< (왼쪽부터) 물리학과 에르베 우고네 박사, 오철민 석박사통합과정, 박용근 교수 >
기존 광학 기술은 두꺼운 생체 조직을 관찰할 때, 조직 내부에서 발생하는 빛의 산란으로 인해 광학적 수차(aberration)가 생기고, 이로 인해 영상 품질이 저하되는 한계가 있었다. 우리 연구진이 디지털 수차 보정 기술을 개발하여 두꺼운 생체 조직의 3차원 영상을 정밀하게 관찰할 수 있는 기술을 개발했다.
우리 대학 물리학과 박용근 교수 연구팀이 별도의 염색 없이 두꺼운 생체 조직의 3차원 영상을 고해상도로 관찰할 수 있는 디지털 수차 보정 기술을 개발했다고 5일 밝혔다.
연구팀은 광학적 메모리 효과(optical memory effect)*를 활용해 두꺼운 생체 조직을 실시간으로 고해상도로 관찰하는 기술을 개발했다. 이 기술은 기존 적응형 광학(adaptive optics) 기술보다 더욱 강력한 보정 효과를 제공하여, 생체 조직 내부의 구조를 보다 선명하게 포착할 수 있다.
☞광학적 메모리 효과: 빛이 기울어질 때, 산란된 빛도 함께 기울어지는 현상으로, 생체 조직과 같은 복잡한 산란 매질에서도 관찰 가능함.
새롭게 개발된 기법을 적용한 결과, 연구진은 생체 조직 내부의 세포 구조를 더욱 세밀하게 관찰할 수 있었으며, 마이크로미터 크기의 시료에서 발생하는 동적 변화를 실시간으로 포착하는 데 성공했다.
< 그림 1. 연구 흐름도. 광학 기억 효과를 이용하여 복잡한 수차 복원 및 정량적 분석을 할 수 있다. 본 연구팀에서는 현미경의 해상도를 떨어트리는 광학 수차를 보정하기 위해 빛의 산란의 물리적 특성인 광학 기억 효과를 활용하였으며 수차가 보정된 고해상도 3차원 이미지를 복원하였다. >
이번 연구는 조직 병리학, 신약 개발, 생물학 연구 등 다양한 분야에서 활용될 수 있는 새로운 이미징 기술을 제시했으며, 기존 기술이 극복하지 못한 심층 조직 이미징의 한계를 뛰어넘는 성과로 평가괸다. 이를 통해 생명과학 및 의료 분야에서 큰 기여를 할 것으로 기대된다.
박용근 교수는 “이번 연구는 기존 이미징 기술의 한계를 극복하는 새로운 접근 방식으로, 홀로토모그래피 기반 비침습적 생체 이미징 및 진단 연구에 큰 영향을 미칠 것이다. 앞으로는 생체 조직의 더욱 정밀한 3차원 이미징을 통해 세포 수준에서의 다양한 생명현상을 이해하는 연구를 지속할 계획”이라고 말했다.
< 그림 2. 수차 보정 이미징 결과. 인체 조직의 투과 홀로토모그래피 영상에 본 기법을 적용함으로써, 기존 방법으로는 관찰하기 어려웠던 두꺼운 조직의 고해상도 이미지를 얻을 수 있다. 또한, 움직이는 시료에서 발생하는 수차를 보정하여 마이크로미터 크기의 입자 움직임을 정밀하게 분석할 수 있다. >
물리학과 오철민 석박사통합과정 학생이 제1 저자인 이번 연구 결과는 지난 2월 17일 국제 학술지 ‘네이처 커뮤니케이션즈(Nature communications)’에 온라인 게재됐으며, 해당 기술은 다양한 생명과학 분야에서의 적용 가능성을 인정받고 있다.
(논문명: Digital aberration correction for enhanced thick tissue imaging exploiting aberration matrix and tilt-tilt correlation from the optical memory effect) DOI: 10.1038/s41467-025-56865-z
이번 연구는 한국연구재단 리더연구사업 및 한국산업기술진흥원 글로벌산업기술협력센터사업의 지원을 받아 수행됐다.
