛의 방향이 모든 방향으로 균일해 소자의 성능이 저하되는 한계가 있었다.
기존 연구에서는 구형의 공진기 모양을 다른 모양으로 변형시켜 빛을 한쪽 방향으로 빠져 나오게 하는 방법들이 제시되어 왔으나, 이 방법에서는 속삭임의 회랑 모드가 훼손돼 광학 모드의 높은 품위값이 필연적으로 저하되는 문제가 발생한다.
문제 해결을 위해 연구팀은 투명망토 연구 분야의 기초이론인 변환광학을 사용해 세계 최초로 속삭임의 회랑 모드를 훼손하지 않으면서 매우 높은 품위값을 유지하는 새로운 개념의 공진기 설계 원리를 제시한 것이다.
변환광학이 적용된 공진기에 형성되는 속삭임의 회랑 모드는 기존의 속삭임의 회랑 모드에서는 얻을 수 없었던 방출되는 빛의 방향성도 갖게 된다. 이는 초소형 단방향 레이저 설계에 있어서 핵심적인 원천기술이 된다.
이번 연구는 기존의 초소형 단방향 레이저 공진기 연구 분야에 변환광학을 도입해 새로운 연구방향을 제시해 주는 것이다. 최근 활발히 연구되는 메타물질 분야와 초소형 광-공진기 연구 분야를 융합하는 최초의 시도이다.
이번 연구에서는 빛의 진행 경로 조절에 국한되어 있던 변환광학을 공진기 내부에 발생하는 광학모드의 설계에도 적용할 수 있음을 보였다.
이는 최근 활발히 연구되고 있는 고집적 광전자(photonic) 회로의 광원, 플라즈모닉스 광도파로의 광원뿐만 아니라 미래의 광-정보처리 소자 설계의 원천기술이 된다. 특히 이러한 변환광학 공진기의 맞춤형(tailored) 모드들은 고효율 초소형 레이저 개발 및 차세대 광-바이오센서 개발에 직접적으로 사용될 수 있다.
이번 연구는 전자기파, 음파, 탄성파 등의 다양한 물리적 파동에서 발생하는 공진 모드를 목적에 맞게 설계할 수 있는 일반적인 방법론을 제시했다. 광학, 재료공학, 나노과학 등의 응용분야뿐만 아니라 기초 물리학 분야에서도 의미있는 영향을 미칠 것으로 기대된다.
연구팀은 “이번 연구는 차세대 광-정보처리 소자 설계의 원천기술로서 고효율 초소형 레이저 및 차세대 광-바이오센서 개발에 직접적으로 사용될 수 있다”며 “더 나아가 음파, 탄성파 등의 다양한 물리적 파동에서 발생하는 공진 모드를 설계하는 방법론으로 확장되면 재료공학, 나노과학, 기초 과학 분야에도 영향을 줄 수 있을 것이다.”고 말했다.
이번 연구는 교육과학기술부와 한국연구재단이 추진하는 중견연구자지원사업과 파동에너지 극한제어 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 변환광학으로 구현한 속삭임의 회랑 모드 개념도
그림2. 균일한 굴절률을 갖는 원형 공진기 vs. 리마송 모양의 변환된 공진기
2016.09.27
조회수 11909
-
신종화,김도경,이용희 교수, 수학적 공간채움 원리 적용한 신소재 개발
우리 대학 신소재공학과 신종화, 김도경 교수와 물리학과 이용희 교수 공동 연구팀이 수학의 공간채움 원리를 이용해 기존 기술보다 2천 배 이상 높은 유전상수를 갖는 전자기파 신소재를 개발했다.
이번 연구 결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 30일자 온라인 판에 게재됐다.
유전상수는 소재의 전기적 성질 중 가장 기본이 되는 성질로, 물질 내부의 전하 사이에 전기장이 작용할 때 전하 사이의 매질이 전기장에 미치는 영향을 나타내는 단위이다.
진공 상태의 유전상수는 1이고, 자연에 존재하는 물질과 개발된 메타물질을 포함해 가장 큰 광대역 유전상수는 최대 1천600 수준이다.
유전상수가 수천 이하에 머물렀던 이유는 유전상수 향상에 사용됐던 근본 원리에 한계가 있었기 때문이다. 유전상수를 키우기 위해서는 같은 전기장이 가해졌을 때 더 큰 유전분극이 나타나게 만들어야 한다.
이를 위해 기존에는 피뢰침 끝에 강한 전기장이 모이는 개념의 ‘전기장 국소화 원리’가 사용됐다. 피뢰침이 뾰족할수록 끝에 더 강한 전기장이 모여 유전분극이 강해지지만 그 대신 유전분극이 강해지는 공간적 범위가 좁아지게 된다.
결국 이 원리는 강한 유전분극일수록 미치는 영향의 범위는 좁아지는 근원적 한계를 갖는다. 실제로 기존 유전상수를 증대시킨 메타물질에서는 전기장이 강하게 모이는 부분이 매우 좁은 영역에 국한된다.
연구팀은 문제 해결을 위해 수학적 공간채움 구조를 전자기 소재에 대입했다. 공간채움 구조란 선으로 한 차원 높은 면을 채우는 구조를 뜻한다. 유한한 크기를 갖는 면의 모든 점을 통과하는 연결된 선을 그릴 수 있으며 이 때 선의 길이는 무한대이다.
이를 응용해 기존의 피뢰침처럼 좁은 영역에서만 발생하는 강한 유전분극이 메타물질 공간 내부 전체에 밀집돼 나타나게 만들었다. 또한 공간채움 선의 방향을 조절해 밀집된 유전분극이 서로 상쇄되지 않고 합쳐지도록 조절했다.
