< (왼쪽부터) 생명화학공학과 석사과정 졸업생 손채림 (주저자), 박사 졸업생 남성경 박사, 박사과정 이지우, 김신현 교수 >
일반적으로 색깔을 표현하기 위해서는 가시광선 내의 특정 파장의 빛을 흡수하는 화학 색소가 필요하다. 그런데 우리 연구진이 화학 색소를 사용하지 않아 친환경적이며, 변색이나 퇴색 없이 컬러 그래픽을 영구 보존할 수 있는 초정밀 컬러 그래픽으로 조선시대 ‘일월오봉도’를 구현하는데 성공했다.
우리 대학 생명화학공학과 김신현 교수 연구팀이 반구 형태의 미세구조를 이용해 화학 색소를 전혀 사용하지 않고 고해상도의 컬러 그래픽을 구현하는 기술을 개발했다고 26일 밝혔다.
영롱한 파란색을 띄는 몰포 나비나 피부색을 바꾸는 팬서 카멜레온은 화학 색소 없이도 발색하는데, 이는 물질을 이루는 규칙적인 나노구조가 빛의 간섭 현상을 통해 가시광선의 빛을 반사해 나타나는 구조색이다. 구조색은 물질이 아니라 구조에 따라 색깔이 달라지기 때문에 한가지 소재로도 다양한 색깔을 나타낼 수 있다.
그러나 구조색 발색을 위한 규칙적인 나노구조는 인공적으로 구현하기 위한 기술적 난이도가 높고, 다양한 색 표현이 어려울 뿐만 아니라 다양한 색을 정교하게 패턴으로 나타내기 매우 어렵다.
< 그림 1. 미세반구를 이용한 구조색 발현 원리 (좌) 및 광식각법 기반의 미세반구 패턴 형성 방법 (우) >
김신현 교수 연구팀은 규칙적인 나노구조 대신 부드러운 표면을 갖는 반구 형태의 미세구조만을 이용해 다양한 구조색을 높은 정밀도로 패턴화할 수 있는 새로운 기술을 개발했다.
뒤집어진 반구 형태의 미세 구조체에 빛이 입사할 때 측면으로 입사한 빛은 곡면을 따라 전반사돼 재귀반사가 일어나게 된다. 이때 반구의 직경이 10마이크로미터 내외(머리카락 굵기의 10분의 1 수준) 일때 재귀반사가 일어나는 서로 다른 경로의 빛이 가시광선 영역에서 간섭해 구조색이 나타난다.
< 그림 2. 약 20만개의 미세반구를 이용해 색소 없이 손톱 크기로 재현된 “일월오봉도” >
구조색은 반구의 크기에 따라 조절 가능하며, 팔레트에서 물감을 섞듯 서로 다른 크기의 반구를 배열함으로써 발현 가능한 색을 무한히 늘릴 수 있다.
연구팀은 다양한 크기의 반구형 미세구조를 정밀하게 패턴화하기 위해 반도체 공정에 사용되는 양성 감광성 고분자*를 광식각법**을 통해 미세기둥 형태로 패턴화한 다음 온도를 올려 감광성 고분자의 리플로우***를 유도함으로써 반구형 미세구조를 형성했다.
*양성 감광성 고분자((positive photoresist): 자외선에 노출된 영역이 현상액에 쉽게 용해되는 감광성 재료
**광식각법(photolithography): 반도체 공정에서 주로 사용되는 패턴 형성법
***리플로우(reflow): 고온에서 고분자 구조 내에 흐름이 발생하여 형상이 곡면 형태로 변하는 현상
이러한 방식을 이용하면 원하는 크기와 색깔을 갖는 반구형 미세구조를 원하는 위치에 미리 설계한 방식대로 단일 단계에 형성할 수 있으며, 임의의 컬러 그래픽을 색소 없이 단일 물질만을 이용해 재현해 낼 수 있다.
색의 영구 보존이 가능한 초정밀 컬러 그래픽 기술은 빛의 입사 각도나 시야 각도에 따라 변색이 가능하며, 패턴의 한쪽 방향으로만 색깔을 보이며, 반대편으로는 투명한 야누스 형태의 특징을 갖는다. 이러한 구조색 그래픽은 최신 LED 디스플레이에 준하는 높은 해상도를 가지며 손톱 크기에 복잡한 컬러 그래픽을 담을 수 있고, 이를 대면적 스크린에 프로젝션도 가능하다.
< 그림 3. 빛의 각도와 바라보는 방향에 따라 다르게 보이는“일월오봉도” >
연구를 주도한 김신현 교수는 “새롭게 개발한 무색소 컬러 그래픽 구현 기술이 향후 예술과 접목해 새로운 형태의 예술 작품을 표현하는 참신한 방법이 될 수 있으며 광학 소자 및 센서, 위변조 방지 소재, 심미성 포토카드 등을 포함한 광범위한 분야에 적용할 수 있을 것으로 기대된다”고 말했다.
< 그림 4. 색소 없이 재현된 명화: “인상, 해돋이” (좌), “진주 귀고리를 한 소녀” (우) >
우리 대학 손채림 석사가 제1 저자로 참여한 이번 연구 결과는 재료 분야의 권위있는 국제학술지‘어드밴스드 머터리얼즈(Advanced Materials)’ 2월 5일 자에 게재됐다. (논문명: Retroreflective Multichrome Microdome Arrays created by Single-Step Reflow, 단일 단계 리플로우 공정을 이용한 재귀반사형 다색 미세돔 배열 설계, DOI:10.1002/adma.202413143)
이번 연구는 한국연구재단의 미래융합파이오니어사업 및 중견연구자지원사업의 지원을 받아 수행됐다.
