본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%A7%88%EC%9D%B4%ED%81%AC%EB%A1%9C
최신순
조회순
소금, 자가조립 나노캡슐 소재로 쓰이다
우리 대학 기계공학과 김형수 교수와 박광석 박사과정이 소금의 결정화 프로세스를 표면장력 효과로 제어해 나노 및 마이크로 캡슐을 제작하는 원천 기술을 개발했다고 5일 밝혔다. 이를 `결정 모세관 오리가미 기술(Crystal Capillary Origami Technology)'이라고 칭한다. 최근 나노물질 자가 조립기술은 기능성 고분자, 바이오 재료 분야 및 반도체 나노 구조체 제조 등에 활용되는 등 바이오기술(BT) 및 정보통신기술(IT) 분야와 서로 기술적으로 융합 발전되고 있어, 미래 산업에 미칠 경제적 효과가 막대할 것으로 예상되어 그 관심도가 높아지고 있다. 일반적인 자가 조립기술은 미리 정해진 기본 유닛을 이용하는 상향식 (bottom-up approach) 기술 방법이다. 보통 폴리머나 콜로이드 등을 이용해 최종 형태를 구성하게 되고, 이 기술은 분자 수준부터 마이크로미터 수준까지 폭넓은 길이 차원에 적용할 수 있다. 자가 조립기술을 이용하면 나노캡슐을 제작할 수 있는데 공정 특성상 캡슐화를 위해서 경화 과정이 필수적이라 제작공정이 간단하지 않다. 김형수 교수는 “지구상에 존재하는 수많은 미네랄이 있을 텐데 이번 연구에서 사용한 특정 소금들과 같이 기본 결정 구조가 얇고 잘 휘는 성질의 결정을 발견해서 활용할 수 있으면 이멀젼(유화액)이나 액적(물방울) 내부에 원하는 물질을 자발적이고 효과적으로 가둘 수 있다ˮ라고 설명했다. 기계공학과 박광석 박사과정이 제1 저자로 참여한 해당 연구 결과는 국제적 권위 학술단체 영국왕립화학회(Royal Society of Chemistry)의 저명학술지 나노스케일(Nanoscale) 誌에 9월 10일 字 게재됐고, 연구의 우수성을 인정받아 표지논문(Inside Front Cover)으로 게재됐다. 한편 이번 연구는 한국연구재단의 지원을 받아 핵융합기초연구사업(NRF-2021R1A2C2007835)과 삼성전자 산학협력 과제 (IO201216-08212-01)의 지원을 부분적으로 받아 수행됐다. (논문명: Crystal capillary origami capsule with self-assembled nanostructures)
2021.10.05
조회수 8190
광 네트워크 기반 GPU 메모리 시스템 개발
소수의 글로벌 기업 주도하에 개발/생산되던 *GPU(Graphic Processing Unit)의 메모리 시스템을, *이종 메모리와 *광 네트워크를 활용해 용량과 대역폭 모두를 대폭 향상한 기술이 우리 연구진에 의해 개발됐다. ☞ 이종 메모리: 서로 다른 특성을 가진 메모리를 통합한 메모리 ☞ 광 네트워크: 빛으로 변환된 신호를 사용하여 정보를 전달하는 통신 수단. ☞ GPU: 여러 프로세스를 병렬적으로 빠르게 처리할 수 있는 연산 장치. 우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 운영체제 연구실)이 *3D XPoint 메모리(이하 XPoint)와 *DRAM 메모리를 통합한 이종 메모리 시스템에서 광 네트워크로 통신하는 `옴-지피유(Ohm-GPU)' 기술 개발에 성공함으로써 기존 DRAM을 단독으로 사용한 *전기 네트워크 기반의 GPU 메모리 시스템 대비 181% 이상의 성능 향상을 성취했다고 2일 밝혔다. ☞ 3D XPoint 메모리: DRAM에 비해 용량이 크지만 데이터 전송 속도가 느린 메모리. ☞ DRAM 메모리: 3D XPoint에 비해 데이터 전송 속도가 빠르지만 용량이 작은 메모리. ☞ 전기 네트워크: 전기적인 신호를 사용해 정보를 전달하는 통신 수단. 기존 GPU는 다수의 연산 장치로 구성되어 있어 연산 속도가 매우 빠르다는 장점이 있으나, DRAM을 단독으로 사용하는 메모리 시스템의 낮은 메모리 용량과 좁은 데이터 전송 대역폭으로 인해 연산 성능을 충분히 활용하지 못한다는 문제가 있다. 용량을 증가시키는 대안으로 DRAM을 XPoint로 대체하는 방법이 있으나, 이때 8배 큰 메모리 용량을 얻을 수 있는 반면 읽기/쓰기의 성능이 4배, 6배로 낮아진다. 