본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%82%98%EB%85%B8%EC%86%8C%EC%9E%AC
최신순
조회순
최경철 교수, 머리카락보다 얇은 실에 OLED 제작 성공
〈 권 선 일 박사과정 〉 우리 대학 전기및전자공학부 최경철 교수 연구팀이 머리카락보다 얇은 섬유 위에 고효율의 유기발광 디스플레이(OLED)를 제작할 수 있는 기술을 개발했다. 연구팀은 향후 웨어러블 디스플레이에 적용할 수 있는 고효율, 고수명의 OLED 기술이 될 것으로 기대된다고 밝혔다. 권선일 박사과정이 주도한 이번 연구는 나노과학 분야 국제 학술지 ‘나노 레터스(Nano Letters)’ 12월 6일자 온라인 판에 게재됐다. 기존의 섬유형 웨어러블 디스플레이 연구는 기기를 구현하는 데 초점을 맞춰서 진행이 됐다. 따라서 소자의 성능이나 내구성 측면에서 평판 기반의 OLED 소자에 비해 턱없이 낮은 성능을 보였고 이로 인해 실제 웨어러블 디스플레이로 응용하는 데 한계가 있었다. 연구팀은 문제 해결을 위해 섬유에 적합한 OLED 소자 구조를 설계해 3차원 섬유 구조에 적합한 딥 코팅 공정을 활용했고 이를 통해 평판 제작물에 버금가는 고효율, 고수명의 OLED를 개발했다. 이 기술을 통해 평판 기반의 용액 공정을 활용한 OLED 구조를 그대로 섬유에 적용해도 성능 저하가 전혀 없이 1만cd/m2(칸델라/제곱미터) 수준의 휘도, 11cd/A(칸델라/암페어) 이상의 효율을 보임을 확인했다. 또한 4.3%의 기계적 변형률에도 섬유형 OLED 성능이 잘 유지됨을 확인했고 개발한 섬유형 OLED를 직물에 직조해도 아무런 문제가 발생하지 않음을 증명했다. 연구진이 개발한 기술은 300마이크로미터(㎛) 직경의 섬유에서부터 머리카락보다 얇은 90마이크로미터 직경 섬유에도 OLED를 형성할 수 있었다. 또한 105℃ 이하의 저온에서 모든 과정이 진행되기 때문에 열에 약한 일반적인 섬유에도 적용 가능하다. 최 교수는 “기존 섬유형 웨어러블 디스플레이 연구는 낮은 성능으로 인해 응용에 많은 제약이 따랐지만 이 기술은 직물을 구성하는 요소인 섬유에 고성능의 OLED를 제조할 수 있는 기술이다”며 “간단하고 저비용의 공정으로 고성능 섬유형 웨어러블 디스플레이 상용화의 길을 열었다”고 말했다. 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 선도연구센터지원사업과 나노소재원천기술개발사업의 지원으로 수행됐다. □ 그림 설명 그림1. 섬유형 유기 발광 다이오드를 직조하여 구동한 모습
2018.01.03
조회수 15150
김용훈 교수, 단일 분자 소자의 전극 계면 특성 규명
〈 김 용 훈 교수와 김후성 박사과정, 김한슬 박사 〉 우리 대학 EEWS 대학원 김용훈 교수 연구팀이 10년 이상 나노 분야 주요 난제로 남아있던 단일분자 전자소자의 금속전극-분자 계면 원자구조와 소자특성 간 상관관계를 규명했다. 이번 연구 성과는 국제 과학 학술지인 ‘미국 화학회지(Journal of the American Chemical Society)’ 6월 21일자에 게재됐다. 단일분자 전자소자는 OLED 등을 통해 알려진 유기소자로서 2003년 미국에서 처음 구현됐다. 분자전자소자(molecular electronics)는 차세대 반도체 소자의 후보군으로 관련 연구들이 활발히 수행되고 있다. 분자를 전자소자로 활용하기 위해선 분자-전극 형태의 원자구조가 구체적으로 어떻게 형성되는지 이해하는 것이 중요하다. 분자 전자소자는 크게 분자, 전극, 둘을 잇는 연결자로 구성된다. 2006년 미국 애리조나 대학의 타오(Nongjian Tao) 교수를 포함한 연구팀은 한 종류의 분자에서 여러 개의 전류 값이 나올 수 있음을 규명했으나 그 전류 값의 크기와 개수, 원인 등은 명확히 밝혀지지 않았다. 