폴리에스터 아마이드는 일반적으로 많이 사용되는 플라스틱인 PET(폴리에스터)와 나일론(폴리아마이드)의 장점을 모두 갖춘 차세대 소재다. 하지만 지금까지는 화석 연료에서만 생산할 수 있어 환경오염 문제를 피할 수 없었다. 우리 연구진이 플라스틱을 대체할 미생물을 이용한 신규 바이오 기반 플라스틱을 개발하는데 성공했다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용하여 미생물 균주를 개발하고 여러 가지 신규 유형의 친환경 바이오 플라스틱인 폴리에스터 아마이드를 생산하여, 한국화학연구원(원장 이영국) 연구진과 공동 분석을 통해 생산된 이 플라스틱의 물성 확인까지 성공했다고 20일 밝혔다. 이상엽 특훈교수 연구팀은 자연계에 존재하지 않는 새로운 미생물 대사회로를 설계해 폴리(3-하이드록시뷰티레이트-ran-3-아미노프로피오네이트), 폴리(3-하이드록시뷰티레이트-ran-4-아미노뷰티레이트) 등을 포함한 9종의 다른 폴리에스터 아마이드를 생산할 수 있는 플랫
2025-03-20신재생 에너지를 이용한 수소 생산은 친환경 에너지 및 화학물질 생산의 핵심적인 기술이다. 하지만 이렇게 생산된 수소는 저장과 운송이 어렵기 때문에 탄소 배출이 없고, 액화가 쉬운 암모니아(NH3) 형태로 수소를 저장하려는 연구가 세계적으로 널리 진행되고 있다. 우리 연구진은 매우 낮은 온도와 압력에서도 에너지 손실 없이 암모니아를 합성할 수 있는 고성능 촉매를 개발했다. 우리 대학 생명화학공학과 최민기 교수 연구팀이 에너지 소비와 이산화탄소 배출량을 크게 줄이면서도 암모니아 생산성을 획기적으로 높일 수 있는 혁신적인 촉매 시스템을 개발했다고 11일 밝혔다. 현재 암모니아는 철(Fe) 기반 촉매를 이용해 하버-보슈 공정이라는 100년이 넘은 기술로 생산되고 있다. 하지만, 이 방식은 500℃ 이상의 고온과 100기압 이상의 고압이 필요해 엄청난 에너지를 소비하고, 세계 이산화탄소 배출량에서 상당한 비율을 차지하는 주범으로 지목됐다. 더구나 이렇게 생산된 암모니아는 대규모 공
2025-03-11현실과 가상이 융합된 메타버스 시대를 생생하고 현실감 있게 표현하기 위해 디스플레이와 광학 기기 기술이 더욱 빠르게 발전하고 있다. 하지만 차세대 발광 물질로 주목받으며 청색광 구현이 가능한 납 기반 페로브스카이트는 납 이온의 유독성으로 인해 산업적 응용이 제한되고 있다. 이에, 우리 연구진이 청색광 구현이 가능한 친환경 대체 소재를 개발해서 화제다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 납 이온이 없이도 우수한 색 표현력과 높은 발광 효율을 가질 수 있는 친환경 대체 소재를 개발하였다고 13일 밝혔다. 연구팀은 이번 연구에서 유로퓸 이온(Eu2+)*으로 페로브스카이트의 납 이온을 대체함으로써 우수한 색 표현력과 높은 발광 효율을 동시에 가지는 발광 소재를 개발할 수 있음을 보였다. *유로퓸 이온: 원자 번호 63번인 희토류 금속 유로퓸(Eu)의 이온 형태. 주로 전자를 2개 또는 3개 잃은 양이온(Eu2+ 또는 Eu3+)으로 존재함 개발된 세슘 유로퓸 브로
2024-11-13현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다. 우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다. 유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다. *단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함 이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테
2024-11-07전자폐기물이 발생하지 않는 안전한 전자제품을 구현할 수 있을까? 국제공동연구진은 갑오징어에서 추출한 미래 전자 소재로 주목받는 세피아 멜라닌으로 만든 친환경 필름이 85일 만에 약 97% 생분해됨을 밝혀 지속가능한 친환경 전자제품의 새로운 가능성을 열어 화제다. 우리 대학 건설및환경공학과 명재욱 교수 연구팀이 몬트리올 공과대학 클라라 산타토(Clara Santato) 교수 연구팀과 국제 공동연구를 통해 완전히 생분해되는 세피아 멜라닌 기반 전기 활성 필름을 개발했다고 25일 밝혔다. 해마다 전자제품에 대한 수요가 급격하게 증가함에 따라 매년 약 6천만 톤에 이르는 전자폐기물이 발생하고 있다. 전자폐기물은 자연에서 쉽게 분해되지 않고 납(Pb), 카드뮴(Cd)과 같은 중금속이나 폴리염화비닐(PCB) 등 유해 화학물질을 자연에 유출해 생태계를 오염시킬 수 있다. 한편 생분해성 *유기전자소재는 기존 전자제품에 대한 패러다임을 전환할 수 있는 새로운 소재로 떠오르고 있다.
2024-09-28