본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B8%B0%EC%88%A0%EA%B0%9C%EB%B0%9C%EC%82%AC%EC%97%85
최신순
조회순
조광현 교수, 대장암 항암제 내성 극복할 병용 치료타겟 발굴
〈 조광현 교수 연구팀 〉 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 대장암의 항암제 내성을 극복할 수 있는 새로운 병용치료 타겟을 발굴하는 데 성공했다. 연구팀은 암세포의 복잡한 생체데이터를 분자 네트워크 관점에서 분석하는 시스템생물학 접근법의 중요성을 제시했다. 이 방법을 통해 암세포가 가지는 약제 내성의 원리를 시스템 차원에서 파악하고, 새로운 약물 타겟을 체계적으로 발굴할 수 있을 것으로 기대된다. 박상민 박사과정, 황채영 박사 등이 참여한 이번 연구결과는 국제학술지 ‘유럽생화학회저널(FEBS Journal)’의 4월호 표지논문으로 게재됐다. (논문명 : Systems analysis identifies potential target genes to overcome cetuximab resistance in colorectal cancer cells) 암은 흔하게 발생하는 대표적인 난치병으로 특히 대장암은 전 세계적으로 환자 수가 100만 명을 넘어섰고, 국내의 경우 서구화된 식습관과 비만 등으로 인해 발병률 증가 속도가 10년간 가장 높게 나타났다. 최근 급격한 고령화에 따라 대장암 환자의 발생률 및 사망률이 가파르게 증가할 것으로 예상되고 있다. 최근 암세포의 특정 분자만을 표적으로 하는 표적항암제가 개발돼 부작용을 크게 줄이고 효과를 높일 수 있지만, 여전히 약물에 반응하는 환자가 매우 제한적이며 그나마 반응을 보이더라도 표적 항암치료 후 약물에 대한 내성이 생겨 암이 재발하는 문제를 안고 있다. 또한, 환자별로 항암제에 대한 반응이 매우 달라 환자의 암 조직 내 유전자 변이의 특징에 따라 적합한 치료를 선택하는 정밀의학의 필요성이 커지고 있다. 대장암 역시 약물의 효과를 예측할 수 있는 유전자 바이오마커의 여부에 따라 적합한 표적항암제를 처방하는 시도가 이뤄지고 있다. FDA 승인을 받은 대표적인 대장암 치료제인 세툭시맙(cetuximab)의 경우 약물 반응성을 예측하는 바이오마커로 KRAS 유전자 돌연변이의 유무가 활용되고 있는데 이 유전자 돌연변이가 없는 환자에게 처방을 권고하고 있다. 그러나 KRAS 돌연변이가 없는 환자도 세툭시맙 반응률은 절반 정도에 불과하고 기존 항암 화학요법 단독시행과 비교해도 평균 5개월의 수명을 연장하는 데 그치고 있다. 오히려 KRAS 돌연변이가 있는 환자에게서 반응성이 있는 경우가 보고되고 있다. 따라서 KRAS 돌연변이 유무 이외의 새 바이오마커가 요구되고 있으며 KRAS 돌연변이가 존재해도 내성을 극복할 수 있는 병용치료 타겟의 발굴이 필요하다. 조 교수 연구팀은 유전체 데이터 분석, 수학 모델링, 컴퓨터 시뮬레이션 분석과 암 세포주 실험을 융합한 시스템생물학 연구를 통해 세툭시맙 반응성에 대한 바이오마커로 다섯 개의 새로운 유전자(DUSP4, ETV5, GNB5, NT5E, PHLDA1)를 찾아냈다. 그리고 대장암세포에서 각 유전자를 실험적으로 억제한 결과 KRAS 정상 세포에서 발생하는 세툭시맙 내성을 모두 극복할 수 있었다. 특히 GNB5를 억제하면 KRAS 돌연변이가 있는 세포주에서도 세툭시맙 처리에 따른 약물내성을 극복할 수 있음을 밝혔다. 따라서 GNB5의 억제를 통해 대장암 환자의 KRAS 돌연변이 유무와 관계없이 세툭시맙에 대한 내성을 극복할 수 있어 GNB5가 효과적인 병용치료 분자 타겟이 될 수 있음을 증명했다. 연구팀이 제시한 유전자를 바이오마커로 활용하면 세툭시맙에 잘 반응할 수 있는 민감 환자군을 미리 선별해 치료할 수 있는 정밀의학의 실현을 앞당길 수 있다. 또한, 발굴된 유전자들을 표적화하는 신약개발을 통해 내성을 가지는 환자군에 대해서도 새로운 치료전략을 제시할 수 있다. 특히 세툭시맙 치료 대상에서 제외됐던 KRAS 돌연변이가 있는 환자군에 대해서도 GNB5의 억제를 통해 치료 효과를 가져올 수 있을 것으로 기대된다. 조 교수는 “지금껏 GNB5 유전자 조절을 대장암의 조합치료에 활용한 예는 없었다”라며 “시스템생물학으로 암세포가 가지는 약제 내성의 원리를 밝히고, 내성 환자군에 대한 바이오마커 동정 및 내성 극복을 위한 병행치료 타겟 발굴을 통해 정밀의학을 실현할 수 있는 새로운 가능성을 제시했다”라고 말했다. 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 유럽생화학회저널 4월 표지
2019.05.07
조회수 18653
조광현 교수, 뇌의 제어구조 규명