연구팀은 이는 마치 여러 개의 시냇물이 만나 큰 강물이 되는 효과와 같다고 설명했다. 즉, 좁은 공간에 증대된 유전분극들이 공간채움 구조를 통해 거대하게 발현되는 효과를 고안했고 실제로 구현함으로써 삼백만 이상의 큰 유전상수를 얻을 수 있었다.
유전상수가 320만이면 이 물질을 활용한 축전기의 전기용량은 진공에 대비해 320만 배 커지고, 전자기파를 흡수하는 비율이나 방출하는 속도 또한 320만 배 커진다.
또한 굴절률이 약 1천 800배(유전상수의 제곱근)가 되기 때문에 이 소재 안에서 빛의 속도는 1천 800배 느리게, 파장은 1천 800배 짧아진다. 이를 통해 렌즈 등의 소자는 1천 800배 가량 작게 만들 수 있고 기존의 이미징 장치보다 1천 800배 세밀하게 물체를 관찰할 수 있다.
특히 아주 얇은 막으로도 원하는 방향으로 전자기파를 반사시키거나 대부분 흡수시킬 수 있기 때문에, 전투기나 함정에 씌워서 레이더에 탐지되지 않도록 하는 스텔스 표면 등 국방 응용이 기대되며, 5G 휴대전화용 안테나 등 무선통신 분야 적용도 가능할 것으로 예상된다.
또한, 가시광선에서도 만약 그 원리가 적용된다면 바이러스를 직접 볼 수 있는 수준의 매우 높은 분해능을 가진 현미경 등 더욱 다양한 응용이 기대된다.
신 교수는 “간단한 수학적, 물리적 원리가 혁신적 성능을 갖는 신소재 개발로 이어질 수 있음을 밝혔다”며 “이는 기초 원리의 중요성을 확인한 값진 경험이었고, 앞으로도 이러한 원리를 기반으로 신소재 개발을 지속하겠다”고 말했다.
신소재공학과 장태용 박사과정 학생이 1저자로 참여한 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 본 연구에서 개발된 메타물질의 모식도와 실제 사진
그림2. 수학분야의 공간채움구조
2016.09.06
조회수 15647
-
김정원 교수, 美 광학회 발행 저널에 초청 리뷰논문 게재
〈 김 정 원 교수 〉
우리 대학 기계항공공학부 김정원 교수가 국내 연구자로는 최초로 ‘어드밴시스 인 옵틱스 앤 포토닉스(AOP : Advances in Optics and Photonics)’ 지의 초청 리뷰논문을 2016년 9월호에 게재했다.
AOP는 미국광학회(Optical Society of America, OSA)에서 발행하는 광학 분야의 가장 권위 있는 리뷰 저널이다. 광학 및 광공학에서 가장 중요하면서 많은 사람들이 관심을 가지는 최신 토픽들에 대해 분야를 대표하는 연구자가 그 분야를 소개하는 심도 있는 초청 리뷰 논문을 싣고 있다.
김 교수의 논문은 최근 각광받고 있는 초저잡음 광섬유 모드잠금된 레이저(ultralow-noise mode-locked fiber laser)와 광주파수빗(optical frequency comb)에 대한 것으로 저잡음 광섬유 레이저의 물리적 원리와 구현 방법, 지난 25년간의 동향, 최신 응용 분야들과 앞으로의 전망을 76페이지에 걸쳐 종합적으로 소개하고 있다.
김 교수 연구팀은 2011년 세계 최초로 100아토초(1경분의 1초)의 타이밍 지터를 가지는 광섬유 레이저를 선보인 것을 비롯해 다양한 종류의 저잡음 광섬유 레이저들을 개발했다. 또한 이를 입자가속기 제어, 저잡음 클럭 발진기 및 마이크로파 발생기, 원격탐지 등의 기초과학 및 공학응용 분야들에 적용하는 연구를 수행 중이다.
창간 8년째인 AOP 지에 국내 최초로 초청 리뷰 논문을 게재한 것은 김 교수가 우리 대학에서 자체적으로 수행한 초저잡음 광섬유 레이저와 각종 초정밀 응용들에 관한 연구가 세계적인 수준으로 인정받음을 의미한다.
김 교수는 “이번 리뷰 논문은 광섬유 레이저와 광주파수빗을 전공하거나 이용하는 대학원생들과 다른 분야 연구자들에게 분야 전체의 개요와 앞으로의 전망에 대하여 소개하여, 이러한 최신 광원들이 보다 폭넓게 활용되는 것을 목표로 했다”고 말했다.
김 교수 연구팀의 박사후 연구원 (2010-2011년)이었고 현재는 중국 천진대에 근무하는 Youjian Song 교수와 공동으로 집필한 이번 리뷰 논문은 한국연구재단의 중견연구자지원사업과 우주핵심기술개발사업의 지원을 받아 수행됐다.
2016.08.30
조회수 12630
-
허원도 교수, 세포의 이동 방향 결정하는 방향타 단백질 발견
〈 허 원 도 교수 〉
우리 몸의 세포는 가만히 멈춰있는 것이 아니라 이동한다. 세포가 특정 방향으로 이동하는 과정은 배아 발달, 상처 치유, 면역 반응 등에 필수적이다. 우리 몸 여러 기관에 암이 전이되는 현상도 암 세포의 이동 때문에 발생한다고 볼 수 있는데 이처럼 세포의 이동은 다양한 생리 및 병리적 조건에서 중요한 역할을 담당한다.