인체의 상당 부분을 차지하는 골격근을 이제 우리 연구진에 의해 랩온어칩과 같은 첨단 바이오 제조 기술을 적용해 안정적인 제작이 가능하게 됐다. 우리 대학 기계공학과 바이오미세유체 연구실 전성윤 교수 연구팀이 기계공학과 심기동 교수팀과 공동 연구를 통해, 체외 삼차원 환경에서 골격근 조직을 제작하는 바이오 미세유체시스템(Biomicrofluidic system)*을 개발했다고 27일 밝혔다. *바이오 미세유체시스템: 반도체 회로 제조 등에 사용되는 포토리소그래피(Photolithography) 공정 등을 기반으로 제작되는 마이크로 스케일의 시스템으로, 세포 및 생체조직 배양, 유동 생성 및 제어 등에 활용됨 연구팀은 해당 연구에서 자체 개발한 미세유체시스템을 사용해 골격근 조직 배양에 있어 큰 비중을 차지하는 하이드로겔의 구성 성분, 겔화 시간, 세포의 농도를 조절해 다양한 조건에서 삼차원 근육 밴드를 제작했다. 또한, 제작된 골격근 조직에 대해 근육의 수축력 및 반
2024-11-27인체 장기의 구조와 기능을 모사한 3차원 미니 장기인 오가노이드는 다양한 질병 연구와 신약 개발에 필수적인 역할을 하고 있다. 한국 연구진이 기존 이미징 기술의 한계를 극복하고 살아있는 오가노이드를 고해상도로 실시간 동적 변화를 관찰하는 데 성공했다. 우리 대학 물리학과 박용근 교수 연구팀이 기초과학연구원(IBS, 원장 노도영) 유전체 교정 연구단(단장 구본경) 연구팀과 ㈜토모큐브의 협력으로, 홀로토모그래피 (holotomography) 기술을 활용해 살아있는 소장 오가노이드를 실시간으로 고해상도로 관찰할 수 있는 이미징 기술을 개발했다고 14일 밝혔다. 기존의 이미징 기법들은 살아있는 오가노이드를 장기간 고해상도로 관찰하는 데 한계가 있었고, 형광 염색 등의 추가적인 처리가 필요한 경우가 많았다. 연구팀은 이러한 문제를 해결하기 위해 형광 등 염색 없이도 고해상도의 이미지를 제공하고, 세포 손상 없이 오랜 시간 동안 실시간으로 동적 변화를 관찰할 수 있는 홀로토모그래
2024-10-14첨단 바이오/의학 분야에서 살아있는 세포와 조직 뿐만 아니라 오가노이드의 3차원 영상을 측정하고 정밀하게 분석하는 기술에 대한 중요도가 커지고 있다. 홀로토모그래피기술은 세포와 조직의 내부를 고해상도로 관찰할 수 있게 하여 재생의료, 맞춤형 의료, 난임 치료 등 연구에서 잠재력이 높게 평가되고 있다. 한국연구진이 광학 전문가가 아닌 의생명과학 연구자들을 대상으로 홀로토모그래피 장점과 넓은 응용 가능성을 알리는 논문을 발표해서 화제다. 우리 대학 물리학과 박용근 교수 연구팀이 기초과학연구원(IBS, 원장 노도영), 한국기초과학지원연구원(KBSI, 원장 양성광)과 공동 집필하여 홀로토모그래피의 원리와 응용 현황, 한계점 및 향후 방향성을 망라한 논문을 국제학술지에 게재했다고 30일 밝혔다. 홀로토모그래피는 엑스레이(X-ray) CT와 물리적인 원리는 동일하나 X선을 이용해 사람 몸속을 보는 CT와는 달리, 빛을 이용하여 세포와 조직의 내부를 고해상도로 관찰할 수 있게 한다.
2024-07-30생체전자 의료기기는 체내에서 발생하는 신호를 읽어 생물학적 활동을 감지하거나, 조직을 자극해 질병 등을 치료하는 데 사용된다. 하지만 의료기기에 사용되는 전극 물질은 딱딱한 물성을 가지고 있어 체내에 염증반응을 일으키고 조직에 다량의 손상으로 이어질 수 있다. 따라서 조직과 같이 부드러운 성질을 가지면서도 전도성을 띠는 하이드로겔과 같은 연성 물질에 생체적합성이 높은 전도성 고분자를 체내 전극으로 사용하는 연구들이 활발하게 진행되고 있다. 우리 대학 신소재공학과 강지형 교수와 바이오및뇌공학과 박성준 교수 공동연구팀이 기존에 없었던 고전도성, 유사 조직 접착성 하이드로겔이란 신소재를 개발해 고성능 생체전자 기기를 구현했다고 4일 밝혔다. 대부분 전기 전도도가 높을수록 전도성 도메인들의 결정성이 높아지는 원리에 의해, 전도성이 높은 하이드로겔은 딱딱해지고, 부드러운 하이드로겔은 전도성이 낮을 수밖에 없다는 한계를 가진다. 이에 따라 전도성 고분자를 사용하는 하이드로겔 중, 전
2023-05-04- Nature Materials 표지논문 선정, ‘자연을 닮은 구조물’ 제작에 새로운 가능성 열어- 신진 여성과학자가 스트레스에 의해 생긴 잔주름이 성장하면서 깊은 주름으로 발전하는 전 과정을 가시화하여 그 원인을 규명함으로써 표면주름 제어기술 개발에 새로운 전기를 마련하였다. 카이스트 김필남 연구교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 직무대행 김병국)이 추진하는 학문후속세대양성사업(박사후 국외연수)의 지원을 받아 미국 프린스턴 대학에서 수행되었고, 연구결과는 세계 최고 권위의 과학전문지 ‘네이처(Nature)’의 대표적인 자매지인 ‘Nature Materials" 12월호(12월 1일자)에 표지논문으로 선정되는 영예를 얻었다. 김필남 박사 연구팀은 얇은 박막이 극심한 스트레스를 받으면서 생기는 잔주름이 깊은 골짜기 형태의 접힌 구조물로 변형해가는 일련의 과정을 밝히고, 이를 통
2011-12-20