〈 조광현 교수 연구팀 〉 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 뇌 영역 간 복잡한 연결 네트워크에 내재된 뇌의 제어구조를 규명했다. 이번 연구를 통해 뇌의 동작 원리에 대한 이해를 높이고, 뇌의 제어구조 분석을 통해 뇌 질환 연구 및 치료에 응용될 수 있을 것으로 기대된다. 또한 4차 산업혁명의 핵심기술로 주목받는 IT와 BT의 융합연구인 시스템생물학을 통해 규명했다는 의의가 있다. 이병욱 박사, 강의룡, 장홍준 박사과정이 참여한 이번 연구는 셀(Cell) 출판사가 펴내는 융합과학 국제학술지 ‘아이사이언스(iScience)’ 3월 29일 자에 게재됐다. 뇌의 다양한 인지기능은 뇌 영역들 사이의 복잡한 연결을 통한 영역 간 상호작용으로 이뤄진다. 최근 뇌의 연결성에 대한 정보가 뇌의 동작 원리를 파악하는 핵심이라는 의견이 대두되면서 세계적으로 뇌 연결성을 파악하기 위한 커넥톰(Connectome) 연구가 활발히 이뤄지고 있다. 이를 통해 뇌 영역 사이의 구체적 연결성이 파악되고 있지만 복잡한 연결성에 내재된 뇌의 동작 원리에 대한 이해는 아직 매우 부족한 상황이다. 특히 뇌의 강건하면서 효율적 정보처리 능력의 기반이 되는 뇌의 숨겨진 제어구조는 파악된 내용이 없다. 조 교수 연구팀은 뇌의 제어구조 분석을 위해 ‘미국국립보건원(NIH) 휴먼 커넥톰 프로젝트(Human Connectome Project)’에서 제공하는 정상인의 뇌 영상 이미지 데이터를 활용해 뇌 영영 간 네트워크를 구축했다. 이후 연구팀은 그래프 이론의 최소지배집합(minimum dominating set) 개념을 활용해 뇌 영역 간 복잡한 연결 네트워크의 제어구조를 분석했다. 최소지배집합이란 네트워크의 각 노드(뇌의 각 영역)가 링크(뇌의 서로 다른 영역간의 연결)로 연결된 이웃 노드에 직접적 영향을 줘 기능을 제어할 수 있다고 가정할 때, 네트워크를 구성하는 모든 노드를 제어하는 데 필요한 최소한의 노드 집합을 말한다. 기존 여러 연구를 통해 다양한 생체 네트워크 및 통신망, 전력망 등의 복잡계 네트워크를 제어하는 데 있어서 최소지배집합이 핵심적인 역할을 한다는 것이 보고된 바 있다. 연구팀은 최소지배집합을 기반으로 ‘제어영역의 분포(distribution of control)’와 ‘제어영역의 중첩(overlap in control area)’이라는 두 가지 지표를 정의한 뒤 이를 기준으로 총 네 종류의 제어구조를 정의했다. 이후 연구팀은 브레인 네트워크를 비롯해 도로망, 통신망, 소셜 네트워크 등 실존하는 다양한 복잡계 네트워크가 어떤 제어구조를 갖는지 분석했다. 분석 결과 뇌는 다른 대부분 네트워크와는 달리 제어영역이 분산된 동시에 서로 중첩된 특이한 구조로 이뤄짐을 밝혀냈다. 뇌의 이러한 제어구조는 외부 섭동에 의한 네트워크의 높은 강건성을 유지하면서 동시에 여러 인지기능을 효율적으로 수행하기 위한 영역들의 상호 활성화를 다양하게 하기 위한 것임을 밝혔다. IT와 BT가 융합된 시스템생물학 접근을 통한 브레인 네트워크의 구조분석은 인공지능의 발전에도 기여할 것으로 보인다. 브레인 네트워크의 진화적 설계원리에 대한 이해를 높인다면 컴퓨터 과학자들이 이를 이용해 새로운 인공지능 기술을 개발할 수 있다. 조 교수는 “지금껏 뇌의 제어구조가 밝혀진 바가 없었다”라며 “복잡한 연결성에 숨겨진 브레인 네트워크의 진화적 설계원리를 시스템생물학 연구를 통해 찾아냄으로써 뇌의 동작 원리를 파악할 수 있는 새로운 가능성을 제시했다”라고 말했다. 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 뇌의 제어구조 규명 그림2. 뇌 영역 간 네트워크 구축
2019.04.10
조회수 17775
이흥규 교수, 수지상세포 자식작용의 역할 규명
〈 이흥규 교수 〉 세포 항상성을 유지해주는 ‘자식작용’의 또 다른 기능이 보고됐다. 우리 대학 의과학대학원 이흥규 교수 연구팀이 T세포의 항암 활성이 유도되는 과정에서 수지상세포 자식작용이 기여함을 규명했다. 이번 연구결과는 국제학술지 ‘오토파지(Autophagy)’ 3월 22일 자에 게재됐다. 자식작용은 세포 내 노폐물 및 손상된 세포 소기관을 제거해 세포의 항상성을 유지하는 과정이다. 수지상세포는 병원균이나 암 항원을 인지해 T세포의 면역반응을 유도하는 세포이다. 방사선이나 항암제에 의해 암세포가 사멸하면 수지상세포가 이를 흡수‧제거하고, 자신의 표면에 항원을 제시해 T세포에 전달해주는 기능을 한다. 연구팀은 수지상세포의 자식작용이 T세포 활성화에서 핵심 역할을 한다는 것을 밝히고 항암 효과를 높일 수 있는 원리를 제시했다. 실험결과 자식작용을 일으키는 Atg5 유전자가 결손될 때 수지상세포의 T세포 활성화 기능이 떨어지고 항암 면역반응이 감소했다. Atg5가 결손되면 수지상세포 표면의 CD36 수용체가 월등히 증가하는데, 이로 인해 식세포작용(암 항원의 흡수)만 과활성되고 항원 제시를 통한 T세포 활성화가 정상적으로 이뤄지지 않는다. 이때 항체를 도입해 CD36 수용체를 다시 억제하면 T세포 면역반응이 많이 증가하고 암의 성장이 억제됐다. 이흥규 교수는 “이번 연구를 통해 자식작용이 T세포의 항암 면역반응에 관여하는 기능을 새롭게 규명했다”라 “향후 CD36 수용체를 활용한 표적 항암치료제 개발의 단초가 되길 기대한다”라고 밝혔다. 이 연구성과는 과학기술정보통신부·한국연구재단 바이오‧의료기술개발사업의 지원으로 수행됐다. □ 그림 설명 그림1. 수지상세포 자식작용의 기전 그림2. 항원제시에서 수지상세포 자식작용의 기능
2019.04.02
조회수 13798
김필한 교수, 패혈증 환자의 폐 손상 원인 밝혀