또한, 대역폭을 증가시키는 대안으로 *HBM(High Bandwidth Memory) 기술을 활용할 수 있으나, 단일 면적 내 장착할 수 있는 전기 채널(*구리 선) 개수의 한계로 인해 GPU 메모리 시스템이 요구하는 고대역폭을 만족하기 어렵다. ☞ HBM: 3D로 DRAM을 쌓아 고대역폭을 얻을 수 있는 메모리. ☞ 구리 선(Copper wire): 전기 신호가 전달되는 통로. 정 교수팀이 개발한 Ohm-GPU 기술은 대용량 XPoint와 고성능의 DRAM을 통합한 이종 메모리 시스템을 채택함으로써, 기존 메모리 시스템과 동일한 성능을 가지면서도 메모리의 용량을 증가시켰다. 또한, 단일 광 채널(*광섬유)로 서로 다른 파장의 다중 광신호를 전달할 수 있는 광 네트워크의 장점을 활용해 메모리 대역폭을 대폭 넓힘으로써 기존 GPU 메모리 시스템의 한계점들을 전면 개선했다. ☞ 광섬유(Optic fiber): 광 신호가 전달되는 통로. Ohm-GPU 기술은 GPU 내부에 있는 메모리 컨트롤러 및 인터페이스를 수정해 이종 메모리의 모든 메모리 요청을 광신호로 처리한다. 메모리 요청은 일반적으로 DRAM 캐시 메모리에서 처리되지만, DRAM에 없는 데이터는 XPoint로부터 읽어와야 한다. 이때, 발생하는 이종 메모리 간 데이터 이동의 오버헤드(대기 시간)는 1) 연산을 위한 메모리 접근과 데이터 이동을 위한 메모리 접근의 광 파장을 다르게 설정하고, 2) 메모리 컨트롤러 개입을 최소화하고 XPoint 컨트롤러가 이종 메모리 간 데이터 이동을 수행함으로써 완화했다. 개발된 Ohm-GPU 기술은 기존 DRAM을 단독으로 사용하는 전기 네트워크 기반의 GPU 메모리 시스템 대비 다양한 그래 프처리, 과학응용 실행 등에서 181%의 성능 향상을 달성했다. 이는 인공지능(AI), 빅데이터, 클라우드 컴퓨팅 등 대용량, 고대역폭의 데이터 전송을 요구하는 고성능 가속기의 메모리 시스템을 대체할 수 있을 것으로 기대된다. 정명수 교수는 "GPU 메모리 시스템 기술은 일부 해외 유수 기업이 주도하고 있지만, 이번 연구성과를 기반으로 GPU 및 GPU와 유사한 모든 고성능 가속기 메모리 시스템 관련 시장에서 우위를 선점할 가능성을 열었다는 점에서 의미가 있다ˮ라고 강조했다. 한편 이번 연구는 올해 10월에 열릴 컴퓨터 구조 분야 최우수 학술대회인 `마이크로(International Symposium on Microarchitecture, MICRO), 2021'에 관련 논문(논문명: Ohm-GPU: Integrating New Optical Network and Heterogeneous Memory into GPU Multi-Processors)으로 발표될 예정이며, 이를 통해 정교수 팀은 스토리지 및 메모리 관련 연구로 2021, 당해, 전 세계 컴퓨터 구조에서 가장 잘 알려진 4개의 최우수 학술대회 모두에서 그 결과를 공유한다. 해당 연구에 대한 자세한 내용은 연구실 웹사이트(http://camelab.org)에서 확인할 수 있다.
2021.08.03
조회수 8574
원심력을 이용한 미세 섬유 대량생산 공정 개발
우리 대학 생명화학공학과 김도현 교수 연구팀이 원심력을 이용한 새로운 마이크로 및 나노 섬유 대량생산 공정을 개발했다고 23일 밝혔다. 김도현 교수 연구팀은 기존의 원심방사 공정을 발전시켜 방사 디스크를 여러 층으로 세분화한 멀티 원심방사 시스템을 고안해 다양한 고분자 마이크로 및 나노 섬유의 생산에 성공했다. 이 기술은 섬유의 대량생산뿐만 아니라, 다양한 종류의 섬유가 하나의 필터에 함유된 복합 필터 제조도 가능하게 해 폭넓은 분야에 응용될 것으로 기대된다. 생명화학공학과 곽병은 석박사통합과정, 유효정 박사과정, 이응준 석박사통합과정이 각 제1, 제2, 제3 저자로 참여한 이번 연구는 국제 학술지 `에이씨에스 매크로 레터스(ACS Macro Letters)' 2021년 3월 10권 3호에 표지논문으로 선정됐다. (논문명 : Large-Scale Centrifugal Multispinning Production of Polymer Micro- and Nanofibers for Mask Filter Application with a Potential of Cospinning Mixed Multicomponent Fibers) 고분자 마이크로 및 나노 섬유는 두께가 마이크로미터(μm) 혹은 나노미터(nm) 수준인 섬유로, 머리카락 두께와 비슷하거나 이의 1/1000에서 1/10 수준의 두께를 가진 섬유를 말한다. 