특히 그 원인에 대해서는 관련된 분자와 금속전극 간 계면의 원자구조가 여러 가지 형태를 띠고 있기 때문이라는 추측만 있었고 명확히 밝혀지지는 않았다. 김 교수 연구팀은 주사탐침현미경 등을 이용해 단분자 소자가 구현되는 과정을 슈퍼컴퓨터를 활용해 재현했다. 접합 구조의 여러 가지 형태를 찾는 것은 결국 황(S) 원자 주변의 금(Au) 원자 몇 개가 어떤 형태로 배열되는지 확인하는 것인데 이것을 배위수(coordination number)라고 부른다. 〈 김 용 훈 교수와 연구팀 〉 연구팀은 분자와 금속 전극 간 결합의 원자구조 배위수에 따라 금속전극 사이에서 전류 값이 변화하는 것을 확인했다. 또한 분자가 당겨질 때 단순히 금속과 분자 사이 결합이 끊어지는 게 아니라 금속전극의 원자구조가 쉽게 변형돼 결국은 금속과 금속 사이의 결합의 끊어지는 것을 규명했다. 일본 오사카 대학의 카와이(T, Kawai) 교수는 위와 같은 김 교수의 이론을 뒷받침하기 위해 소자 인장에 따른 전류의 증가를 포함하는 실험을 수행했다. 한, 일 공동연구팀은 슈퍼컴퓨터를 이용한 제1원리 계산과 첨단 나노소자 제조 및 측정을 통해 유기 소자의 계면 특성을 원자 수준에서 성공적으로 규명했다. 연구팀은 나노과학-나노기술 분야에서 10년 이상 풀리지 않던 난제를 해결했다. 이번 성과는 향후 OLED, 바이오센서, 유기태양전지 등 다양한 유기소자 분야에 활용 가능할 것으로 기대된다. 김 교수는 “이번 연구는 나노 분야에서 이론 연구가 실험을 선도하는 역할을 성공적으로 수행함을 보여주는 예가 될 것이다”고 말했다. 이번 연구는 미래창조과학부의 중견연구자지원사업, 글로벌프론티어사업, 나노소재기술사업과 KISTI 슈퍼컴퓨터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 분자 전기전도도 실험 측정방법의 개념도 그림2. 대표적인 세 가지 분자-금속전극 접합 원자구조와 이에 상응하는 외력에 따른 전도도 변화 패턴
2017.07.04
조회수 17870
이건재, 최성율 교수, 고체 상분리 현상에 의한 그래핀 생성원리 발견
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀이 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝혔다. 기존에 활용되고 있는 화학기상증착(Chemical Vapor Deposition, CVD) 기반의 그래핀 합성법이 상당시간의 고온 공정을 필요로 하는 것과 달리 새로운 레이저 열처리법은 상온환경에서 단시간의 공정으로 그래핀을 합성할 수 있어 향후 그래핀 활용의 폭을 넓힐 수 있을 전망이다. 연구진은 단결정 탄화규소 소재 표면에 나노초(10억분의 1초) 단위의 극히 짧은 시간 동안 레이저를 쪼여 표면을 순간적으로 녹였다가 다시 응고시켰다. 그러자 탄화규소 표면이 두께 2.5나노미터의 탄소(C) 초박막층과 그 아래 두께 5나노미터의 규소(Si, 실리콘)층으로 분리되는 상분리 현상이 나타났다. 여기에 레이저를 다시 쪼이자 안쪽 실리콘층은 증발하고, 탄소층은 그래핀이 됨을 확인했다. 특히 탄화규소와 같은 이종원소 화합물과 레이저의 상호작용에 대한 연구는 아주 짧은 시간에 일어나는 복잡한 상전이 현상으로 지금까지 그 규명이 쉽지 않았다. 그러나 연구진은 레이저에 의해 순간적으로 유도된 탄소 및 실리콘의 초박막층을 고해상도 전자현미경으로 촬영하고, 실리콘과 같은 반도체 물질이 고체와 액체 상태일 때 나타나는 광학 반사율이 다르다는 점에 착안해 탄화규소의 고체 상분리 현상을 성공적으로 규명해낼 수 있었다. 