〈 김필한 교수 〉 우리 대학 의과학대학원/나노과학기술대학원 김필한 교수 연구팀이 3차원 생체현미경 기술을 통해 패혈증 폐에서 모세혈관과 혈액 내 순환 세포를 고해상도 촬영하는 데 성공했다. 연구팀은 패혈증 폐의 모세혈관 내부에서 백혈구의 일종인 호중구(好中球, neutrophil)들이 서로 응집하며 혈액 미세순환의 저해를 유발하고, 나아가 피가 통하지 않는 사강(死腔, dead space)을 형성함을 규명했다. 연구팀은 이 현상이 패혈증 모델의 폐손상으로 이어지는 조직 저산소증 유발의 원인이 되며, 호중구 응집을 해소하면 미세순환이 개선되며 저산소증도 함께 호전됨을 증명했다. 박인원 박사(현 분당서울대학교병원 응급의학과)가 주도한 이번 연구결과는 의학 분야 국제 학술지 ‘유럽호흡기학회지(European Respiratory Journal)’에 3월 28일 자에 게재됐다. 폐는 호흡을 통해 생명 유지의 필수 작용인 산소와 이산화탄소 간 가스 교환을 하는 기관으로 이는 적혈구들이 순환하는 수많은 모세혈관으로 둘러싸인 폐포(肺胞)에서 이뤄진다. 폐포의 미세순환 관찰을 위해 연구자들이 지속적인 노력을 하고 있으나 호흡을 위해 항상 움직이는 폐 안의 모세혈관과 적혈구의 미세순환을 고해상도로 촬영하는 것은 매우 어려웠다. 연구팀은 자체 개발한 초고속 레이저 스캐닝 공초점 현미경과 폐의 호흡 상태를 보존하면서 움직임을 최소화할 수 있는 영상 챔버를 새롭게 제작했다. 이를 통해 패혈증 동물모델의 폐에서 모세혈관 내부의 적혈구 순환 촬영에 성공했다. 이 과정에서 패혈증 모델의 폐에서 적혈구들이 순환하지 않는 공간인 사강이 증가하며 이곳에서 저산소증이 유발되는 것을 발견했다. 이는 혈액 내부의 호중구들이 모세혈관과 세동맥 내부에서 서로 응집하며 갇히는 현상으로 인해 발생함을 밝혔다. 갇힌 호중구들은 미세순환 저해, 활성산소의 다량 생산 등 패혈증 모델의 폐 조직 손상을 유발하는 것도 확인했다. 연구팀은 추가 연구를 통해 폐혈관 내부의 응집한 호중구가 전신을 순환하는 호중구에 비해 세포 간 부착에 관여하는 Mac-1 수용체(CD11b/CD18)가 높게 발현함을 증명했다. 이어 Mac-1 저해제를 패혈증 모델에 사용하여 호중구 응집으로 저해된 미세순환을 개선하고 저산소증의 호전과 폐부종 감소를 증명했다. 연구팀이 독자 개발한 최첨단 고해상도 3차원 생체현미경 기술은 살아있는 폐 안 세포들의 실시간 영상촬영이 가능해 패혈증을 포함한 여러 폐 질환의 연구에 다양하게 활용될 것으로 기대된다. 연구팀의 폐 미세순환 영상촬영 및 정밀 분석 기법은 향후 미세순환과 연관된 다양한 질환들의 연구뿐 아니라 새로운 진단기술 개발 및 치료제의 평가를 위한 원천기술로 활용될 것으로 보인다. 김 교수 연구팀의 3차원 생체현미경 기술은 KAIST 교원창업기업인 아이빔테크놀로지(IVIM Technology, Inc)를 통해 상용화돼 올인원 생체현미경 모델 ‘IVM-CM’과 ‘IVM-C’로 출시됐으며 여러 인간 질환의 복잡한 발생 과정을 밝히기 위한 기초 의․생명 연구의 차세대 첨단 영상장비로서 미래 글로벌 바이오헬스 시장에 핵심 장비로 활용될 예정이다. 김 교수는 “패혈증으로 인한 급성 폐손상 모델에서 폐 미세순환의 저해가 호중구로 인하여 발생하며, 이를 제어하면 미세순환 개선을 통해 저산소증 및 폐부종을 해소할 수 있어 패혈증 환자를 치료하는 새로운 전략이 될 수 있음을 새롭게 밝혀냈다.”고 말했다. 이번 연구는 의과학대학원 졸업생 박인원 박사가 1저자로 참여했고 유한재단 보건장학회, 교육부 글로벌박사펠로우쉽사업, 과학기술정보통신부의 글로벌프론티어사업과 이공분야기초연구사업, 그리고 보건복지부의 질환극복기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 초고속 레이저주사 3차원 생체현미경 시스템 그림2. 생체 내 폐 이미징 기술 개념도 및 사진
2019.04.01
조회수 17588
이도창, 김신현 교수, 반도체 나노막대로 초박막 편광필름 개발
우리 대학 생명화학공학과 이도창, 김신현 교수 연구팀이 반도체 나노막대가 일렬로 배열된 수 나노미터 두께의 편광필름을 개발했다. 이 교수 연구팀은 나노막대입자의 상호작용력을 미세하게 조절해 나노막대들이 스스로 공기-용액 계면에서 일렬종대로 조립되게 설계했다. 이러한 자기조립기술은 전기장이나 패터닝된 기판 등 외부의 도움이 필요하지 않기 때문에 다양한 분야에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 김다흰 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano letters)’ 2월 19권 2호에 출판됐다. (논문명 : Depletion-mediated interfacial assembly of semiconductor nanorods). 반도체 나노막대는 막대의 긴 방향을 따라 편광 빛을 내는 독특한 광학 특성이 있어 디스플레이 분야에서 막대한 빛 손실을 가져왔던 기존 편광판을 대체할 수 있는 전도유망한 나노소재로 주목받고 있다. 단일 나노막대의 편광 특성을 소자 면적의 필름에서 구현하기 위해서는 구성하는 모든 나노막대가 한 방향으로 정렬된 뗏목 형태인 스멕틱(smectic) 자기조립 구조가 필요하다. 그러나 수십 나노미터의 길이와 수 나노미터 두께의 나노막대를 대면적에서 정렬하기 위해서는 전기장을 유도하는 전극 기판 혹은 한정된 공간에서 입자를 조립할 수 있는 패터닝된 기판을 필요로 해 실제 소자에 적용하기에는 한계가 있다. 이렇게 조립된 나노막대 필름은 두께가 불균일하고 두꺼워 균일한 초박막 층을 사용해야 하는 필름 소자에는 적합하지 않았다. 연구팀은 문제 해결을 위해 공기-용액 계면과 나노막대 간의 인력, 나노막대와 나노막대 간의 인력을 순차적으로 유도해 단일층 두께의 나노막대 스멕틱 필름을 제작했다. 연구팀의 고배향 필름 제작 기술은 기판으로 사용된 공기-용액 계면을 용액 증발과 함께 제거할 수 있고 조립 면적에 제한이 없어 소자 종류에 상관없이 적용할 수 있다. 