본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%A0%88%EC%9D%B4%EC%A0%80
최신순
조회순
양민양 교수, 고성능 필름형 차세대 전지 개발
〈 이 재 학 박사과정, 양 민 양 교수 〉 우리 대학 기계공학과 양민양 교수 연구팀이 고성능의 필름형 차세대 전지(슈퍼커패시터)를 저렴하고 간단한 방법으로 제작하는 데 성공했다. 연구팀은 기존의 복잡한 제작과정과 낮은 성능 등의 단점을 갖는 필름형 슈퍼커패시터를 대체할 수 있는 기술을 개발했다. 이는 새로운 고성능 소자구조를 단일공정으로 제작할 수 있는 핵심 재료 및 소자 제조 원천기술이다. 이재학 박사과정이 1저자로 참여한 이번 연구 결과는 재료, 화학분야의 국제 학술지 영국왕립화학회의 ‘저널 오브 머티리얼즈 케미스트리 에이(Journal of Materials Chemistry A)’ 12월 21일자 표지논문에 선정됐다. 슈퍼커패시터는 기존의 리튬이온배터리와 비교해 월등하게 빠른 충전 속도와 반영구적 수명을 가져 차세대 에너지 저장소자로 각광받고 있다. 무엇보다 유연한 기판에 제조되는 필름형 슈퍼커패시터는 웨어러블 및 유연 전자소자의 회로에 직접 연결돼 전원 역할을 할 수 있기 때문에 차세대 유연 전자소자의 핵심 전력소자이다. 기존에는 유연한 필름 위에 높은 표면적의 금속 전극을 형성하기 위해 포토리소그래피, 진공증착 등의 반도체 공정을 이용했다. 또한 금속전극의 표면적 향상을 위해 추가적으로 고가의 설비와 2단계의 유독한 화학 공정이 필요했다. 연구팀은 보다 빠르고 저렴하며 간단한 방법인 레이저 성장 소결 공정 기술을 개발했다. 이는 나노미터 단위의 기공을 갖는 초다공성 은(銀) 전극을 제조하는 기술로 슈퍼커패시터의 전극으로 적용하는 데 성공했다. 레이저만을 이용해 은 미세 패턴을 형성하는 동시에 내부에 다공성 나노구조를 생성해 10단계 이상 소요되던 세부 제조 과정을 1단계로 간소화했다. 연구팀은 기존 금속 나노 용액과 비교해 매우 저렴한 무입자 유기금속이온 화합물 용액을 사용해 핵생성, 열성장, 다결정 금속 막 형성으로 이어지는 특수한 성장 소결 원리를 규명했다. 연구팀은 일반적인 단일물질 대칭구조의 슈퍼커패시터 전극과 달리 이종(異種)의 금속산화물(이산화망간과 산화철)을 각각 양극과 음극으로 비대칭 적용해 구동 전압을 크게 향상시켰다. 이를 통해 전력 보유량을 극대화해 고용량 에너지 저장소자를 개발했고, 4초 내 초고속 충전이 가능하고 5천 번 이상의 내구성 테스트에서 안정적으로 작동하는 것을 확인했다. 양 교수는 “이번 연구 결과는 향후 웨어러블 및 유연 전자기기 기판에 포함돼 전력을 공급할 수 있는 에너지 저장소자로 사용 가능하다”며 “전원까지 포함하는 진정한 의미의 완전한 유연 전자기기의 현실화에 더 가까워졌다”고 말했다. □ 그림 설명 그림1. 논문 표지 이미지 그림2. 제조된 필름형 슈퍼커패시터와 그 성능 그림3. 레이저 성장 소결 메카니즘 그림4. 레이저 조사조건에 따른 은 전극 형상 변화
2018.01.11
조회수 14948
김필한 교수, 초고속 레이저 생체현미경 개발
〈 김 필 한 교수 〉 우리 대학 나노과학기술대학원 김필한 교수 연구팀이 개발한 초고속 생체현미경(IVM: IntraVital Microscopy)을 통해 미래 글로벌 바이오헬스 시장을 겨냥한 상용화에 나선다. 김 교수는 (재)의약바이오컨버젼스연구단, 서울대학교 김성훈 교수와의 공동 연구를 통해 개발한 최첨단 초고속 레이저스캐닝 3차원 생체현미경 기술을 토대로 아이빔테크놀로지(주)(IVIM Technology, Inc)를 창업했다. 이 생체현미경(IntraVital Microscopy : IVM)은 수많은 세포들 간 상호작용을 통해 나타나는 생명 현상을 탐구하고 여러 질환의 복잡한 발생 과정을 밝힘으로써 기초 의생명 연구의 차세대 첨단 영상장비가 될 것으로 기대된다. 연구팀의 기술은 살아있는 생체 내부조직을 구성하는 세포의 움직임을 직접 관찰할 수 있다. MRI나 CT 등 기존 생체영상 기술로는 불가능한 신체 다양한 장기 내부의 수많은 세포 하나하나를 구별하고 각 세포들의 움직임을 3차원으로 즉시 확인 가능하다. 이를 통해 다양한 질병이 몸속에서 발생하는 과정에 대해 자세한 세포단위 영상 정보를 제공할 수 있다. 특히 초고속 생체현미경 기술은 여러 색의 레이저 빔을 이용해 기존의 조직분석 기술로는 불가능했던 살아있는 생체 내부의 다양한 세포 및 주변 미세 환경과 단백질 등의 분자를 동시에 영상화할 수 있다. 