세포 이동에는 여러 종류의 소형 GTP 결합 단백질과 이 단백질의 활성을 조절하는 GEF 단백질들이 관여한다. 세포는 진행 방향 부위의 소형 GTP 결합 단백질(Rac1, Cdc42)이 활성화되면서, 동력을 내는 액틴 섬유를 중합(polymerization)해 지느러미 같은 돌출부를 만들어 앞으로 나아갈 수 있다.
그러나 기존 연구에서는 세포 이동을 관장하는 여러 종류의 GEF 단백질을 세포에 발현시켜도 세포의 이동이 크게 증가하지 않는 한계가 있었고, 세포 이동의 구체적인 작동원리를 밝히지 못했다.
우리 대학 생명과학과 허원도 교수 연구진은 GEF 단백질 중 하나인 ‘PLEKHG3’ 단백질이 세포의 이동 방향을 결정하는 ‘방향타’ 역할을 담당한다는 사실을 처음으로 발견했다.
또한, 독자적으로 개발한 광유전학 기술(광유도 분자 올가미, LARIAT)을 접목, 빛으로 ‘방향타 단백질(PLEKHG3)’ 의 활성을 조절해 세포의 이동을 실시간으로 제어하는 데 성공했다.
연구진은 바이오이미징 기술로 세포 내 63개 GEF 단백질들의 분포양상을 분석해, 세포가 이동하는 동안 세포이동을 조절할 가능성이 높은 GEF 단백질들을 선별했다.
그 중 PLEKHG3가 세포의 진행 방향 부위로 빠르게 이동하는 현상을 확인했다. 방향타 역할을 하는 이 단백질은 해당 부위에서 소형 GTP 결합 단백질을 활성화해 세포 골격을 이루는 액틴 섬유를 형성한다. 액틴 섬유는 그물망을 이루며 지느러미 같은 돌출부를 형성,해 세포를 앞으로 나아가게 한다.
이 과정에서 방향타 단백질은 액틴 섬유 자체와도 매우 강하게 결합하는데, 이 결합이 소형 GTP결합 단백질의 활성을 더욱 촉진시킴으로써 세포의 이동 속도를 더 빠르게 한다는 사실을 발견했다.
또한 연구진은 광유전학 기술로 방향타 단백질의 활성을 조절해 세포가 움직이는 방향을 인위적으로 제어하는 데 성공했다. 청색광 수용체를 이용해 만든 융합 단백질이 발현된 세포에 청색광을 비추면 융합단백질이 PLEKHG3를 올가미처럼 붙잡아 PLEKHG3의 움직임을 방해하는 원리를 활용했다.
이에 따라 빛을 비추면 세포는 이동을 멈추고, 빛을 끄면 PLEKHG3의 활성이 다시 정상화돼, 세포는 움직인다. 빛을 비추는 부위를 조정해서, 세포의 이동방향도 제어할 수 있음을 확인했다.
본 연구는 방향타 단백질인 PLEKHG3가 세포를 움직이게 하는 핵심 단백질임을 밝히고, 광유전학 기술로 빛을 통해 세포의 이동을 자유롭게 제어한 데 의의가 있다.
허원도 교수는 “세포 이동을 극대화하는 새로운 메커니즘을 밝혀 암세포 전이 및 면역 세포 이동을 연구할 수 있을 것으로 기대된다”고 말했다.
이번 연구결과는 국제 학술지 미국국립과학원회보(PNAS) 8월 23일자 온라인 판에 게재됐다.
□ 그림 설명
그림1. 세포내 PLEKHG3의 위치분석
그림2. 세포이동시 PLEKHG3의 세포내 위치추적
그림3. PLEKHG3에 의한 새로운 세포이동 메커니즘
2016.08.24
조회수 11001
-
박용근, 정용 교수, 알츠하이머 정량화 가능한 홀로그래피영상 기술 개발
우리 대학 물리학과 박용근 교수와 바이오및뇌공학과 정용 교수(KI 헬스사이언스 연구소) 공동 연구팀이 홀로그래피 영상 기술을 이용해 알츠하이머 질환을 정량적으로 연구할 수 있는 광학 기술을 개발했다.
이무성 연구원과 이익성 박사가 공동 1저자로 참여한 이번 연구 결과는 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 8월 3일자 온라인 판에 게재됐다.
뇌의 구조는 뇌 기능 및 질병과 밀접한 관련을 갖고 있다. 특히 알츠하이머에 걸린 뇌는 회백질 및 해마에 아밀로이드 반점이나 신경 섬유 엉킴과 같은 비정상적 구조를 갖기 때문에 뇌 영상 촬영 기술 신경과학에서 꼭 필요한 기술이다.
뇌 관련 질병의 치료를 위해 자기공명영상(MRI)이나 양전자 단층 촬영(PET)과 같은 기존 영상 촬영 기술들을 많이 활용하고 있지만 0.1밀리미터 이하의 세밀한 구조는 관찰하기 힘들다는 한계를 갖는다.
이를 보완하기 위해 조직 병리학 기법을 이용해 뇌의 단면 구조를 관찰했지만, 뇌 조직이 투명하기 때문에 촬영을 위해선 염색 과정을 거쳐야 한다. 이 과정에서 왜곡이 발생할 수 있다.
또한 조직 병리로 얻은 정보는 정성적 정보가 대부분이기 때문에 질병 진단에 필요한 정량적, 객관적 기준을 제공하기 어려웠다.
문제 해결을 위해 연구팀은 먼저 홀로그래피 현미경 기술을 통해 뇌 구조의 정보를 정량적으로 분석했다.
연구팀의 홀로그래피 현미경은 빛의 간섭을 이용해 별도의 염색 과정 없이 조직의 굴절률 분포 수치 영상을 계산할 수 있다.