연구팀은 길이 30나노미터, 지름 5나노미터의 나노막대들이 수십 마이크로 제곱 면적에 걸쳐 88%의 정렬도로 초박막 필름을 형성함을 확인했다. 나아가 계면과 나노막대, 나노막대와 나노막대 간 상호작용력을 정량적으로 계산 및 비교함으로써 나노막대가 계면에서 조립되는 원리를 밝혔고, 계면에서 얻을 수 있는 다양한 형태의 자기조립구조를 증명했다. 연구팀이 개발한 반도체 나노막대의 스멕틱 필름은 편광 발광층으로 디스플레이 분야에 활발히 적용돼 소자 두께의 최소화, 비용 절감, 성능 강화 등에 이바지할 수 있을 것으로 기대된다. 1 저자인 김다흰 연구원은 “입자의 상호작용력 조절을 통해 단일층 두께에서 나노막대 스스로가 방향성을 통제하며 고배열로 정렬할 수 있다는 것을 보였다. 이는 외부 힘 없이도 더욱 정교한 자기조립구조가 가능하다는 것을 보여주는 결과이다”라며 “고배열, 고배향을 갖는 다양한 나노입자의 초박막 필름 제작 및 필름 소자에 활발히 사용될 것이다”라고 말했다. 이번 연구는 한국연구재단 나노․소재원천기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 공기-용액 계면에서 나노막대의 자기조립 과정을 보여주는 모식도 그림2. 나노막대 표면을 감싸고 있는 리간드 층 밀도에 따른 자기조립구조 모식도와 전자현미경 이미지
2019.03.20
조회수 12127
김용훈 교수, 페로브스카이트 나노선 기반 소자 구현방안 제시
〈 이주호 박사과정, 무하메드 칸 박사후 연구원, 김용훈 교수 〉 우리 대학 전기및전자공학부 김용훈 교수 연구팀이 저차원 페로브스카이트 나노소재의 새 물성을 밝히고 이를 이용한 새로운 비선형 소자 구현 방법을 제시했다. 연구팀은 최근 태양전지, 발광다이오드(LED) 등 광소자 응용의 핵심 요소로 주목받는 페로브스카이트 나노소재가 차세대 전자 소자 구현에도 유망함을 증명했다. 또한 초절전, 다진법 전자 소자 구현에 필요한 부성 미분 저항 소자를 구현하는 새로운 이론적 청사진을 제시했다. 무하메드 칸(Muhammad Ejaz Khan) 박사후연구원과 이주호 박사과정이 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 1월 7일자 온라인판에 게재됐고, 표지논문으로 선정돼 출간될 예정이다.(논문명 : Semimetallicity and negative differential resistance from hybrid halide perovskite nanowires, 하이브리드 할로겐화 페로브스카이트 나노선에서의 준금속성과 부성미분저항 발현) 유무기 하이브리드 할로겐화 페로브스카이트 물질은 우수한 광학적 성능뿐만 아니라 저비용의 간편한 공정으로 제작할 수 있어 최근 태양전지 및 LED 등 다양한 광소자 응용 분야에서 주목받고 있다. 그러나 할로겐화 페로브스카이트의 전자 소자 응용에 관한 연구는 세계적으로도 아직 부족한 상황이다. 김 교수 연구팀은 최근 새롭게 제조 기술이 개발되고 양자효과가 극대화되는 특성을 가진 저차원 유무기 할로겐화 페로브스카이트 물질에 주목했다. 연구팀은 슈퍼컴퓨터를 활용해 우선 1차원 페로브스카이트 나노선의 유기물을 벗겨내면 기존에 보고되지 않은 준 금속성 특성을 발현할 수 있다는 것을 발견했다. 이 1차원 무기 틀을 전극으로 활용해 단일 페로브스카이트 나노선 기반의 터널링 접합 소자를 제작하면 매우 우수한 비선형 부성미분저항(negative differential resistance, NDR) 소자를 구현할 수 있음을 확인했다. 부성미분저항은 일반적인 특성과는 반대로 특정 구간에서 전압이 증가할 때 전류는 오히려 감소해 전류-전압 특성 곡성이 마치 알파벳 ‘N’모양처럼 비선형적으로 나타나는 현상을 말한다. 차세대 소자 개발의 원천기술 이 되는 매우 중요한 특성이다. 연구팀은 나아가 이 부성미분저항 특성은 기존에 보고된 바 없는 양자 역학적 혼성화(quantum-mechanical hybridization)에 기반을 둔 새로운 부성미분저항 원리에 기반함을 밝혀냈다. 연구팀은 저차원 할로겐화 페로브스카이트의 새로운 구조적, 전기적 특성을 규명했을 뿐 아니라 페로브스카이트 기반의 터널링 소자를 이용하면 획기적으로 향상된 부성미분저항 소자 특성을 유도할 수 있음을 증명했다. 김 교수는 “양자역학에 기반한 전산모사가 첨단 나노소재 및 나노소자의 개발을 선도할 수 있음을 보여준 연구이다”라며 “특히 1973년 일본의 에사키(Esaki) 박사의 노벨상 수상 주제였던 양자역학적 터널링 소자 개발의 새로운 방향을 제시한 연구이다”라고 말했다. 이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 펑셔널 머티리얼즈 표지 그림2. 연구개요
2019.02.21
조회수 18673
이현주 교수(전기및전자공학부), 움직이는 쥐에 초음파 뇌 자극 실험 성공