이를 활용하면 생체 외부에서 수집한 데이터로 수립한 가정을 실제 살아있는 생체 내 환경에서 세포 단위로 검증하고 분석할 수 있다. 생체현미경은 바이오제약 분야에서도 주목받고 있다. 최근 바이오제약 산업은 단순 합성약물개발보다 생체의 미세 구성단위인 세포 수준에서 복합적으로 작용하는 면역치료제, 세포치료제, 유전자치료제, 항체치료제 등 새로운 개념의 바이오의약품 개발에 집중하고 있기 때문이다. 연구팀의 생체현미경은 동물실험에서 목표로 하는 세포, 단백질과 주입된 물질의 움직임을 동시에 3차원 동영상으로 관찰할 수 있다. 현재 (재)의약바이오컨버젼스연구단과 함께 차세대 신약개발을 위한 핵심기술로 발전시키기 위해 노력 중이다. 김 교수가 창업한 회사는 시장성과 성장가능성을 높게 평가받아 벤처기업으로서는 이례적으로 빠르게 창업 3개월 만에 LB인베스트먼트와 에이티넘인베스트먼트로부터 총 30억 원의 투자를 유치했다. 김 교수는 “이 기술은 다양한 생명 현상을 보다 정밀하게 종합 분석하기 위한 원천기술이다”며 “고령화 사회의 도래와 함께 급성장할 글로벌 바이오헬스 시장을 개척할 수 있는 차세대 의료, 의약 기술의 발전을 가속화할 핵심 기술이 될 것으로 확신한다”고 말했다. 김 교수 연구팀의 연구는 창업원의 엔드런(End-Run) 사업과 과학기술정보통신부가 추진하는 글로벌프론티어사업의 혁신형의약바이오컨버전스사업의 지원을 받아 수행됐다. □ 사진 설명 사진1. 초고속 레이저 생체현미경 (IVM) 사진1 사진2. 초고속 레이저 생체현미경 (IVM) 사진2 사진3. 생체 내부 세포수준 변화의 IVM 영상 결과 사진4. 생체 내부 다양한 장기의 세포수준 IVM 영상 결과
2017.11.21
조회수 20145
박용근 교수, 세포 자유롭게 변형 가능한 홀로그래피 기술 개발
우리 대학 물리학과 박용근 교수 연구팀이 세포와 같이 복잡한 3차원 물체를 빛을 통해 자유자재로 제어할 수 있는 홀로그래피 기술을 개발했다. 이 기술은 복잡한 형상을 갖는 물체들을 포획하고 조립하면서 실시간 촬영이 가능해 세포들 간의 상호를 연구하거나 미세한 물체를 제작하고 조립하는 새로운 응용 분야를 개척할 수 있을 있을 것으로 보인다. 이번 연구 결과는 네이처 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 22일자 온라인 판에 게재됐다. 광학 집게라고 불리는 기존 광 제어 기술은 레이저로 광 초점을 만들어 그 초점에 구형 물체를 포획하는 방식이다. 렌즈를 이용해 작은 레이저 광 초점을 만들면 이 광초점에 자석에 철가루가 끌려오듯 주변 미세 물체를 달라붙게 하는 기술이다. 또한 이 기술은 초점의 위치를 옮기거나 힘을 가하는 방식으로 포획된 구형 물체의 3차원 위치를 조절할 수 있다. 1997년 노벨 물리학상의 공적인 이 기술은 물리학 및 광학 분야 등에 널리 이용된다. 그러나 이 광학 집게 기술은 물체의 모양이 복잡해지는 경우에는 물체를 안정적으로 포획하기 어렵다. 제어할 수 있는 물체의 방향이 제한적이기 때문에 생명 세포처럼 복잡한 3차원 형상을 가진 미세 물체를 광 제어하는 데는 한계가 있었다. 연구팀은 문제 해결을 위해 임의의 형상을 가진 복잡한 물체도 포획할 수 있는 새로운 레이저 포획 기술을 개발했다. 이 기술은 우선 3차원 홀로그래픽 현미경을 이용해 물체의 3차원 정보를 실시간 측정한 뒤 그 정보를 바탕으로 물체를 효과적으로 제어할 수 있는 광학 패턴을 정밀히 계산해 입사하는 방식이다. 기존 광학 집게 기술이 단순한 광 초점을 이용한 수동적 방식이라면 이 기술은 물체에 따라 능동적으로 적용할 수 있다. 빛과 물체의 모양이 같아질 때 물체가 갖는 에너지가 최소화돼 복잡한 형상의 물체더라도 안정적으로 포획할 수 있음을 확인했다. 이는 물리적으로는 에너지를 최소화하는 방향으로 현상이 발생하는 원리와 같다. 연구팀은 물체가 다양한 위치, 방향, 모양을 갖게 제어해 물체의 3차원 운동을 자유자재로 제어하고 원하는 모양으로 만들 수 있었다. 마치 거푸집을 자유롭게 제작해 원하는 석고상을 만들어내는 것과 같다. 연구팀은 이 기술을 통해 적혈구 세포를 안정적으로 집어 원하는 각도로의 회전, 기역자 모양으로 변형, 두 개의 적혈구를 조립해 새로운 구조물 제작 등을 구현하는 데 성공했다. 또한 복잡한 구조인 대장암 세포를 안정적으로 포획하고 원하는 각도로 회전시킬 수 있었다. 이 기술은 안정적인 상태에서 세포를 원하는 모양으로 변형시킬 수 있어 세포에 힘을 가하여 변형시킬 때의 세포 반응을 정량적으로 분석할 수 있다. 논문의 1저자인 김규현 박사는 “복잡한 형상을 가진 물체의 모양, 특성 등 사전 정보를 몰라도 물체의 운동을 자유자재로 제어할 수 있는 기술이다”며 “생물 물리학 연구, 부유 물질 및 나노 물체 조립 등의 다양한 분야에 응용 가능할 것이다”고 말했다. □ 그림 설명 그림1. 3차원 능동 광 제어 기술의 모식도 그림2. 복잡한 형태의 생명 세포들의 3차원 운동 및 모양 제어 결과