조직 샘플을 투과한 빛은 굴절률 분포에 따라 특정한 산란 과정을 겪는다. 위에서 얻은 굴절률 분포를 토대로 연구팀은 뇌 조직 내에서 빛이 산란되는 평균 거리와 산란광이 퍼지는 방향성을 정량화했다.
연구팀은 산란 평균 거리와 방향성 분포를 이용해 알츠하이머 인자를 가진 쥐의 뇌 조직에서 발생하는 구조 변화 및 정도를 정량적으로 수치화했다.
그 결과 알츠하이머 모델의 해마 및 회백질의 산란 평균 거리와 방향성이 정상 모델에 비해 더 낮아지는 것을 확인했다. 특히 해마 내 산란되는 평균 거리는 약 40%가 감소했다. 이는 해마와 회백질 구조가 알츠하이머병에 의해 손상되고 불균일해지기 때문으로 해석된다.
연구팀은 이번 연구가 알츠하이머 뿐 아니라 파킨슨 병 등 다른 질병 연구에도 광범위하게 활용될 수 있을 것이라고 내다봤다.
박 교수는 “최근 창업한 Tomocube(토모큐브) 사의 제품을 이용해 관련 연구자들이 보다 쉽게 새로운 방법을 적용시켜 다양한 조직 병리 연구에 활용할 수 있을 것으로 기대된다” 고 말했다.
□ 그림 설명
그림1. 홀로그래피 현미경 모식도
그림2. 기존 현미경과 홀로그래피 현미경 성능 비교
그림3. 정상 모델과 알츠하이머병 모델의 뇌 조직의 산란 계수, 이방성 분포
2016.08.17
조회수 10611
-
오왕열 교수, 영상왜곡 없는 3차원 관상동맥 내시현미경 시스템 개발
〈 오 왕 열 교수 〉
우리 대학 기계공학과 오왕열 교수 연구팀(KI 헬스사이언스 연구소)이 영상왜곡 없이 관상동맥 내부를 정확히 이미징할 수 있는 관상동맥 내시현미경 시스템을 개발했다.
이 시스템으로 생체 관상동맥 내부 3차원 미세구조를 단일 심박 내에서 초고속 및 고해상도로 촬영했고 단일 심박 내에서 고해상도로 이미징 하는데 성공했다.
연구팀은 이 시스템을 사용해 인간과 비슷한 돼지 심장의 관상동맥 이미징에 성공함으로써 급성 심근경색으로 대표되는 관상동맥 질환의 정확한 진단 및 치료에 새로운 방향을 제시할 것으로 기대된다.
연구 결과는 심혈관분야의 임상저널인 ‘미국심장학회 학술지(JACC Cardiovascular Imaging : Journal of American College of Cardiology Cardiovascular Imaging)’ 5월호에 게재됐다.
돌연사의 가장 큰 원인인 급성 심근경색은 심장표면에 존재하면서 심장근육에 혈액을 공급하는 관상동맥(coronary artery)이 좁아지고 막혀 심장박동이 중지돼 갑작스럽게 사망하는 질환이다.
따라서 급성 심근경색을 예측하는 것은 매우 중요하며 이를 위해서는 의료진이 정확하게 진단할 수 있는 자료가 필수적이다.
광단층영상기술(OCT, Optical Coherence Tomography) 기반의 혈관 내시경은 현재 가장 높은 해상도의 심혈관 내부 영상을 제공하고 있다. 하지만 통상적으로 초당 100장 정도를 촬영하기 때문에 관상동맥 전체의 영상을 획득하는데 최소 3~5초가 소요된다.
이 사이 발생한 수차례의 심장 박동은 혈관의 반복적인 수축 및 팽창을 일으키고, 이는 정상적인 혈관도 마치 좁아진 것처럼 울퉁불퉁하게 보이는 영상왜곡으로 이어져 진단의 정확도가 떨어지게 된다.
연구팀이 개발한 단일 심박 주기 내 3차원 관상동맥 OCT 이미징 기술은 이러한 문제를 해결할 수 있는 핵심 기술이다. 초당 500장 촬영하는 고속 관상동맥 및 심박을 모니터링해 가장 움직임이 적은 영역을 자동적으로 포착 후 이미징을 수행하는 기술을 개발했다.
이를 통해 심장 박동으로 인한 영상 왜곡 없이 7센티미터 길이의 관상동맥을 0.7초 사이에 촬영해 내부 고해상도 영상을 확보할 수 있었다.
오 교수 연구팀은 고려대구로병원 김진원 교수 연구팀과의 협력을 통해 사람의 관상동맥과 비슷한 크기를 갖는 돼지 관상동맥의 단일 심박 내 초고속 3차원 이미징에 성공했다.
연구팀은 “이번 연구 결과를 통해 국내에서 개발한 세계 최고의 기술이 병원과의 긴밀한 협력을 통해 실제 임상에서의 한계를 극복하고 유용성을 인정받았다”고 밝혔다.
오 교수는 “심혈관 내 플라크 형태 분석과 스텐트(stent : 혈관 확장을 위해 혈관에 삽입하는 구조물) 삽입 등에 유용하게 사용 가능할 것으로 기대된다”며 “환자에 적용하기 위해 식약처 승인을 받기 위한 과정을 준비 중이다”고 말했다.
이번 연구는 한국연구재단의 중견연구자지원사업(도약연구)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 단일심박 초고속 관상동맥 OCT로 획득한 돼지 관상동맥의 길이방향 영상
그림1. 관상동맥 OCT로 영상으로부터 얻은 관상동맥 3차원 구조 복원 영상
2016.08.04
조회수 14499
-
유승협 교수, 열차단과 전기생산 동시에 가능한 태양전지 개발
〈 유 승 협 교수 〉
우리 대학 전기 및 전자공학부 유승협 교수와 성균관대 화학공학부 박남규 교수 공동 연구팀이 열을 차단하는 동시에 전기도 생산할 수 있는 반투명 태양전지 기술을 개발했다.