우리 대학 전기및전자공학부 이현주 교수 연구팀이 초소형화 및 초경량화한 미세 초음파 소자(CMUT)를 통해 자유롭게 움직이는 쥐의 뇌에 초음파 자극을 줄 수 있는 기술을 개발했다. 이 교수 연구팀은 1g 미만의 초경량 초음파 소자 개발을 통해 움직이는 쥐의 뇌 초음파 결과를 얻는 데 성공했다. 이는 쥐 무게의 6배에 달하는 초음파 변환기를 사용해 움직이는 쥐에 적용할 수 없었던 기존 기술의 한계를 극복한 것이다. 김형국 석사가 주도하고 김성연 석사과정과 덴마크 공과대학교 (DTU) 티어샤(Thielscher) 교수 연구팀이 참여한 이번 연구는 국제 학술지 ‘브레인 스티뮬레이션(Brain Stimulation)’ 11월 17일자 온라인판에 게재됐고, 3월자 12권 2호에 출판될 예정이다. (논문명 : 자유롭게 움직이는 동물에서 비침습 뇌자극이 가능한 초소형 초음파 링 변환자 어레이, Miniature ultrasound ring array transducers for transcranial ultrasound neuromodulation of freely-moving small animals) 최근 뇌 자극 기술로 비침습적이고 집속이 가능한 초음파 자극 기술이 차세대 뇌 자극 기술로 주목받고 있다. 뇌를 자극하는 기존 방법에는 뇌의 특정 영역을 미세 자극할 수 있는 심부뇌자극술(DBS)과 광유전학 기반의 광 자극이 있지만 침습도가 높아 임상에 적용이 어렵다. 경두개전기자극술(TES)과 경두개자기자극술(TMS) 등은 비침습적이지만 자극 부위가 넓고 심부 자극이 불가능해 적용 범위에 한계가 있다. 초음파는 비침습적이기 때문에 동물실험뿐만 아니라 인체에도 안전하게 적용할 수 있어 임상 시험에 활용된다. 또한 초음파 집속을 통해 국소부위 자극과 심부 자극이 모두 가능해 타 기술 대비 이점이 많다. 초음파 뇌 자극 기술은 개발 초기 단계이기 때문에 지금까지는 쥐를 고정한 상태에서의 연구 결과만 발표됐다. 뇌 자극 관련 연구는 동물의 행동실험이 필수적임에도 불구하고 무거운 초음파 소자 때문에 쥐를 고정 및 마취해야만 했다. 연구팀은 미소 전자 기계 시스템(MEMS) 기술을 통한 정전용량 미세 초음파 소자(CMUT)의 초소형, 초경량화를 연구했다. 쥐의 구조에 맞는 중심 주파수, 크기, 초점 거리, 초음파 세기를 갖는 1g 미만의 소자와 행동실험에 적합한 실험 장치를 제작했다. 연구팀은 초음파 소자의 성능 평가를 위해 쥐 뇌의 운동 피질 (motor cortex)을 자극해 쥐의 앞발이 움직이는 운동 반응을 확인하고 승모근의 근전도를 측정했다. 연구팀은 초음파의 강도를 높일수록 운동 피질을 자극할 때 나오는 쥐의 앞발이 움직이는 현상이 더 자주 발생함을 확인했다. 결과적으로 초음파가 세지면서 반응의 성공률이 높아지는 결과를 얻어냈다. 연구팀의 초음파 소자는 쥐 뇌의 3~4mm 깊이까지 초음파가 전달되고 쥐 뇌 전체 크기의 25% 영역을 자극할 수 있다. 이 교수 연구팀은 향후 자극 범위를 국소화해 소형 동물 뇌의 단일 영역도 특이적으로 자극할 수 있는 차세대 뉴로툴 기술을 개발할 계획이다. 연구팀은 움직이는 쥐의 결과를 실시간으로 얻어낸 이번 연구 결과를 토대로 초음파가 수면에 미치는 영향을 연구 중이다. 향후 수면 연구뿐 아니라 다양한 행동실험 연구에 초음파 자극 기술을 적용할 수 있을 것으로 예상된다. 이 교수는 “머리를 고정하고 마취를 매번 시켰던 동물실험 방식을 벗어나 움직이는 쥐의 초음파 뇌 자극이 처음으로 가능해졌다”라며 “향후 수면장애, 파킨슨병, 치매, 우울증 등 여러 뇌 질환의 새로운 치료법 연구와 특이적 뇌 회로 규명에 광범위하게 적용될 수 있을 것이다”라고 말했다. 이번 연구는 과학기술정보통신부 뇌과학원천기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 행동실험이 가능한 초소형 비침습 초음파 자극 장치 그림2. 정전용량형 미세 초음파 소자의 (a-c) 구조 및 (d) 2D 시뮬레이션 빔 형
2019.02.11
조회수 12496
조광현 교수, 뇌파 생성, 변조 담당하는 신경회로 원리 규명
〈 조광현 교수 연구팀 〉 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 뇌파의 생성 및 변조를 담당하는 핵심 신경회로를 규명하는 데 성공했다. 이를 통해 뇌의 동작원리를 밝힐 뿐 아니라 향후 여러 뇌질환 환자에게서 발생하는 비정상적 뇌파활동을 신경세포 네트워크 수준에서 규명하는 데 활용 가능할 것으로 기대된다. 이번 연구는 4차 산업혁명의 핵심기술로 주목받는 IT와 BT의 융합연구인 시스템생물학 연구로 규명했다는 의미를 갖는다. 이병욱 박사과정, 신동관 박사, 스티븐 그로스 박사가 함께 참여한 이번 연구는 국제 학술지 ‘셀 리포트(Cell Reports)’ 11월 6일자 온라인 판에 게재됐다. 뇌의 다양한 기능은 신경세포(뉴런) 사이의 복잡한 상호작용을 통해 이뤄진다. 특히 뉴런들의 동시다발적인 발화에 의해 형성되는 뇌파는 뇌의 활동 상태를 측정하는 가장 중요한 지표이며, 특정 기능을 수행하기 위해 영역 간 선택적 통신의 매개체 역할을 하는 것으로 알려져 있다. 또한 뇌파의 비정상적인 생성 및 변조 현상은 다양한 뇌질환과 밀접한 관계를 갖는 것으로 밝혀지고 있다. 이에 따라 전 세계 신경생물학 연구자들은 뇌파의 생성 및 변조 원리를 파악하기 위해 노력해 왔다. 그러나 뇌파의 생성 및 변조는 수많은 뉴런 사이의 복잡한 상호작용을 통해 발생하는 예측할 수 없는 창발적 특성(emergent property)을 갖기 때문에 기존의 신경 생물학 실험을 통해 그 원리를 규명하기에는 한계가 있었다. 조 교수 연구팀은 시스템생물학 기반의 연구방법을 통해 뇌파의 생성 및 변조 원리를 분석했다. 연구팀은 여러 뇌 영역 중 특히 감각 피질(sensory cortex)에 주목했다. 감각 피질은 외부 감각 정보를 처리하고 통합, 조절하는 핵심 영역으로 여러 주파수 대역의 뇌파와 변조를 관측할 수 있다. 