연구에 활용된 레이저 열처리기술은 AMOLED(능동형 유기발광다이오드) 등 상용 디스플레이 생산공정에 널리 활용되고 있는 방법으로, CVD 공정과 달리 레이저로 소재 표면만 순간적으로 가열하기 때문에 열에 약한 플라스틱 기판 등에도 활용이 가능하여, 향후 플렉시블 전자 분야로 응용의 폭을 넓힐 수 있을 것으로 기대된다. 이 교수는 "이번 연구 결과를 통해 레이저 기술이 그래핀과 같은 2차원 나노소재에 보다 폭넓게 응용될 수 있을 것이다”고 말했다. 최 교수는 "앞으로 다양한 고체 화합물과 레이저의 상호작용을 규명해 이들의 상분리 현상을 활용하면 새로운 나노소재 개발을 기대할 수 있을 것이다”고 말했다. 이번 연구결과는 자연과학 및 응용과학 분야 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 최신호에 게재됐다. □ 그림 설명 그림1. 단결정 탄화규소의 용융을 통한 상분리 현상의 원리를 밝혀내는 분자동역학 시뮬레이션의 모식도 그림2. 레이저에 의해 순간적으로 유도된 단결정 탄화규소의 용융 및 응고 현상을 증명하는 실시간 시간 분해능 반사율 (In-situ time-resolved reflectance) 측정 스펙트럼 그림3. 레이저가 조사된 탄화규소 표면의 전체적인 전자현미경 사진(a) 및 이로 의한 탄소와 실리콘으로의 상분리 현상을 촬영한 고해상도 전자현미경 사진(b)
2016.12.05
조회수 18801
윤동기 교수, 붓으로 DNA의 모양을 조절하는 기술 개발
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 일상생활에서 흔히 쓰이는 화장용 붓을 이용해 일정한 지그재그 형태를 갖는 DNA 기반의 나노 구조체 제작 기술을 개발했다. 차윤정 박사과정 학생이 1저자로 참여한 이번 연구 성과는 재료분야 저명 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’ 11월 15일자 온라인 판에 게재됐고 액정(liquid crystal) 분야 핫 토픽으로 선정됐다. 기존에도 DNA를 빌딩블록으로 사용해 다양한 나노 구조체를 만드는 기술은 많이 존재했다. 그러나 이 방식은 복잡한 설계과정이 필요하고 특히 염기서열이 조절된 값비싼 DNA를 이용해야 하는 단점이 있다. 연구팀은 연어에서 추출한 DNA 물질을 이용해 기존보다 1천 배 이상 저렴한 비용으로 잘 정렬된 지그재그 형태의 나노 구조체를 구현했다. 연구팀은 화장품 가게에서 구매한 화장용 붓으로 연어에서 추출한 DNA를 물감처럼 이용해 그림 그리듯 기판에 한 방향으로 문질렀다. 수 센티미터 크기의 붓을 이용해 지름이 약 2 나노미터인 DNA 분자들을 붓질 방향으로 나란히 정렬시켰다. 얇게 퍼진 진한 상태의 DNA 필름이 공기 중에 노출돼 건조되며 이 때 기판의 바닥에서 잡아주는 힘 때문에 팽창력이 작용한다. 이 팽창력은 DNA의 탄성력과 상호작용해 일렬로 향하던 DNA의 분자에 파도모양의 기복이 생기면서 일정한 지그재그 패턴이 형성된다. 형성된 DNA 지그재그 패턴은 생물체에서 추출한 저렴한 DNA를 사용했기 때문에 그 내부정보(sequence)까지는 조절되지 않았지만, DNA 물질의 구조적 정교함은 변하지 않아 아주 일정한 구조체가 된다. 이렇게 정밀하게 구조가 조절된 DNA 막 위에 다른 물질을 바르면 DNA 구조에 따라 정밀하게 그 물질이 정렬하기 때문에 다양한 분야에 이용 가능하다. 예를 들어 액정 디스플레이에 사용되는 다른 액정을 정렬시킬 수 있고 금속 입자, 반도체 물질 역시 정렬이 가능하다. 이러한 기능을 통해 새로운 개념의 광전자 소자로의 응용에 기여할 수 있을 것으로 기대된다. 