2017.05.25
조회수 12249
조병진, 이건재 교수, 레이저빔 공정을 이용한 고성능 유연 열전소자 개발
우리 대학 전기및전자공학부 조병진 교수와 신소재공학과 이건재 교수 공동 연구팀이 전자기기의 전력공급원으로 사용될 수 있는 고성능 유연 열전 소자를 개발했다. 김선진 박사와 이한얼 박사과정이 공동 1저자로 참여한 이번 연구는 나노 및 에너지소재 분야 국제학술지 ‘에이씨에스 나노(ACS Nano)’ 2016년 12월 27일자에 게재됐다. 연구팀은 쿼츠 기판위에 스크린 프린팅 공정으로 열전 후막을 형성한 후 레이저빔 공정을 이용해 단단한 쿼츠 기판을 제거함으로써 쉽게 휘어지는 유연 열전 소자를 개발했다. 기존 상용 열전소자 양면에는 단단하고 무거운 세라믹 기판이 있어 휘어지지 않고 중량이 무거운 단점이 있었다. 따라서 굴곡이 있는 열원에 열전소자를 부착하여 사용하기 어려웠으며 활용이 매우 제한적이었다. 연구팀은 레이저빔을 열전소자 양면에 조사해 딱딱한 기판을 완전히 분리시키는 공정을 개발했다. 레이저빔을 이용한 기판 박리기술은 30 ns (ns : 10억분의 1초)의 매우 짧은 시간의 레이저빔을 조사하기 때문에 지난 2014년 동연구실에서 발표한 니켈박리 기술 (논문명: Wearable Thermoelectric Generator Fabricated on Glass Fabric) 보다 간편하고 공정 안전성이 매우 높다. 레이저를 이용한 기판 박리 공정기술을 개발함으로써 기존의 기판에서 발생하는 열에너지 손실문제를 개선함과 동시에 열전소자의 경량화와 유연화를 동시에 달성했다. 또한 스크린 프린팅으로 형성되는 열전후막 공정의 최적화를 통해 유연열전소자의 성능을 더욱 개선했다. 연구팀이 시험 개발한 유연 열전소자는 온도차 25 ֯C에서 단위 면적당 발전량 4.78 mW/cm2, 단위 무게당 발전량 20.8 mW/g로 최근 보고된 프린팅 기반 유연열전소자 중 가장 높은 전력밀도를 갖는다. 유연 열전소자는 잘 휘어지는 특성 때문에 굴곡이 있는 열원에 쉽게 부착해 여분의 전기에너지를 생산해 낼 수 있고 열이 발생하는 다양한 곳에 광범위하게 활용할 수 있다. 인체, 자동차, 항공기, 발전소, 산업현장 등 열이 발생하는 다양한 곳에 적용하여 여분의 전기에너지를 생산할 수 있기 때문에 그 활용성이 매우 넓다. 일례로 따뜻한 물이 흐르는 수도관 외부에 유연 열전소자를 부착하게 되면 물에서 발생하는 열을 이용해 전기에너지를 생산해 낼 수 있고, 무선 전자기기(wireless electronic device)를 동작 시킬 수 있다. 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 선도연구센터지원사업의 지원으로 수행됐다. □ 그림 설명 그림1. 레이저 멀티스캔 박리 공정으로 제작된 유연 열전소자
2017.01.23
조회수 15220
이건재, 최성율 교수, 고체 상분리 현상에 의한 그래핀 생성원리 발견
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀이 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝혔다. 기존에 활용되고 있는 화학기상증착(Chemical Vapor Deposition, CVD) 기반의 그래핀 합성법이 상당시간의 고온 공정을 필요로 하는 것과 달리 새로운 레이저 열처리법은 상온환경에서 단시간의 공정으로 그래핀을 합성할 수 있어 향후 그래핀 활용의 폭을 넓힐 수 있을 전망이다. 연구진은 단결정 탄화규소 소재 표면에 나노초(10억분의 1초) 단위의 극히 짧은 시간 동안 레이저를 쪼여 표면을 순간적으로 녹였다가 다시 응고시켰다. 그러자 탄화규소 표면이 두께 2.5나노미터의 탄소(C) 초박막층과 그 아래 두께 5나노미터의 규소(Si, 실리콘)층으로 분리되는 상분리 현상이 나타났다. 여기에 레이저를 다시 쪼이자 안쪽 실리콘층은 증발하고, 탄소층은 그래핀이 됨을 확인했다. 특히 탄화규소와 같은 이종원소 화합물과 레이저의 상호작용에 대한 연구는 아주 짧은 시간에 일어나는 복잡한 상전이 현상으로 지금까지 그 규명이 쉽지 않았다. 