이는 다층 금속 박막 기반의 투명전극을 이용한 기술로써 가시광선은 투과하고 적외선(열선)은 선택적으로 반사한다. 동시에 전기도 생산하기 때문에 에너지를 효율적으로 사용하면서 낮은 실내 온도를 유지할 수 있다. 자동차 선팅이나 건물 창호 등에 다방면으로 이용 가능할 것으로 기대된다.
이번 연구 성과는 에너지 분야 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 7월 20일자 표지 논문으로 선정됐다.(논문명: Empowering Semi-Transparent Solar Cells with Thermal-Mirror Functionality)
태양전지는 지붕 위에 설치하는 청색의 사각 패널 뿐 아니라 건물이나 차량 유리창에 적용할 수 있는 반투명 모양으로도 발전될 수 있다.
하지만 빛을 흡수해 전기를 생산하는 태양전지의 속성 상 빛을 투과시키는 태양전지의 반투명한 특성은 효율을 감소시킬 수밖에 없다. 또한 기존의 상용화된 결정질 실리콘 기반의 태양전지는 반투명하게 제작이 어렵다는 한계를 갖는다.
연구팀은 문제 해결을 위해 차세대 태양전지 재료로 주목받는 유, 무기 복합물로 이뤄진 페로브스카이트를 광전변환 재료로 이용했다.
그리고 양면에 투명 전극을 사용해 반투명한 태양전지를 구현했다. 이 때 한쪽 면의 투명 전극은 연구팀이 수년 간 전자소자에 적용해온 ‘절연층-금속-절연층’ 구조의 금속 기반 다층 박막을 사용했다.
금속은 통상적으로 빛이 투과되기 어렵다. 하지만 연구팀은 수십 나노미터 두께의 얇은 박막으로 제작한 뒤 그 위에 반사를 줄이는 굴절률이 높은 절연층을 적층하는 방법으로 투명한 전극을 구현했다.
또한 투명 전극 각 층의 두께를 세밀하게 조절해 사람의 눈에 보이는 가시광선 대역의 빛은 투과시키고, 눈에 보이지 않는 대역의 빛은 반사되도록 설계했다. 이를 통해 차량용 선팅 필름과 비슷한 수준인 7.4% 평균 가시광선 투과율을 갖는 동시에 13.3%의 광전변환효율을 보이는 반투명 태양전지 제작에 성공했다.
연구팀은 적외선 반사를 최대화해 태양광의 열선을 효과적으로 반사시키는 기능을 더했다. 선팅 필름 제품의 태양열차단 성능은 총태양열에너지차단율(Total Solar Energy Rejection : TSER) 지수로 평가되는데 연구팀의 반투명 태양전지는 고가 선팅 필름 제품과 동등한 수준인 89.6%의 우수한 TSER 값을 보였다.
다수의 선팅 필름 제품들이 흡수를 통해 태양빛을 차단하기 때문에 태양빛에 노출 시 필름 자체의 온도가 올라간다. 반면 연구팀의 태양전지는 반사를 통해 열을 차단해 빛에 노출돼도 온도가 거의 올라가지 않아 태양전지의 안정성 향상 측면에서도 유리할 것으로 기대된다.
유 교수는 “열 차단 기능성 반투명 태양전지는 추가적 광학 설계를 통해 색 조절도 가능하고 궁극적으로는 필름형으로도 제작 가능해 기존 차량 및 건물의 유리창을 멋있고 스마트하게 업그레이드할 수 있을 것이다”며 “태양전지가 친환경 에너지를 생산하는 것에서 더 나아가 새로운 부가가치를 갖출 때 기존보다 더 큰 시장을 개척할 수 있을 것이다”고 말했다.
김호연, 하재원 박사과정 학생과 성균관대 김희선 학생이 공동으로 참여한 이번 연구는 KAIST 기후변화연구허브 사업 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 게재된 저널의 표지논문 그림
그림2. 태양전지 사진
그림3. 열화상 사진
그림4. 모식도
2016.08.01
조회수 14104
-
박용근, 조용훈 교수, 빛을 자유자재로 다룰 수 있는 광학기술 개발
우리 대학 물리학과 박용근, 조용훈 교수와 고려대학교 재료공학과 이헌 교수 공동 연구팀이 빛의 산란을 이용해 다기능 광학 기기를 제작할 수 있는 기술을 개발했다.
이번 연구 결과는 미국 화학회(American Chemical Society, ACS)가 발행하는 나노분야 학술지 ‘에이씨에스 나노(ACS Nano)’ 6월 29일자 온라인 판에 게재됐다.
빛이 안개나 페인트 등의 불규칙한 매질을 투과하면 매우 복잡한 형태의 수많은 반사와 굴절이 발생한다. 이를 빛의 다중 산란이라고 하는데, 다중 산란을 겪은 빛은 간섭이라는 물리 현상을 통해 복잡한 패턴을 나타낸다.
우리가 짙은 안개 속에서 앞을 볼 수 없고 맥주의 거품이 하얗게 보이는 것도 빛의 다중산란이 만든 현상이다. 일반적으로 다중 산란이 생기면 빛이 매우 불규칙한 형태로 지나가기 때문에 제어가 어렵다.
그러나 홀로그래피 기술을 이용해 입사하는 빛의 방향을 잘 제어해주면 다중 산란이 발생해도 원하는 형태로 빛을 제어할 수 있다. 연구팀은 이러한 다중 산란을 효과적으로 활용해 빛의 다양한 성질을 제어할 수 있는 새로운 개념의 광학기기를 개발했다.