연구팀은 최근 커넥토믹스 (connectomics) 연구를 통해 밝혀진 쥐의 감각피질 내 뉴런의 종류 및 뉴런 간 연결성 정보를 이용해 감각피질을 구성하는 뉴런들과 이들을 연결하는 시냅스를 수학 모델을 통해 표현하고 이로부터 신경회로를 구축해 뇌파의 생성 및 변조 과정을 분석했다. 연구팀은 대규모 컴퓨터 시뮬레이션 분석을 통해 흥분성 뉴런과 억제성 뉴런으로 구성된 양성피드백과 음성피드백의 중첩된 구조(interlinked positive and negative feedback)가 뇌파의 생성 및 주파수 변조 현상의 핵심회로임을 최초로 규명했다. 특히 연구팀은 기존의 전기생리학 실험을 통해 측정된 뉴런 간 시냅스의 특정 연결강도가 신경회로의 뇌파 생성 및 변조 기능을 극대화시킬 수 있는 최적의 조합임을 밝혀냈다. 이번에 개발한 수학모형을 활용하면 전통적 생물학 실험을 통해 파악이 어려웠던 뉴런들 간의 다양한 상호작용을 이해하고 신경회로의 복잡한 설계원리를 파악할 수 있을 것으로 기대된다. 또한 여러 뇌질환 환자의 뇌에서 관측되는 비정상적인 뇌파 활동을 신경네트워크 차원에서 분석하고 규명할 수 있을 것으로 예상된다. 시스템생물학 접근을 통한 신경회로의 구조 및 기능 분석은 인공지능의 발전에도 기여할 것으로 기대된다. 두뇌 신경회로의 작동원리에 대한 이해를 높인다면 컴퓨터 과학자들이 이를 이용해 새로운 인공지능 기술을 개발할 수 있다. 자폐증이나 집중력 조절장애 등과 관련된 신경회로 규명, 두뇌 치료 기술 개발 등의 원천 의료기술 개발에도 혁신으로 이어질 수 있다. 조 교수는 “지금껏 뇌파의 생성 및 변조를 담당하는 핵심 신경회로가 밝혀진 바가 없었다”며 “이번 연구에서는 최근 커넥토믹스 (connectomcis) 연구를 통해 점차 밝혀지고 있는 뉴런간의 복잡한 연결성에 숨겨진 설계원리를 시스템생물학 연구를 통해 찾아냄으로써 뇌의 동작원리를 파악할 수 있는 새로운 가능성을 제시했다”고 말했다. 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업, 그리고 삼성전자 미래기술육성센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 뉴런 간 연결 강도에 내제된 기능적 설계원리 파악 그림2. 뇌파의 생성 및 변조를 담당하는 핵심 신경회로
2018.11.14
조회수 16484
유승협 교수, 초저전력 심박 및 산소포화도 센서 구현
〈 유승협 교수, 이현우 박사과정〉 우리 대학 전기및전자공학부 유승협 교수 연구팀이 유기발광다이오드(OLED)와 유기포토다이오드(OPD)를 이용해 초저전력 심박 및 산소포화도 센서 구현에 성공했다. 전기및전자공학부 유회준 교수 연구팀과의 협력을 통해 이뤄진 것으로 이 기술을 통해 심박 및 산소포화도 센서가 다양한 웨어러블 기기에 적용될 수 있는 계기가 될 것으로 기대된다. 이현우 박사과정이 1저자로 참여한 이번 연구는 ‘사이언스 어드밴스 (Science Advances)’11월 9일자 온라인 판에 게재됐다. (논문명 : Toward all-day wearable health monitoring: An ultralow-power, reflective organic pulse oximetry sensing patch) 심박 및 산소포화도 센서는 신체의 건강 상태를 나타내는 가장 중요한 생체 신호의 하나인 심장 박동과 혈액 내 산소와 결합한 헤모글로빈의 농도로서 신체 내 원활한 산소 공급 여부를 가늠할 수 있는 산소포화도를 측정하는 기기이다. 심박 및 산소포화도 센서에는 일반적으로 LED와 포토다이오드로 구성된 광학적 방법이 이용된다. 이 기술은 간단하고 소형화가 용이한 비 침습적 방법이면서 주요 생체신호의 모니터링이 가능하다는 이점이 있어 병원용 기기뿐 아니라 스마트 워치 등 웨어러블 기기에도 탑재되는 경우가 많다. 이러한 센서는 배터리 용량이 매우 제한적인 웨어러블 기기의 특성상 센서의 전력소모를 줄이는 것이 매우 중요하다. 그러나 현재 상용 심박 및 산소포화도 센서는 이산소자들의 배열로 구성돼 피부에서 산란으로 인해 전방위로 전달되는 빛을 효율적으로 감지하기 어렵다. 이러한 이유로 좀 더 강한 빛을 필요로 하기 때문에 장기간 실시간 모니터링에는 한계가 있다. 연구팀은 문제 해결을 위해 광원의 발광 파장에 따른 피부에서의 빛의 전달 형태를 실험과 피부 모델 시뮬레이션을 통해 검토했다. 유기소자의 경우 자유로운 패턴 구현이 용이한 점을 최대한 이용해 유기포토다이오드가 유기발광다이오드를 동심원 형태로 감싸 피부에서 전방위로 분포되는 빛을 효율적으로 감지하는 최적 구조를 갖는 유연 심박 및 산소포화도 센서를 구현했다. 이를 통해 평균소비전력 약 0.03밀리와트(mW)만으로도 심박 및 산소포화도를 측정할 수 있었다. 이는 LED와 PD가 일렬로 배치된 상용 센서가 갖는 통상 전력소모 양의 약 수십 분의 일에 해당하는 매우 작은 값으로 24시간 동작에도 1밀리와트시(mWh)가 채 되지 않는 양이다. 이 기술은 매우 낮은 전력 소모 외에도 유기소자가 갖는 유연 소자의 형태적 자유도도 그대로 갖는다. 따라서 스마트 워치부터 작게는 무선 이어폰, 스마트 반지, 인체 부착형 패치 등의 웨어러블 기기에서 배터리로 인한 제한을 최소화하면서 일상에 지장 없이 지속적인 생체 신호 모니터링을 가능하게 할 것으로 기대된다. 유승협 교수는 “생체 신호의 지속적인 모니터링은 건강의 이상 신호를 상시 검출 할 수 있게 할 뿐 아니라 향후 빅데이터 등과 연계하면 이들 생체신호의 특정 패턴과 질병 간의 상호 관계를 알아내는 등에도 활용될 수 있다.”고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단-나노·소재원천기술개발사업 및 선도연구센터 사업의 지원을 받아 수행됐다. □ 사진 설명 사진1. 연구팀이 개발한 센서