그러나 연구진은 레이저에 의해 순간적으로 유도된 탄소 및 실리콘의 초박막층을 고해상도 전자현미경으로 촬영하고, 실리콘과 같은 반도체 물질이 고체와 액체 상태일 때 나타나는 광학 반사율이 다르다는 점에 착안해 탄화규소의 고체 상분리 현상을 성공적으로 규명해낼 수 있었다. 연구에 활용된 레이저 열처리기술은 AMOLED(능동형 유기발광다이오드) 등 상용 디스플레이 생산공정에 널리 활용되고 있는 방법으로, CVD 공정과 달리 레이저로 소재 표면만 순간적으로 가열하기 때문에 열에 약한 플라스틱 기판 등에도 활용이 가능하여, 향후 플렉시블 전자 분야로 응용의 폭을 넓힐 수 있을 것으로 기대된다. 이 교수는 "이번 연구 결과를 통해 레이저 기술이 그래핀과 같은 2차원 나노소재에 보다 폭넓게 응용될 수 있을 것이다”고 말했다. 최 교수는 "앞으로 다양한 고체 화합물과 레이저의 상호작용을 규명해 이들의 상분리 현상을 활용하면 새로운 나노소재 개발을 기대할 수 있을 것이다”고 말했다. 이번 연구결과는 자연과학 및 응용과학 분야 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 최신호에 게재됐다. □ 그림 설명 그림1. 단결정 탄화규소의 용융을 통한 상분리 현상의 원리를 밝혀내는 분자동역학 시뮬레이션의 모식도 그림2. 레이저에 의해 순간적으로 유도된 단결정 탄화규소의 용융 및 응고 현상을 증명하는 실시간 시간 분해능 반사율 (In-situ time-resolved reflectance) 측정 스펙트럼 그림3. 레이저가 조사된 탄화규소 표면의 전체적인 전자현미경 사진(a) 및 이로 의한 탄소와 실리콘으로의 상분리 현상을 촬영한 고해상도 전자현미경 사진(b)
2016.12.05
조회수 18795
조용훈 교수, 종이 위에서 빛나는 초소형 반도체 레이저 개발
우리 대학 물리학과 조용훈 교수 연구팀이 종이 위에서 작동하는 초소형 반도체 레이저를 개발했다. 나노 크기의 광결정 소자를 흡수성이 높은 종이와 결합함으로써 최첨단 반도체 센서를 저렴한 가격으로 다양한 질병 진단에 활용할 수 있을 것으로 기대된다. 이 연구 결과는 소재 분야 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 11월 17일자에 게재됐다. 빛을 매개체로 사용하는 광소자는 높은 대역폭을 갖고 있어 대용량으로 정보 전송이 가능하고 낮은 전력으로도 구동할 수 있다. 일반적으로 반도체 광소자는 직접적으로 특정 기능을 수행하는 부분 외에 이들을 단순히 지탱하기 위한 반도체 기판이 필요하다. 반도체 기판의 부피는 전체 소자 부피의 대부분을 차지하고 자연적으로 부패하지 않는 물질이기 때문에 소자를 폐기할 때 환경 문제를 일으킨다. 연구팀은 문제 해결을 위해 두꺼운 반도체 기판을 제거했고 일상생활에서 쉽게 구할 수 있는 종이를 광소자의 기판으로 사용했다. 종이의 주원료는 나무이기 때문에 자연적으로 썩어 없어진다. 또한 일상생활에서 쉽게 찾아볼 수 있고 가격이 저렴하기 때문에 종이를 이용한 소자는 단가를 획기적으로 낮출 수 있다. 종이는 기계적으로도 우수한 특성들을 지닌다. 자유자재로 구부릴 수 있고 접었다 피는 것을 반복해도 끊어지지 않는다. 이러한 특성은 기존 플렉서블 기판들이 구현하고자 하는 우수한 특성이다. 연구팀은 반도체 광소자를 종이 위에 옮기기 위해 나노 광소자를 마이크로 스탬프로 떼어 내는 기술을 이용했다. 이를 통해 반도체 기판에 높은 집적도로 패터닝(특정 부분을 깎아내는 식각 과정을 통해 회로를 새겨 넣는 과정)한 나노 광소자를 새로운 종이 기판에 원하는 간격으로 재배열 할 수 있었다. 이번에 종이 위에 결합된 광소자는 폭 0.5 마이크로미터. 길이 6 마이크로미터, 높이 0.3 마이크로미터 크기로 머리카락(약 0.1 mm) 두께의 100분의 1 수준이다. 연구팀은 개발한 광소자를 유체 채널(Fluid channel)이 형성된 종이 위에 결합해 굴절률 센서로도 활용 가능함을 증명했다. 이미 상용화된 임신진단키트 등에서도 볼 수 있듯이 종이는 좋은 흡수성을 가지고 있고 광결정 소자는 높은 민감도를 가지고 있어 센서 응용에 매우 적합하다. 조 교수는 “이 기술은 종이를 광소자의 기판으로 사용함으로써 최근 화두인 친환경 광소자 플랫폼을 만드는데 크게 기여할 수 있다”며 “저렴한 종이와 고성능 광결정 센서를 결합해 전체 소자의 단가는 낮추면서 성능은 뛰어난 적정기술로 활용할 수 있다”고 말했다. 물리학과 김세정 박사가 1저자로 참여한 이번 연구는 서강대학교 신관우 교수, 우리 대학 이용희 교수가 참여했고, 한국연구재단 중견연구자지원사업과 KAIST 기후변화연구허브사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 종이 기판 위 광결정 레이저 모식도 그림2. 종이 기판위에서 동작하는 광결정 공진기 레이저 및 굴절률 센서