이 광학기기는 빛의 반사나 굴절의 원리를 이용하던 기존 기술과 달리 빛의 산란을 이용했다는 특징을 갖는다.
연구팀의 광학기기는 복잡 매질과 광 고분자 필름으로 구성된다. 광 고분자 필름은 입사되는 빛을 홀로그래피 기술을 통해 원하는 모양으로 제어한다. 또한 제어된 빛을 기록하고 실제로 비추는 역할을 한다.
광 고분자 필름을 통해 들어온 빛은 복잡 매질을 지나 일정한 패턴으로 다중 산란돼 원하는 모양의 빛을 나타낸다. 이 두 가지 과정을 통해 독립적으로 활용 가능한 다기능 산란 광학기기의 구현이 가능해진다.
이 기술로 투과된 빛의 진폭, 파장, 편광 뿐 아니라 기존 광학계 기술로는 접근이 어려웠던 근접장 성분까지도 제어할 수 있다.
연구팀은 기존의 광학 부품들로는 구현이 매우 어려웠던 산란 제어를 복잡한 광학적 설계나 제조공정 없이 단일 광학 부품으로도 저렴하게 제작할 수 있다고 밝혔다.
이번 연구를 주도한 박종찬 학생은 “관련 기술은 광학 기기를 제작하는 원천 기술로 활용될 수 있다”며 “향후 리소그래피, 광통신, 바이오 이미징 기술 등 빛이 사용되는 다양한 분야에 응용 가능하다”고 말했다.
□ 사진 설명
사진1. 제작된 산란 광학 기기 실제 사진
사진2. 산란 광학기기를 이용한 빛의 다양한 성분 제어
사진3. 산란 광학기기 모식도
2016.07.12
조회수 11630
-
김순태 교수, 무선인터넷 시뮬레이션 기술 모파이심(MofySim) 개발
〈 김 순 태 교수 〉
스마트폰 사용자의 75%가 하루 1회 이상 인터넷 검색, 사회연결망서비스(SNS) 관련 서비스를 이용할 만큼 무선 네트워크는 모바일 기기에서 가장 핵심적인 요소이다.
무선 네트워크에서는 상황에 따라 패킷 손실, 손상 등의 오류가 발생할 수 있고 이것이 배터리 소모의 원인이 된다. 따라서 모바일 기기를 설계할 때 네트워크 상황에 따라 기기의 성능 및 소비 에너지 등을 고려해야 한다.
우리 대학 전산학부 김순태 교수 연구팀은 스마트폰, 컴퓨터 등에서 사용되는 무선 인터넷 환경을 컴퓨터 시뮬레이션을 통해 미리 구현할 수 있는 시뮬레이션 플랫폼 모파이심(MofySim)을 개발했다.
이를 통해 스마트폰의 인터넷 환경과 비슷하게 시뮬레이션을 수행할 수 있어 하드웨어, 소프트웨어의 문제점과 개선 사항을 쉽게 파악 수 있다.
실제 시스템에서는 추출하기 어려운 하드웨어 상에서 발생하는 다양한 현상 및 시스템 소프트웨어의 활동 상황, 네트워크 상황에 따라 생기는 하드웨어와 소프트웨어의 문제점을 찾을 수 있다는 점이다. 이를 통해 모바일 시스템의 성능, 전력소비, 신뢰성을 측정할 수 있다.
이번 성과는 4월 19일 스웨덴 웁살라에서 열린 ISPASS(International Symposium on Performance Analysis of Systems and Software)학회에서 발표됐다.
기존 시뮬레이션 시스템은 통신을 통한 인터넷 연결을 완벽히 지원하지 못하고 로컬(local) 디스크에서 데이터를 읽는 형태로 지원했다. 즉, 로컬 디스크에 있는 오프라인 상의 자료만을 토대로 웹 서핑을 시뮬레이션 하는 제한된 환경 때문에 네트워크의 변동성을 반영하지 못하고 이는 신뢰도 하락으로 이어진다.
모파이심은 문제 해결을 할 수 있도록 3G, 4G, 와이파이 등 무선통신 네트워크와 통신 대역폭(bandwidth), 패킷(packet) 분실, 지연시간 등 발생 가능한 네트워크 상황을 모델링하는 모바일 시스템 시뮬레이션을 지원한다.
실제 모바일 시스템에서 무선통신으로 인터넷에 접속해 웹 서핑을 하는 것과 동일한 효과를 시뮬레이션 상에서도 구현할 수 있다.
모파이심은 모바일 시스템, 서버 시스템, 두 시스템부를 연결하는 무선 통신부로 구성된다. 모바실 시스템부는 CPU, 메모리, 저장장치, 디스플레이 등의 하드웨어를 모델링하고, 리눅스 운영체제와 안드로이드 시스템을 구동한다.
서버 시스템부는 모바일 시스템이 접속하는 인터넷에 연결된 원격 서버를 모델링한다. 마지막으로 무선 통신부는 두 시스템을 무선 통신을 통해 연결하는 모파이심의 핵심이다.
연구팀은 모파이심이 교육 분야에서도 활용이 가능해 관련 분야 교육 수준을 향상시키는 데 기여할 것으로 예상했다.
김 교수는 “모파이심을 이용해 현재 뿐 아니라 미래의 모바일 시스템 모델링이 가능해진다”며 “하드웨어가 개발되지 않은 상황에서 미래 시스템을 실험할 수 있는 유용한 플랫폼이 될 것이다”고 말했다.
이 시스템은 홈페이지(http://ecl.kaist.ac.kr/tools)에서 등록 후 무료 다운로드할 수 있다.