윤 교수는 “DNA 뿐 아니라 자연계에 존재하는 단백질, 근육 세포, 뼈의 구성물질 등 다양한 생체 물질을 광전자 분야에 사용할 수 있다는 점에서 큰 의의를 갖는다”고 말했다. 이번 연구는 한국연구재단의 나노소재 원천기술개발사업 및 미래유망융합기술 파이오니아 사업을 통해 수행됐다. □ 그림 설명 그림1. 규칙적인 DNA 지그재그 구조체의 이미지와 내부 분자의 배향을 설명하는 모식도 그림2. 정렬되지 않던 DNA(좌)가 붓질 및 건조시킨 후 정렬된 과정(우) 그림3. 마이크로 채널 기판을 이용한 DNA 지그재그 구조체의 제어 그림4. DNA 지그재그 구조체 표면 위에 형성된 액정 물질의 배향제어 모식도 및 편광 현미경 이미지
2016.12.01
조회수 15197
홍순형, 류호진 교수, 세라믹과 고온용 2차원나노소재 합성기술 최초개발
우리 대학 신소재공학과 홍순형 교수와 원자력및양자공학과 류호진 교수 공동 연구팀이 고온용 2차원 나노소재인 질화붕소 나노플레이트렛(BNNP)을 세라믹 재료의 강화재로 응용하는 기술을 개발했다. 이번 연구는 질화붕소 나노플레이트렛을 통해 내충격성이 약한 세라믹의 성능을 높일 수 있음을 규명했다는 의미를 갖는다. 이를 통해 향후 인공치아, 인공뼈 및 우주항공용 고온 소재 등에 사용 가능할 것으로 기대된다. KAIST 신소재공학과 이빈 박사과정 학생이 제 1저자로 참여한 이번 연구는 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 6월 8일자 온라인 판에 게재됐다. 세라믹은 다른 소재들에 비해 내충격성이 약해 쉽게 깨지는 단점이 있다. 따라서 나노물질 강화재를 첨가해 내충격성을 향상시킬 수 있는 복합소재를 개발하는 것이 중요하다. 신소재로 각광받는 그래핀은 전기전도도가 높아 절연 특성을 요하는 기판용 세라믹 재료에 적합하지 않다. 또한 섭씨 350℃에서 산화, 검은 색깔 등의 특성을 갖기 때문에 심미성이나 실용성의 문제로 우주항공용 소재나 인공치아 등에 활용이 어렵다. 반면 질화붕소 나노플레이트렛은 섭씨 1천℃에서도 안정적이고 투명하며 생체적합성이 뛰어나 고온용 소재나 생체용 세라믹 재료의 강화재로 응용할 수 있다면 물성을 크게 향상시킬 수 있다. 이번 연구에서 제조된 질화붕소 나노플레이트렛은 질소와 붕소 원자가 육각형의 벌집모양 형태로 화학결합을 한 두께 10나노미터 이하의 2차원 나노소재이다. 이와 같은 장점에도 불구하고 제조공정이 어렵다는 단점 때문에 연구가 활발하지 않아 그래핀에 비해 널리 활용되지 못했다. 연구팀은 질화붕소 나노플레이트렛을 제조하기 위해 ‘고에너지 볼밀링’ 공정을 이용했다. 볼밀링 공정은 용기 내에 볼과 대상 물질을 넣고 회전시켜 에너지를 가하는 방식이다. 대상 물질인 질화붕소와 철로 만들어진 볼을 넣고 회전을 가하는 간단한 방법으로 질화붕소 각각의 층을 박리하는 데 성공했다. 그리고 이를 통해 정밀한 질화붕소 나노플레이트렛을 대량으로 제조하는 데 성공했다. 또한 계면활성제를 통해 질화붕소 나노플레이트렛을 세라믹 재료 내에 균일하게 분산시키는 데 성공했다.대표적 세라믹 소재인 질화규소에 첨가했을 때 2%의 첨가만으로 강도 10%, 파괴인성 20%, 내마모 특성을 30% 향상시켰다. 홍 교수는 “질화붕소 나노플레이트렛의 우수한 기계적 물성, 열전도율, 고온 안정성 등을 세라믹 소재에 접목해 우주항공용 고온 소재, 인공치아용 소재, 전자기기 기판 소재 등에 응용이 가능하다”고 말했다. 류 교수는 “세라믹 소재의 특성을 획기적으로 향상시키고 응용 분야를 넓혀 신산업을 창출할 수 있을 것이다”고 말했다. 이번 연구는 미래창조과학부 글로벌프론티어 사업, 소프트 광소자용 2D 및 차원융합 하이브리드 소재 개발 기술 과제의 지원을 받아 수행됐다. □ 그림 설명 그림1.볼밀링 공정을 통해 질화붕소를 BNNP로 박리하는 공정 그림2. 본 연구를 통해 제조된 BNNP 강화 질화규소 나노복합분말 및 나노복합소재