2016.11.25
조회수 18603
김정원 교수, 美 광학회 발행 저널에 초청 리뷰논문 게재
〈 김 정 원 교수 〉 우리 대학 기계항공공학부 김정원 교수가 국내 연구자로는 최초로 ‘어드밴시스 인 옵틱스 앤 포토닉스(AOP : Advances in Optics and Photonics)’ 지의 초청 리뷰논문을 2016년 9월호에 게재했다. AOP는 미국광학회(Optical Society of America, OSA)에서 발행하는 광학 분야의 가장 권위 있는 리뷰 저널이다. 광학 및 광공학에서 가장 중요하면서 많은 사람들이 관심을 가지는 최신 토픽들에 대해 분야를 대표하는 연구자가 그 분야를 소개하는 심도 있는 초청 리뷰 논문을 싣고 있다. 김 교수의 논문은 최근 각광받고 있는 초저잡음 광섬유 모드잠금된 레이저(ultralow-noise mode-locked fiber laser)와 광주파수빗(optical frequency comb)에 대한 것으로 저잡음 광섬유 레이저의 물리적 원리와 구현 방법, 지난 25년간의 동향, 최신 응용 분야들과 앞으로의 전망을 76페이지에 걸쳐 종합적으로 소개하고 있다. 김 교수 연구팀은 2011년 세계 최초로 100아토초(1경분의 1초)의 타이밍 지터를 가지는 광섬유 레이저를 선보인 것을 비롯해 다양한 종류의 저잡음 광섬유 레이저들을 개발했다. 또한 이를 입자가속기 제어, 저잡음 클럭 발진기 및 마이크로파 발생기, 원격탐지 등의 기초과학 및 공학응용 분야들에 적용하는 연구를 수행 중이다. 창간 8년째인 AOP 지에 국내 최초로 초청 리뷰 논문을 게재한 것은 김 교수가 우리 대학에서 자체적으로 수행한 초저잡음 광섬유 레이저와 각종 초정밀 응용들에 관한 연구가 세계적인 수준으로 인정받음을 의미한다. 김 교수는 “이번 리뷰 논문은 광섬유 레이저와 광주파수빗을 전공하거나 이용하는 대학원생들과 다른 분야 연구자들에게 분야 전체의 개요와 앞으로의 전망에 대하여 소개하여, 이러한 최신 광원들이 보다 폭넓게 활용되는 것을 목표로 했다”고 말했다. 김 교수 연구팀의 박사후 연구원 (2010-2011년)이었고 현재는 중국 천진대에 근무하는 Youjian Song 교수와 공동으로 집필한 이번 리뷰 논문은 한국연구재단의 중견연구자지원사업과 우주핵심기술개발사업의 지원을 받아 수행됐다.
2016.08.30
조회수 12623
산란된 빛을 다시 집약시키는 시간 역행 거울 개발
우리 대학 물리학과 박용근 교수 연구팀이 빛을 거꾸로 반사시켜 시간이 역행하는 것처럼 보이는 시간 역행 거울을 개발했다. 연구 성과는 물리학분야 학술지인 ‘피지컬 리뷰 레터스(Physical Review Letters)’ 10월 6일자 온라인 판에 게재됐다. 빛의 시간 역행성은 녹화된 비디오를 되감기하듯 빛의 진행을 되돌릴 수 있는 개념을 뜻한다. 이는 마치 쏟은 물을 주워 담는 것과 같이 흩뿌려진 빛을 다시 집약시켜 산란 전의 영상을 복구하는 것과 같은 원리이다. 빛의 시간 역행 실현을 위해선 특별한 거울이 필요했다. 이론상으로만 제안되었던 이 시간 역행 거울(위상 공액 거울)은 빛이 거울에 부딪혔을 때 부딪쳐 온 방향으로 빛이 반사돼 원래 상태로 돌아가는 특성을 갖는다. 많은 학자들이 비선형 레이저 광학 지식을 이용해 시간 역행 거울을 구현하려 노력했다. 하지만 이 특수한 현상의 실현을 위해선 일반적인 거울과 다르게 추가적인 입사 레이저광이 필요하고 주변 환경에 극도로 민감하다는 한계가 있었다. 연구팀은 문제 해결을 위해 기존 복잡한 시도와 반대로 일반 거울에서의 반사를 재해석해 활용했다. 연구팀은 파면제어기라 불리는 수많은 미세 거울로 이루어진 장치를 활용했다. 파면제어기는 입사하는 빛의 모양에 맞춰 거울의 표면을 변경시켜 평행 상태로 만드는 원리인데, 이를 통해 복잡한 물리현상의 도입 없이도 빛의 시간 역행 거울을 구현하는데 성공했다. 또한 연구팀은 구현된 시간 역행 거울을 활용해 모의 생체조직 샘플, 생 닭가슴살 등에 의해 심하게 산란된 빛을 집약시켜 산란 전의 모양으로 재현했다. 연구팀에 의해 구현된 시간 역행 거울은 그 구현방법이 쉽고 주변환경의 영향을 받지 않아 빠른 시일 내에 실제 응용에 접목할 수 있을 것으로 예상된다. 논문의 1저자인 이겨레 박사과정은 “이 기술을 활용하면 기존 생체조직에서 심한 산란으로 인해 불가능했던 생체조직 내부의 빛 집약이 가능하다” 며 “향후 무절개 암 수술 등 미래기술의 기반기술이 될 수 있다”고 말했다. 또한 박 교수는 “이번 기술은 빛 뿐 아니라 소리, 전자파, 라디오 등 일반적인 파동에서 성립하는 개념이다”며 “향후 레이저 및 광통신 기술을 포함한 물리학, 광학, 의학 등 다양한 분야에 응용될 것으로 기대된다”고 말했다. □ 그림 설명 그림 1. 생체조직,닭가슴살,광섬유를 산란체로 활용한 뒤 시간역행 거울로 원래 이미지를 구현한 사진 그림 2. 일반거울과 시간역행거울의 원리