2018.11.12
조회수 11721
김상욱 교수, 홍합접착제 이용해 성능 높인 그래핀 섬유 개발
〈 김인호 박사과정, 김상욱 교수〉 우리 대학 신소재공학과 김상욱 교수 연구팀이 흑연계 그래핀을 이용해 우수한 물성을 갖는 신개념의 탄소섬유를 개발했다. 연구팀이 개발한 탄소섬유는 홍합접착제로 잘 알려진 폴리도파민(poly-dopamine)을 이용해 그래핀 층간 접착력을 높여 고강도, 고전도도를 갖는다. 이 신소재는 직물형태의 다양한 웨어러블 장치용 원천소재로 활용 가능할 것으로 기대된다. 김인호 박사과정이 1저자로 참여한 이번 연구는 재료과학분야 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 10월 4일자 표지논문으로 선정됐다. (논문명 : Mussel-Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity, 홍합접착제를 이용한 구조적 결함 제어를 통한 고강도/고전도도의 그래핀 액정 섬유 제조) 김상욱 교수 연구팀은 그래핀이 액체에 분산됐을 때 액정을 형성하는 새로운 현상을 최초로 밝히고 관련 원천특허를 보유하고 있다. 이후 그래핀 액정을 기반으로 하는 다양한 신소재 관련 후속연구를 통해 해당 분야를 선도하고 있다. 최근에는 그래핀 액정을 이용한 값싼 습식 섬유공정을 통해 기존 탄소섬유보다 훨씬 저렴한 탄소섬유의 제조가 가능한 것으로 규명됐다. 그러나 현재까지의 공정으로는 섬유 형성 과정에서 그래핀 층의 접힘 현상이 발생해 공극이 발생한다는 고질적인 문제점이 있다. 이러한 구조적 결함은 탄소섬유의 기계적 물성 뿐 아니라 전기전도성도 취약하게 만든다. 김 교수 연구팀은 문제 해결을 위해 자연계의 홍합에서 영감을 얻어 개발된 고분자인 도파민의 접착 성질에 주목했다. 다양한 분야에서 연구되는 이 도파민을 이용하면 그래핀 층간의 접착력을 증가시켜 구조적 결함을 방지하는 효과를 기대할 수 있다. 연구팀은 이를 통해 구조적 결함이 제어된 고강도의 탄소섬유 제작에 성공했다. 또한 폴리도파민의 탄화과정을 통해 전기전도도 역시 향상된 섬유를 제조하는 데 성공했다. 연구팀은 도파민에 열처리를 가하면 그래핀과 유사한 구조를 갖는다는 이론을 바탕으로 그래핀 액정 상에서 도파민의 고분자화 조건을 최적화시켰고, 이를 섬유화해 기존 그래핀 섬유의 본질적인 결함 제어 문제를 해결했다. 또한 도파민의 구조 변환을 통해 기존 고분자의 근본적 한계인 전도도 측면에서 손해를 보지 않으면서, 도파민 분자에 존재하는 질소의 영향으로 전기전도도 측면에서도 물성이 향상됨을 확인했다. 연구를 주도한 김상욱 교수는 “그래핀 액정을 이용한 탄소섬유는 기술적 잠재성에도 불구하고 구조적 한계를 극복해야 하는 한계가 있었다”며 “이번 기술은 추후 복합섬유 제조 및 다양한 웨어러블 직물기반 응용소자에 활용 가능할 것이다”고 말했다. 신소재공학과 박정영 교수, KIST 정현수 박사의 지원을 받아 수행된 이번 연구는 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 글로벌프론티어사업(하이브리드인터페이스기반 미래소재연구단), 나노․소재원천기술개발 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 머티리얼즈 표지 그림2. (좌) 일반적인 그래핀 섬유의 단면과 (중), (우) 도파민을 이용하여 두단계로 결함 제어된 후의 그래핀 섬유의 단면의 전자현미경 이미지
2018.10.17
조회수 14223
김준 교수, 난치성 유전질환인 섬모병증 치료제 후보 발굴
〈 김준 교수, 김용준 박사과정 〉 우리 대학 의과학대학원 김준 교수가 연세대학교 생명공학과 권호정 교수 연구팀과의 공동 연구를 통해 난치성 유전질환인 섬모병증의 치료제 후보를 개발했다. 이번 연구 결과는 섬모병증 치료제 개발을 위한 기반이 될 것으로 기대되며 유사한 난치성 유전질환에 대한 저분자 화합물 약물 개발 플랫폼으로도 활용 가능할 것으로 예상된다. 김용준 박사과정이 1저자로 참여하고 정인지, 김성수, 정유주 연구원이 공동 저자로 참여한 이번 연구는 의, 과학 분야 국제 학술지 ‘저널 오브 클리니컬 인베스티게이션(Journal of Clinical Investigation)’ 7월 23일자 온라인 판에 게재됐다.(논문명 Eupatilin rescues ciliary transition zone defects to ameliorate ciliopathy-related phenotypes) 세포 소기관인 일차섬모는 배아가 발생하는 과정에서 세포 간 신호전달에 관여하고 망막 광수용체 세포가 기능하는 역할을 하는 등 인체에 중요한 기관이다. 섬모병증은 이러한 섬모의 형성에 필수적인 유전자들의 돌연변이로 인해 발생되며 소뇌발달 및 신장 이상, 망막 퇴행 등의 증상을 보인다. 현재 섬모병증을 치료하는 약물은 개발되지 않았다. 섬모병증 뿐 아니라 기능손실 유전자 돌연변이가 원인이 되는 대부분의 희귀유전질환은 유전자 치료를 제외하고는 치료 약물의 개발이 이뤄지지 않았다. 연구팀은 문제 해결을 위해 섬모병증 원인의 하나인 CEP290 유전자 돌연변이를 유전자 편집기법으로 모사한 세포를 구축한 뒤 화합물 라이브러리 스크리닝 기법을 통해 섬모병증에서 나타나는 섬모형성 부진 현상을 극복할 수 있는 천연 저분자 화합물을 발굴했다. 