전산학부 김형규 박사과정과 삼성전자 소프트웨어센터 주민호 책임연구원의 참여로 이뤄진 이번 연구는 한국연구재단 중견연구자지원사업과 정보통신기술진흥센터 SW컴퓨팅산업원천기술개발사업의 지원을 받아 수행됐다.
ㅁ 그림 설명
그림1. 모파이심 시스템 시뮬레이션 플랫폼 구조도
2016.05.16
조회수 10984
-
박오옥, 한상우 교수, 팔 14개 달린 금 나노입자 개발
우리 대학이 중심 입자에 14개의 팔 모양 입자가 달린 이원 구조의 금 나노입자를 개발했다.
이 기술은 팔 모양 입자 주변에서 전기장을 강하게 증폭시켜 표면증강 라만분광을 이용해 미량의 물질도 검출할 수 있다. 이를 통해 화폐 보안물질, 인체 광열치료 등에도 활용 가능할 것으로 기대된다.
생명화학공학과 박오옥 교수, 화학과 한상우 교수, 한국화학연구원 김도엽 박사와가 공동으로 진행한 이번 연구 성과는 광학 재료분야 학술지 ‘저널 오브 머티리얼스 케미스트리 씨(Journal of Materials Chemistry C)’ 4월 21일자 표지논문으로 게재됐다.
중심에 팔 모양의 입자가 달린 이원구조의 금 나노입자는 외부의 빛과 반응해 팔 모양 주변에서 전기장이 강하게 증폭된다. 이를 통해 금 나노입자를 기판으로 활용해 물질을 그 위에 올리면 적은 농도로도 쉽게 물질의 검출이 가능해진다.
하지만 기존 기술은 중심 나노입자에 달린 팔 모양 입자의 크기, 길이를 정밀하게 제어하지 못해 형태가 제각각인 금 나노입자만 얻을 수 있었다.
연구팀은 문제 해결을 위해 14개의 꼭지점을 갖는 사방십이면체 형태의 금 나노입자를 먼저 합성 후 꼭지점 부분만 선택적으로 성장시켰다.
이를 통해 팔이 14개 달린 이원구조의 금 나노입자를 합성했고 팔 크기나 길이를 조절해 광학특성 및 전기장 세기 증폭을 조절할 수 있게 됐다.
연구팀은 유한차분 시간영역법을 통한 시뮬레이션과 표면증강라만산란 실험을 통해 이원 구조에서의 팔의 크기가 작을수록, 몸통 입자의 크기가 클수록 전기장 세기가 강하게 증폭됨을 증명했다.
이 기술을 표면증강라만분광(surface-enhanced Raman spectroscopy)에 이용한다면 물질의 분자 검출 및 분석 등에 응용할 수 있다.
박 교수 연구팀은 이전 연구에서도 美 워싱턴대학 유난 시아(Younan Xia) 교수와의 공동연구를 통해 6개의 팔 모양 입자가 달린 이원구조의 금 나노입자 합성기술을 개발한 바 있다. 이번 연구에서는 이원 구조 금 나노입자의 성장과정 분석과, 더 나아가 이론적 계산을 통한 금 나노입자 표면에서의 전기장 세기가 증폭됨을 확인했다.
또한 실제 표면증강 라만산란 실험을 통한 특정분자 검출 등 다각적 연구를 통해 이원구조 금 나노입자의 응용 가능성을 높였다.
연구팀은 “새로운 접근법을 통한 이원구조 금 나노입자의 팔 개수, 길이 등의 조절로 광학특성 등 물리적 성질을 제어하는 기술을 개발했다”며 “이를 통해 라만분광법을 이용한 물질 검출이나 화폐보안물질 등에 응용 가능할 것으로 기대된다”고 말했다.
이번 연구는 미래창조과학부 산하의 한국연구재단-선도연구센터지원사업, 나노·소재기술개발사업 및 기초연구사업과 KAIST 기후변화연구허브사업의 지원으로 수행됐다.
□ 그림 설명
그림1. 중심입자에 14개의 팔이 달린 이원구조의 금 나노입자와 팔의 크기만 선택적으로 조절된 금 나노입자의 전자현미경 이미지
그림2. 팔 크기 변화에 따른 전기장 세기를 유한차분 시간영영법으로 시뮬레이션한 결과와 표면증강라만 신호 결과
2016.05.10
조회수 16615
-
김일두 교수, 호흡으로 폐암, 당뇨 조기 진단하는 초소형 센서 개발
혈액 체취나 영상촬영을 하지 않고도 사람의 호흡만으로 폐암, 당뇨 등 각종 질병을 실시간으로 파악할 수 있는 초소형 감지 센서 기술이 개발됐다.
우리 대학 신소재공학과 김일두 교수신소재공학과 연구팀은 사람의 호흡 내에 질병과 관련된 극미량의 특정 가스의 농도를 실시간으로 정확하게 분석할 수 있는 세계 최고 수준의 고감도·초소형 센서를 개발하였다고 밝혔다.
이를 통해, 현재 병원에서 혈액 체취나 조직 검사, MRI 등을 통해 고비용으로 진단하고 있는 폐암이나 당뇨 등의 질병을 개인 스마트폰이나 웨어러블 장치를 통해 수시로 저렴하게 진단할 수 있는 길을 열었다.
사람이 숨을 쉬면서 내뱉는 호흡 속 가스 성분 중에는 다양한 휘발성 유기화합물 가스들이 포함되어 있으며, 이중 일부 가스는 질병과 밀접한 연관이 있는 것으로 알려져 있다.