2015.10.07
조회수 10797
고효율 나노발전기 상용화길 열어
아주 작은 움직임으로도 전기를 생산하는 나노발전기가 개발됐다. 몸에 붙이고 다니면 충전되는 웨어러블 전자기기 전력원 등 다양한 활용이 기대된다. 우리 학교 신소재공학과 이건재 교수팀은 레이저 박리 전사기술과 유연한 압전박막 소재를 활용해 기존보다 약 40배 높은 효율을 갖는 나노발전기 개발에 성공했다. 연구결과는 세계적 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 4월 23일자 표지논문으로 게재됐다. 나노발전기는 유연한 나노소재에 미세한 압력이나 구부러짐이 가해질 때 전기 에너지가 생성되는 기술이다. 전선과 배터리 없이도 에너지공급이 가능하기 때문에 휘어지는 전자제품은 물론 심장 박동기와 같이 몸속에 집어넣는 기기나 로봇의 에너지원으로도 활용 가능하다. 그러나 지금까지는 에너지 효율이 낮고 제작공정이 복잡해 상용화가 어려웠다. 이 교수 연구팀은 고온에서 결정화된 고효율 압전박막물질을 현재 상용화된 레이저 박리기술을 이용해 딱딱한 기판에서 플라스틱 기판으로 전사, 효율을 크게 향상시키면서도 대면적으로 양산 가능성을 높였다. 이번에 개발된 유연한 기판(2cm × 2cm)에 만들어진 나노발전기는 미세한 구부림에 의해 생성된 에너지(250V, 8㎂)로 105개의 LED를 작동시키는데 성공했다. 이 교수는 “이번에 개발된 고효율의 나노발전기술은 자연에서 발생하는 바람, 진동, 소리와 같은 미세한 에너지는 물론 심장박동, 혈액흐름, 근육수축·이완 등 사람 몸에서 발생되는 생체역학적 힘을 이용해 전기를 생산할 수 있는 무한 에너지원으로 사용될 수 있다”고 응용가능성에 대해 설명했다. 이와 함께 “발전효율이 세계최고기록보다 40여배 높고 대량 양산이 가능한 레이저 박리기술을 활용해 그동안 상용화를 가로막았던 저효율과 복잡한 제조공정의 문제점을 해결했다는데 큰 의의가 있다”고 말했다. 이 교수팀은 향후 압전박막물질을 삼차원으로 적층해 생성전력을 더욱 높이고 이를 동물에 이식하는 생체실험을 수행할 계획이다. 이번 연구결과는 미래창조과학부 도약연구사업과 ‘코오롱-카이스트 라이프스타일 이노베이션센터(KOLON-KAIST LifeStyle Innovation Center)’의 지원으로 수행됐다. 그림1. 레이저 박리 기술로 제작된 대면적 형태의 나노발전기 이미지(논문표지) 그림2. 플라스틱에 제작된 나노발전기에서 생성된 전력을 이용해 105개의 LED를 작동하는 모습
2014.05.15
조회수 17625
레이저 이용한 초고속 나노물질 생산 공정 개발
- 레이저를 원하는 위치에 쪼여 나노물질 성장 세계 최초 성공 -- “획기적 공정 단축을 통해 나노소자 상용화에 기여할 것” - 우리 학교 기계공학과 여준엽 박사와 고승환 교수 공동연구팀은 집광된 레이저를 이용해 나노물질을 원하는 위치에 초고속으로 만드는 기술을 개발했다. 연구결과는 신소재 응용분야 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)" 7월 9일자 표지논문(frontispiece)에 실렸다. 이번에 개발된 기술을 활용하면 기존에 수 시간에 걸쳐 만들었던 나노와이어를 단 5분 만에 성장시킬 수 있어 소요시간이 약 1/10로 단축됐다. 또 이미 발표된 수많은 나노물질 합성법과는 달리 공정이 매우 단순해 나노소자 대량생산과 상용화 가능성을 제시한 것으로 학계와 산업계는 평가하고 있다. 기존에 나노물질을 합성 및 성장시키기 위해서는 900~1000°C의 높은 온도에서 폭발성 혹은 독성이 있는 위험한 기체를 사용해왔다. 이를 전자 소자나 전자기기로 응용하기 위해서는 합성 후 분리, 집적, 패터닝 등 복잡한 공정을 거쳐야하는 단점이 있었다. 따라서 다단계의 공정과 고비용, 비환경적인 특성 때문에 나노소자의 대량생산과 상용화에 커다란 걸림돌이 되고 있었다. 