발굴된 화합물은 CEP290 단백질과 복합체를 이뤄 섬모형성과 기능에 관여하는 단백질(NPHP5)에 작용하는 것으로 밝혀졌다. CEP290 단백질이 유전자 돌연변이로 인해 만들어지지 않는 경우 NPHP5 단백질도 정상적으로 작용하지 못하는데 이 화합물은 NPHP5의 기능을 정상화시켜 복합체가 담당하던 기능의 일부를 회복함을 확인했다. 또한 연구팀은 발굴한 화합물을 섬모병증 증상을 갖는 동물 모델에 주입했고 망막 퇴행 현상을 지연시키는 효과를 입증했다. 1저자인 김용준 박사과정은 “이번 연구는 기능손실 유전자 돌연변이로 인해 발생하는 유전질환도 저분자 화합물 약물로 치료가 가능함을 규명했다는 의미를 갖는다”고 말했다. 김준 교수는 “발굴된 후보약물의 효과를 동물실험을 통해 확인했기 때문에 인체에서의 효과 또한 증명하는 후속 연구를 진행할 예정이다”고 말했다. 이번 연구는 보건복지부 희귀질환연구센터지원사업, 한국연구재단 바이오의료기술개발사업, 글로벌연구실 사업의 지원으로 수행됐다. □ 그림 설명 그림1.섬모형성 이상을 회복시키는 약물 발굴 그림2. 발굴된 약물에 의해 섬모병증 모델 생쥐의 망막퇴행이 지연되는 효과 확인
2018.07.30
조회수 12245
최원호 교수, 플라즈마 내 전자의 가열 원리 규명
〈 최원호 교수, 박상후 연구교수〉 우리 대학 원자력및양자공학과 최원호 교수 연구팀이 약하게 이온화된 플라즈마(weakly ionized plasma)에서 전자가 가열되는 구조와 제어 원리를 규명하는데 성공했다. 플라즈마 내의 모든 반응이 전자로부터 시작된다는 점으로 볼 때 전자의 가열 원리를 규명함으로써 플라즈마를 더욱 자유롭고 다양하게 활용할 수 있을 것으로 예상된다. 이는 대기압 플라즈마 내에 존재하는 자유 전자에 대한 기초 연구 자료로 기존 플라즈마의 활용 및 응용 가능성을 높이는 등 플라즈마 물리학 및 응용기술 발전에 크게 기여할 것으로 기대된다. 박상후 연구교수가 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’5월 14일자와 7월 5일자 온라인 판에 연달아 게재됐다. (논문명 : Electron information in single- and dual-frequency capacitive discharges at atmospheric pressure, 단일 및 이중 주파수 대기압 플라즈마의 전자 정보 / Electron heating in rf capacitive discharges at atmospheric-to-subatmospheric pressures, 대기압과 대기압보다 낮은 압력에서 라디오 주파수 플라즈마 내의 전자 가열) 물질의 세 가지 상태인 고체, 액체, 기체와 더불어 ‘물질의 네 번째 상태’라 불리는 플라즈마는 표준 온도 및 압력(25 ℃, 1 기압)의 상태에서는 자연적으로 존재하지 않으나 인위적으로 기체에 에너지를 가하면 플라즈마 상태가 된다. 학계 및 산업계는 활용 목적과 조건에 맞춰 다양한 형태의 플라즈마 발생원을 개발해 사용하고 있다. 특히 대기압 플라즈마는 응용 가능 분야가 다양하고 활용도가 높아 학술적, 산업적 활용성 측면에서 많은 관심을 받고 있다. 일반적으로 플라즈마 내의 다양한 화학적, 물리적 반응은 전자로부터 시작되기 때문에 전자의 밀도와 온도의 시공간적 변화는 아주 중요한 정보이다. 플라즈마 및 가속기 물리학 분야에서 자유 전자의 가열 여부는 과학자들의 관심을 지속적으로 받은 연구 주제이다. 그러나 대기압 조건에서는 자유 전자와 중성기체의 충돌이 빈번하기 때문에 이온화된 플라즈마 내 자유 전자의 밀도와 온도를 측정하는 데에는 한계가 있어 자유 전자의 가열 구조 및 원리를 실험적으로 규명할 수 없었다. 또한 전자 가열의 제어 방법 및 주요 요인에 대한 정보가 부족해 플라즈마의 반응성과 활용성 개선이 제한적이었다. 연구팀은 문제 해결을 위해 전자-중성입자 제동복사(electron-neutral bremsstrahlung)란 기술을 이용해 플라즈마 내 자유 전자의 밀도, 온도를 정확히 진단하고 이를 2차원으로 영상화하는 기술을 개발했다. 연구팀은 개발한 진단 기술을 이용해 대기압 플라즈마에서 수 나노초(10억분의 1초) 단위로 자유 전자의 온도(에너지)를 측정해 전자가 에너지를 얻는 가열 과정의 시공간적 분포 및 근본 원리를 밝히는 데 성공했다. 0.25~1기압 압력구간에서의 전자 온도의 시공간적 분포의 변화를 실험적으로 최초로 확인해 대기압 및 대기압보다 낮은 압력에서 전자가 에너지를 얻는 가열의 기본 원리를 규명했다. 최 교수는 “이 연구 결과는 자유 전자와 중성입자의 충돌이 매우 빈번한 조건에서 발생하는 플라즈마에서의 전자 가열 원리를 학문적으로 이해하는 데 유용할 것이다”며 “이를 통해 경제적, 산업적 활용 가능한 대기압 플라즈마 발생원을 개발하고 다양하게 활용하는데 큰 역할을 하길 기대한다”고 말했다. 이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 측정된 파장의 제동복사 및 전자 온도의 시공간적 변화 그림2. 단일 및 이중 주파수로 구동하는 플라즈마에서 측정된 제동복사 및 전자 온도의 시공간적 변화
2018.07.26
조회수 13688
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
>
다음 페이지
>>
마지막 페이지 6