2016.07.04
조회수 10909
박인규 교수, 공기오염 측정 센서 원천기술 개발
<박인규 교수> 우리 대학 기계공학과 박인규(38) 교수팀이 스마트폰 등 모바일 기기에 탑재 가능한 초소형, 초절전 공기오염 측정 센서의 원천기술 개발에 성공했다고 밝혔다. 연구 결과는 네이처(Nature)의 자매지인 사이언티픽 리포트(Scientific Reports) 1월 30일 자 온라인 판에 게재됐다. 각종 공기오염 물질이 증가하고 사람들의 건강관리에 대한 관심이 높아지면서 개인의 주변 공기오염도에 대한 측정 기술의 필요성이 커지고 있다. 하지만 기존의 공기오염 측정 센서는 소모 전력과 부피가 크고, 여러 유해가스를 동시에 측정할 때의 정확도가 낮았다. 이는 기존에 개발된 반도체 제작공정을 사용해도 해결이 쉽지 않았다. 박인규 교수팀은 수백 마이크로미터 폭의 미세유동과 초소형 가열장치로 수 마이크로미터만을 국소적으로 가열하는 극소영역 온도장 제어기술을 이용해 여러 종류의 기능성 나노소재를 하나의 전자칩에 쉽고 빠르게 집적하는 기술을 개발했다. 대표적으로 공기오염 측정에 사용되는 센서 소재인 반도체성 금속산화물 나노소재 기반의 전자칩을 제작하였다. 박 교수팀의 기술은 다종의 센서용 나노소재를 적은 양으로도 동시제작 할 수 있어 모바일 기기에 탑재할 초소형, 초절전 가스 센서를 만들 수 있다. 이 기술은 고밀도 전자회로, 바이오센서, 에너지 발전소자 등 다양한 분야에 응용이 가능하고, 특히 소형화 및 소비전력 감소에 어려움을 겪는 휴대용 가스센서 분야에 혁신을 가져올 것으로 예상된다. 박 교수는 “모바일 기기용 공기오염 센서 뿐 아니라 바이오센서, 전자소자, 디스플레이 등의 다양한 융합기술 발전에 크게 기여할 수 있을 것”이라고 말했다. 이번 연구는 교육부의 글로벌프론티어 사업, 미래창조과학부의 나노소재 기술개발사업, BK21 사업의 지원을 받아 수행됐다. 이번 연구에는 박인규 교수를 비롯해 기계공학과 양대종 박사후 연구원, 강경남 박사과정 연구원, 한국전력공사 김동환 연구원, 미국 휴렛 팩커드(Hewlett Packard) 사의 지용 리 (Zhiyong Li) 박사가 참여했다. □ 그림설명 그림1. 다종 나노소재 제작 원리 및 미세 유동 컴퓨터 시뮬레이션 결과 그림2. 초미세 영역에서 동시에 제작된 다종의 나노소재
2015.02.24
조회수 15618
고성능 전자소자 소재 "절반-금속" 나노선 개발
-교과부 21세기 프론티어사업단 김봉수교수팀, 나노신소재 합성성공- 한 물질이 금속과 비금속의 특성을 나타내 기존 반도체 소자의 성능을 획기적으로 개선시킬 수 있는 "절반-금속 (half-metallic) 강자성 규화금속 나노선"이 개발됐다. 우리학교 화학과 김봉수 교수팀이 절반-금속성을 갖는 규화철 나노선을 최초로 합성함으로써 통하여 ‘차세대 스핀전자공학’에 필수적인 스핀 주입(spin injection) 물질을 개발했다. 스핀주입이란 외부의 전기장이나 자기장에 의해 물질 내 전자의 자기적 특성(스핀)을 조절하는 것인데, 이번에 개발된 규화철 나노선은 한 방향 스핀을 갖는 전자들에게는 전도성 금속으로 작용하고 그 반대방향 스핀을 갖는 전자에게는 절연체로 작용하여 한 가지 스핀방향만을 가지는 전류를 만들어 낼 수 있다. 이런 기능은 정보신호로 변환이 가능하기 때문에 이 나노선으로 고성능, 고집적, 저전력 특성을 가지는 전자소자를 만들면 현재 실리콘 반도체의 한계를 극복할 수 있다. 