연구팀은 기판위에 나노물질 전구체(어떤 물질이 되기 전단계의 물질)를 올려놓은 후 집광된 녹색파장 대역의 연속파형 레이저를 조명해 원하는 위치에 나노와이어를 합성하는데 세계 최초로 성공했다. 이 기술을 이용하면 나노물질의 집적 및 패터닝은 물론 단 한 번의 공정으로 기능성 나노소자 제작이 가능하다. 이와 함께 기판의 종류에 상관없이 공정이 가능해 유연한 플라스틱 기판에도 적용 가능하다. 또 3차원 구조물 위에서도 자유롭게 원하는 위치에 단순 레이저 조명만으로도 나노 물질을 합성, 패터닝 할 수 있다. 여준엽 박사는 이번 연구에 대해 “빛에너지를 이용해 나노물질을 합성, 집적, 패턴, 소자제작을 한 번에 가능케 하는 새로운 공정을 세계 최초로 개발했다”며 “향후 기능성 전자 소자 개발에 드는 시간을 기존의 10분의 1도 채 안되는 수준으로 단축할 수 있다”고 말했다. 여 박사는 향후 다양한 나노물질의 조합을 통해 다기능 전자 소자의 개발의 상용화와 대량생산 공정을 개발할 계획이다. 여준엽 박사와 고승환 교수팀이 주도한 이번 연구는 KAIST 기계공학과 성형진 교수, 홍석준 박사과정, 강현욱 박사과정, 미국 UC Berkeley 그리고로폴로스 교수, 이대호 박사가 참여했으며, 한국연구재단 중견도약사업과 지식경제부 협동사업, 글로벌프런티어사업, KAIST EEWS 연구단의 지원을 받았다. 붙임 : 그림설명 그림1. 레이저 조명을 쪼여 원하는 위치에 합성된 나노 물질 그림2. 개발된 공정을 이용해 3차원 구조물 위에 합성된 나노 물질 그림3. 합성된 나노 물질을 통해 제작된 기능성 전자 소자 그림4. 어드밴스트 펑셔널 머티리얼스 프런티스피스 표지 사진
2013.07.17
조회수 18257
플라즈몬 디스플레이 상용화기술 개발
- 나노 표면 플라즈몬 기술 이용해 투과율 향상 기대 - - 대면적 OLED, LCD에 상용화 가능한 컬러필터 기술 - 플라즈몬 효과를 이용해 디스플레이 컬러필터를 상용화 할 수 있는 공정기술이 KAIST와 고려대학교 연구진에 의해 개발됐다. 우리 학교 전기및전자공학과 최경철 교수와 고려대학교(총장 김병철) 전기전자전파공학부 주병권 교수 공동 연구팀이 나노 표면에서 발생하는 플라즈몬 효과를 이용한 디스플레이 컬러필터를 상용화할 수 있는 설계 및 공정기술을 개발했다. 컬러필터는 LCD나 OLED와 같은 디스플레이와 디지털 카메라에 사용되는 CMOS 이미지 센서 등에서 색상을 표현하는 핵심부품이다. 현재 상용화중인 컬러필터는 투과율이 20~30%대로 알려져 있는데, 플라즈몬 효과를 이용하면 투과율을 기존보다 40%이상까지 끌어올려 전력효율을 약 2배 향상시킬 수 있다는 연구 성과들이 최근 보고됐다. 최근 발표된 플라즈몬 필터는 마이크로미터(㎛) 크기의 극소 면적에만 구현할 수 있었던 한계가 있었다. 그러나 이번 연구에서는 레이저 간섭 리소그래피 기술을 이용해 2.5㎝크기까지 구현해냈다. 기존에 상용화중인 레이저 기술을 적용한 공정기술로 플라즈몬 컬러필터를 이용한 디스플레이를 양산할 수 있는 단계까지 올라왔다는 게 학계와 산업계의 평가다. 향후 이 기술을 이용해 투과율을 40%이상 끌어올려 저전력 플라즈몬 디스플레이를 양산하는게 연구팀의 목표다. 이와 함께 레이저 광의 간섭현상을 통해 나노 구조를 형성하는 기술인 레이저 간섭 리소그래피 기술을 이용해 나노 패턴을 대면적에 구현함과 동시에 컬러필터의 특성을 최적화하면서 공정에서 발생하는 에러를 보완할 수 있는 설계방법을 제시했다. 레이저 간섭 리소그래피 기술을 적용해 연구팀이 제시한 공정은 기존 컬러필터 양산기술의 공정이 복잡한 단점을 극복해 저렴하게 만들 수 있을 것으로 기대된다. 도윤선 박사과정 학생은 이번 연구에 대해 “그동안 공정 비용, 시간, 수율 측면에서 플라즈몬 현상을 산업적으로 이용하는데 한계가 있었다”며 “연구팀이 제시한 컬러 필터 기술은 설계 및 공정의 간소화를 통해 시간이 단축되고 비용이 적게 들어 염료 및 안료기반 컬러필터 기술을 대체할 수 있을 것”이라고 말했다. 고려대학교 전기전자전파공학부 박정호 박사과정 학생은 “이번 연구는 레이저 간섭 리소그래피 기술을 이용해 TV화면 등 대면적에 적용이 가능하다”며 “기판의 종류에 구애받지 않아 차세대 나노 공정 기술에 폭넓게 활용될 것으로 기대된다”고 말했다. KAIST 전기및전자공학과 도윤선 박사과정 학생과, 고려대학교 전기전자전파공학부 박정호 박사과정 학생이 주도한 이번 연구 성과는 나노 기술 분야 저명 학술지 ‘어드밴스드 옵티컬 머터리얼스(Advanced Optical Materials)’ 2013년 2월호 표지논문으로 게재됐고, 6건의 관련 특허를 출원했다.