대표적으로 아세톤, 톨루엔, 황화수소 가스는 각각 당뇨병, 폐암, 구취 환자에서 더 높은 농도로 배출되며, 이러한 호흡 속 특정 가스의 농도를 정확하게 분석할 수 있다면 여러 질병들을 간편한 방법으로 조기에 진단할 수 있다.
그러나, 입안에는 수분을 포함하여 수백 종의 가스들이 존재하기 때문에, 그간 개발된 센서는 사람 호흡 속에 포함되어 있는 극미량(10 – 2,000ppb)의 특정 가스를 선택적으로 검출하는데 한계가 있었다.
연구팀은 수백 종의 가스 중 질병과 관련된 특정 가스만 선택적으로 탁월하게 검출할 수 있는 고성능 촉매를 개발하였으며, 이를 나노 섬유 형상의 센서 소재에 적용하여 개인 스마트폰과 연동이 가능한 초소형·고감도 질병 진단 센서를 구현하는데 성공하였다.
김일두 교수는 “질병 진단 센서는 차량이나 모바일 기기 등에 활용하여 개인 질병을 지속적으로 모니터링 할 수 있을 뿐만 아니라, 향후 대기 오염 분석, 실내 공기질 분석 등 가스 센서와 관련된 산업분야에서 사물인터넷(IoT) 제품과 융합되어 새로운 시장을 창출할 것으로 기대된다.”라고 연구의의를 밝혔다.
이번 연구는 김일두 교수 외 최선진·김상준 연구원이 주도하였고, 미래창조과학부 글로벌프런티어사업(스마트 IT 융합시스템 연구단)의 지원으로 수행되었다.
연구 결과는 재료과학분야 세계적 국제학술지인 ‘스몰(small)’ 표지논문에 2월 17일(수) 게제 되었으며, 관련 특허는 국내기업에 기술이전 되어 향후 조기 상용화가 이뤄질 것으로 기대된다.
□ 그림 설명
그림1. 스마트폰과 연결된 호기가스 분석 센서 및 호흡지문 패턴 인식을 통한 질병 진단
그림2. 동글 타입(Dongle-type), 패치 타입(Patch-type), 및 시계 타입(Watch-type) 센서 모듈을 이용한 휴대형, 실시간 호기가스 분석 센서
그림3. 'small' 표지에 게재된 논문
2016.03.07
조회수 17881
-
기억 및 논리 연산 가능한 메타물질 개발
〈 민 범 기 교수 〉
우리 대학 기계공학과 민범기 교수 연구팀이 메타물질의 광학적 특성을 기억할 수 있는 메모리 메타물질과 이를 응용한 논리연산 메타물질을 개발했다.
이번 연구결과는 과학전문지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 27일자 온라인 판에 게재됐다. (논문명 : Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operation)
메타물질은 자연에서 발견되지 않은 특이한 광학적 성질을 얻기 위해 인위적으로 설계된 물질이다. 이는 빛의 파장보다 훨씬 짧은 구조물로 구성됐으며 고해상도 렌즈 및 투명망토 등에 응용 가능해 활발한 연구가 이뤄지고 있다.
메타물질의 변조된 광학적 특성을 유지시키기 위해선 외부의 지속적 자극이 공급돼야 하는데 이는 많은 전력 소모의 원인이 된다. 이 단점을 극복하기 위해 외부 자극 제거 후에도 변조된 특성이 유지 가능한 메모리 메타물질이라는 개념이 대두됐다.
메모리 메타물질은 변화된 광학적 특성을 기억한다는 장점을 갖는다. 하지만 기존에 보고된 메모리 메타물질은 고온에서만 기억되거나 부피가 큰 광학적 장치에 의해서만 동작 가능해 현실적 응용에 한계를 보였다.
연구팀은 문제 해결을 위해 메타물질에 그래핀과 강유전체 고분자를 접목시켰다. 연구팀이 사용한 강유전체 고분자는 탄소를 중심으로 불소, 수소가 결합한 분자로 외부 전압의 극성에 따라 회전할 수 있다.
이 강유전체 고분자는 상온에서도 안정적으로 변화 상태를 유지할 수 있고, 그래핀과 접촉돼 메모리 성능을 개선하고 초박형으로 제작 가능하다. 또한 다중 상태의 기억이 가능하고 빛의 편광 상태도 기억할 수 있음을 증명했다.
연구팀은 메모리 메타물질의 원리를 응용해 논리 연산이 가능한 논리연산 메타물질 또한 개발했다. 이 논리연산 메타물질은 단일 입력에 의해서만 변조 가능했던 기존 메타물질의 단점을 해결했다.
그래핀을 두 개의 강유전체 층과 샌드위치 구조를 가진 메타물질을 제작해 두 전기적 입력의 논리 연산 결과가 광학적 특성으로 출력되게 만들었다. 이를 통해 다중 입력에 의한 조절이 가능해져 메타 물질의 특성을 다양하게 변화시키고 조절할 수 있는 방법론을 제시했다.
민 교수는 “메모리 메타물질을 통해 저전력으로 구동 가능한 초박형 광학 소자에 응용 가능할 것으로 전망한다”고 말했다.
기계공학과 김우영, 김튼튼 박사, 김현돈 박사과정이 1저자로 참여한 이번 연구는 한국연구재단 중견연구자 지원사업, 국가그린나노기술개발사업, 미래유망융합기술 파이오니어사업, 세계적수준의 연구센터(WCI) 사업, 미래창조과학부 글로벌프론티어 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 메모리 메타물질의 구조도
그림2. 강유전체에 의해 그래핀에 비휘발적 도핑이 되는 모식도
그림3. 투과도의 다중상태 (00, 01, 10, 11)의 메모리 특성 (본 논문의 대표도)
2016.02.24
조회수 13471