김 교수팀은 기존에 개발한 규화철(FeSi) 나노선에 산소기체를 도입한 간단한 열확산 법을 이용하여 매우 높은 큐리 온도 (Tc=840 K)에서도 강자성을 유지하고 높은 스핀편극도를 가지는 절반-금속 강자성 규화철(Fe3Si) 나노선으로 완벽하게 변환하였으며, 같은 방법으로 규화코발트(Co2Si) 나노선을 변환시켜 최초로 단결정 코발트(Co) 나노선을 합성하는 등 소재의 조성을 조절하는 합성법의 일반화에도 성공하였다. 김 교수팀이 개발한 강자성 규화철(Fe3Si) 나노선은 나노 소자 제작을 위한 빌딩 블록(building blocks)에 활용될 수 있어, 효율적이고 소형화된 초고성능 자기 메모리 및 거대 자기저항(GMR) 센서의 개발이 가능해졌다. 이에 따라 양자 메모리 처리와 고주파 전자통신 소자 등 다양한 나노 소자 개발에 기술적 전기(轉機)가 마련됐다. 한편, 이번 연구결과는 8월초 나노기술(NT) 분야의 가장 권위있는 학술지인 "나노 레터 (Nano Letters)"지 온라인판에 게재되었고, 현재 국내 특허 출원 중이다.
2010.08.19
조회수 16644
박찬범 교수팀, 나노크기의 광감응 소재를 이용한 인공광합성 원천기술개발
신소재공학과 박찬범(朴燦範, 41세) 교수팀이 나노소재를 이용해 자연계의 광합성을 모방한 ‘인공광합성’ 시스템 개발에 성공했다. 이러한 새로운 개념의 인공광합성 기술은 고부가가치의 각종 정밀의약품들을 태양 에너지를 이용해 생산하는 친환경 녹색생물공정 개발의 전기가 될 것으로 기대된다. 식물 등 자연계의 광합성 생물체들은 태양에너지를 이용해 환원력을 재생하여 보조인자(cofactor)라는 형태로 저장하고, 이렇게 재생된 보조인자 등을 빛이 없을 때 캘빈사이클 (calvin cycle)을 통해 생존에 필요한 탄수화물 등 각종 화학물질들을 합성하는데 이용한다. [그림 1. 자연광합성을 모방한 인공광합성 공정을 이용한 정밀화학제품 생산 개념도] 박 교수팀은 이러한 자연광합성시스템을 모방하여 자연계의 광반응 (light reaction) 대신 태양전지 등에서 사용되는 양자점 (quantum dot) 등 수 나노크기의 광감응소재로 빛에너지를 전기에너지로 효율적으로 전환하고, 이를 이용하여 보조인자를 재생했다. 또한 자연계의 복잡한 캘빈 사이클 대신 산화환원 효소반응을 보조인자 재생에 연결시킴으로써 빛에너지로부터 시작하여 최종적으로 정밀화학물질 생산이 가능한 반응시스템을 개발했다. 인류가 지구 온난화와 화석 연료의 고갈이라는 문제를 안고 있는 가운데, 온난화의 원인인 이산화탄소를 배출하지 않고 또한 무제한으로 존재하는 태양 에너지를 이용하려는 노력이 계속되고있는데, 이번에 개발된 인공광합성기술은 에너지원으로 무한한 태양광을 사용한다는 장점 때문에 그 파급효과가 매우 클것이다. 특히 각종 정밀화학물질 합성에 있어서 산화환원효소들이 매우 뛰어난 응용가능성/다양성을 가졌음에도 불구하고 이들의 효율적 사용을 위하여 필수적으로 요구되는 보조인자의 재생에 대한 연구는 지난 20여년동안 수행되어 왔으나 현재까지도 성공적인 결과가 거의 없어 향후 생물공학분야에서 해결되어야 할 미해결 난제들 중의 하나였다. 박교수팀의 연구성과는 산화환원효소를 산업적으로 활용하기 위한 토대를 마련한 것이다. [그림 2. 산화환원효소 기반 인공광합성을 통한 고부가가치 정밀화학제품 생산] 관련 연구결과는 독일에서 발간되는 나노분야 국제저명학술지인 Small지 최근호(4월 23일자 온라인판)에 게재됐으며, 최근 특허출원이 완료됐다. 이번 연구는 교육과학기술부 신기술융합형 성장동력사업(생물공정연구단) 등으로부터 지원을 받아 수행됐으며, 나노과학과 생명공학분야의 창의적인 융합을 통하여 새로운 공정기술을 개발하는데 크게 기여했다는 평가를 받았다.