2013.03.06
조회수 15491
휘어지는 고성능 배터리 제작기술 개발
- 플렉시블 OLED 디스플레이와 배터리의 완전 결합길 열려 - 휘어지는 디스플레이의 에너지원으로 반드시 필요한 고효율 유연 배터리를 KAIST 연구진이 세계 최초로 개발하는데 성공했다. 우리 학교 신소재공학과 이건재 교수팀이 유연한 고효율 배터리를 개발하는데 성공, 이 연구결과가 재료분야 세계적 학술지인 ‘나노 레터스(Nano Letters)’ 8월호 온라인판에 실렸으며, 미국 화학학회 뉴스레터인 C&EN(Chemical & Engineering News)에도 (8월 10일자) 특집으로 보도됐다. 얇고 가벼우면서도 유연한 디스플레이로의 혁신적인 기술 발전을 위해서는 필연적으로 휘어지며 충전밀도가 높고, 폭발위험이 극히 적은 고성능 유연 고상배터리의 개발이 요구돼 왔다. 그러나 고효율 배터리를 만드는 소재 중 산화물 양극재료는 고온의 열처리가 필요하기 때문에 플라스틱 기판위에서는 구현할 수 없을 뿐만 아니라 고온 열처리 없이 분말 형태로 만들 경우에는 충전밀도가 매우 낮다는 문제점이 있었다. 이번에 개발한 고성능 유연 고상배터리는 리튬코발트산화물(LiCoO2) 양극재료를 운모 희생기판에서 4㎛(머리카락의 약 10분의 1 두께) 정도인 박막형태로 고온 성장시켜 만든 후, 기판으로 쓰인 딱딱한 희생기판을 제거해 얇은 배터리 부분만 남긴 후 유연한 기판위에 전사해 완성했다. 이 교수 연구팀이 개발에 성공한 유연 배터리는 휘어지더라도 전압이 3.9~4.2V로 거의 변하지 않고, 충·방전 10,000번(방전심도 80%) 정도의 안정적 작동과 함께 2200㎼h/㎤의 높은 에너지밀도(패키징 포함)를 지닌 게 큰 특징이다. 이번 연구를 주도한 구민 박사는 “충전밀도가 높은 박막형태의 고효율 유연 배터리는 완전한 형태의 유연 전자 제품를 만드는 데 획기적인 역할을 할 것”이라고 말했다. 이건재 교수 연구팀은 현재 대량생산을 위한 레이저 리프트 오프(Laser lift-off) 기술과 충전용량을 높이기 위해 삼차원으로 적층하는 후속 연구를 진행 중인데, 이들 연구가 끝나는 대로 상용화 수준의 유연 배터리가 나올 것으로 이 교수 연구팀은 예상하고 있다. 한편, 이번 연구결과는 지난 13일부터 일주일간 미국에서 열린 세계적인 국제학회인 국제광자공학회(SPIE)에서 이건재 교수가 기조강연으로 발표했으며, 국내외에서 다수의 특허를 등록하거나 출원했다. <동영상 설명>http://www.youtube.com/watch?v=Sh-SkpCZ4AE&feature=player_embedded굽힘 상태에서 상용 블루 LED를 켜며 전압특성이 유지되는 유연 배터리 모습 그림1. 연구팀이 이번에 개발한 유연한 배터리와 기존의 휘어지는 OLED를 결합해 만든 최초의 완전한 플렉시블 디스플레이 그림2. 연구팀이 개발한 플렉시블 배터리와 결합된 디스플레이의 구조 그림3. 연구팀이 개발한 휘어지는 배터리가 LED를 켜고 있다. 휘어져도 전압이 떨어지지 않아 안정적이다. 그림4. 휘어지는 고효율 배터리 제작공정. (g)운모를 제거하고 나서 (h)폴리머 기판으로 옮긴 후 (i)폴리머로 감싸는 공정이 연구팀의 독자기술이다. 그림5. 이건재 교수 연구팀이 유연배터리를 희생기판에서 레이저로 제거하는 연구를 수행하고 있다.
2012.08.21
조회수 17356
<<
첫번째페이지
<
이전 페이지
1
2
3
>
다음 페이지
>>
마지막 페이지 3