2010.04.23
조회수 22798
김봉수 교수팀, 초탄성 무결점 금속나노선 개발
화학과 김봉수 교수팀은 차세대 3차원 메모리 소자의 대량생산이 가능한 새로운 초탄성․무결점 금속 나노선(nanowire)을 개발했다. 이는 촉매없이 금속 나노선을 기판위에 손쉽게, 원하는 형태로 성장(epitaxial growth)시킬 수 있는 원천기술이다. 교육과학기술부(장관 안병만)는「21세기 프론티어연구개발사업」나노소재기술개발사업단(단장 서상희 박사)의 지원을 받은 KAIST 김봉수 교수 연구팀이 초탄성․무결점의 단결정 금속 나노선을 개발 하는데 성공했다고 18일 밝혔다. 지난 2004년 MIT 선정 10대 유망기술에 선정된 바 있는 나노선(nanowire)은 단면 지름이 수십에서 수 나노미터(1nm = 10억분의 1m) 정도인 극미세선으로, 트랜지스터, 메모리, 센서 등 첨단 전기전자 소자를 개발하는데 핵심적인 미래기술이다. 기존의 반도체 나노선은 정렬된 성장(epitaxial growth)이 가능했으나 금, 팔라듐 등 금속 나노선의 경우에는 적절한 촉매가 없어서 이러한 정렬된 성장을 실현하기 어려웠다. KAIST 김봉수 교수 연구팀은 증기의 양, 온도, 압력 등을 최적으로 조절함으로써, 촉매 없이 금, 팔라듐, 및 금팔라듐 합금 나노선을 원하는 대로 방향성 있게 성장시키는 데 세계 최초로 성공하였다. 또한, 어떠한 물질이라도 기판 위에 씨앗 결정을 형성하기만 하면 잘 정렬된 나노선으로 성장시킬 수 있다는 사실을 밝혔다. ※ 질병을 일으키는 병원균의 DNA 농도에 따라 금나노선에 부착되는 금입자의 갯수가 달라짐(이 금입자의 갯수로 부터 병원균의 갯수를 검출) (스케일바 : 20 nm) KAIST 화학과 김봉수 교수는 “이 기술을 한 단계 더 발전시켜 기판 위에 씨앗을 원하는 위치에 놓을 수 있다면, 나노선의 위치 및 방향을 마음대로 제어할 수 있게 되기 때문에, 차세대 3차원 메모리 소자의 대량생산이 가능해져 세계 메모리 산업에서 선도적 위치를 차지할 수 있을 것으로 기대된다.”고 밝혔다. 한편 이번 연구결과는 나노 분야의 세계적 권위지인 나노레터스(Nano Letters)지 1월 6일자 온라인 속보판에 소개되었으며, 현재 미국 및 독일 등에 특허 출원중이다. [그림 1] 사파이어 기판 위에 수직으로 성장한 완전 단결정 금 나노선 이번에 개발된 기술을 통해 성장된 나노선은 초탄성(超彈性)․무결점 뿐만 아니라 완벽히 깨끗한 표면을 가지고 있다는 특징이 있어, 나노크기의 탄성에너지 저장장치, 나노안테나, 질병진단용 메디컬 센서 등 새로운 기술분야에 다양하게 응용가능하다. [그림 2] 금 나노선을 이용한 질병진단 센서 (예)
2010.01.18
조회수 21580
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2