최근 코로나바이러스 및 미세먼지 이슈로 마스크의 수요가 점차 증가하면서 동시에 그 필터 재료로 사용되는 고분자 섬유의 수요도 점차 늘어나는 추세다. 특히 매우 가는 두께를 가진 고분자 나노 섬유 기반의 마스크 필터는 정전기가 부여되지 않은 상태에서도 기계적 여과를 통해 미세먼지와 코로나 바이러스를 90% 이상 차단할 수 있기에 마스크 필터 분야에서 중요한 소재로 떠오르고 있다. 정전기 기반의 마스크 필터는 날숨에 포함된 습기로 인해 사용 시간이 지날수록 미세먼지의 포집 효율이 감소한다. 반면 나노 필터 마스크는 시간에 따른 효율 저하가 거의 관찰되지 않는다. 이미 유럽 등 국가에서는 정전 기력에 의한 포집 효율을 배제한 마스크 성능을 평가하고 있다. 따라서 기계적 여과로 높은 포집 효율을 달성할 수 있는 나노 섬유 기반 필터의 제조는 매우 중요한 과제다. 기존의 나노 섬유 제조는 고전압을 인가해 두께가 가는 섬유를 제조하는 전기방사(electrospinning) 공정을 사용했다. 그러나 전기방사 공정은 수십 킬로볼트(kV)의 고전압을 사용하기 때문에 공정의 안전성이 낮고 설비의 규모 증가가 어려운 단점이 있다. 또 공정 자체가 대량생산에 불리하게 설계돼 있어 실험실 단위의 제조에서는 섬유의 생산 속도가 시간당 0.01~1그램(g) 정도에 불과하다. 이렇게 느린 섬유 생산 속도의 한계를 극복하기 위해 고안된 다중 노즐 전기방사(multi-nozzle electrospinning) 및 노즐리스 전기방사(nozzleless electrospinning) 공정 또한 노즐 간 전기장 간섭으로 인한 생산 효율 저하 및 50 킬로볼트(kV) 이상의 고전압이 필요하다는 문제가 상존한다. 연구팀은 이러한 전기방사 공정의 한계를 극복하기 위해 원심방사에 주목했다. 원심방사는 방사 디스크의 회전을 통해서 섬유를 제조하는 공정으로 솜사탕 기계 등에서 많이 이용되고 있다. 그러나 기존의 원심방사 장치도 하나의 방사 디스크를 이용했기 때문에 크기를 증가시켜도 섬유 생산 속도가 기존 전기방사 공정보다 그리 빠르지는 않았다. 이에 따라 연구팀은 하나의 방사 디스크가 여러 개의 층을 가진 멀티 원심방사 디스크를 고안했고 이를 통해 섬유의 대량생산 가능성을 보였다. 연구팀은 3개의 층을 가진 멀티 원심방사 디스크를 제작했고, 디스크의 층수가 증가할수록 섬유의 생산 속도가 비례하며 증가하는 것을 확인했다. 이는 멀티 원심방사 시스템에서는 노즐 간 간섭으로 인한 생산 효율 저하가 일어나지 않음을 의미한다. 연구팀은 새롭게 고안된 이 공정을 통해 실험실 규모 기준, 머리카락 1/100의 평균 두께를 가지는 섬유의 생산 속도가 시간당 8~25그램(g)으로 증가하는 것을 보였다. 이는 기존 전기방사 공정보다 약 300배 더 빠른 속도이다. 또한, 나노 섬유 25그램(g)은 KF94 마스크 필터 20~30개에 해당하는 양이며, 적은 양처럼 보이지만 실험실 규모에서는 같은 시간 대비 아주 많은 생산량이다. 또한 연구팀은 대량생산된 나노 섬유를 이용해 마스크 필터를 제조했고, 이렇게 제조된 마스크 필터는 사용된 섬유의 양에 따라 상용 마스크(KF80 및 KF94)에 준하는 포집 효율과 차압을 가지는 것을 확인했다. 뿐만 아니라 제조된 마스크 필터는 비말 차단에도 매우 우수한 성능을 보였다. 제1 저자 곽병은 석박사통합과정은 "원심방사는 전기방사보다 비용 측면이나 대량생산에 있어 뚜렷한 장점이 있음에도 많이 연구되고 있지 않은 공정이다ˮ며, "이번 연구에서 고안된 멀티 원심방사 시스템을 산업적 규모로 증대시키면 나노 필터의 단가를 획기적으로 낮출 수 있을 것으로 기대된다ˮ 라고 말했다. 한편 이번 연구는 KAIST에서 지원하는 2020년도 글로벌 특이점 연구사업으로 수행됐다.
2021.03.24
조회수 94555
칩 스케일 초 저잡음 펄스 신호 발생기술 개발
우리 대학 물리학과 이한석 교수와 기계공학과 김정원 교수 공동연구팀이 실리카 *마이크로공진기를 이용해 매우 낮은 잡음으로 펄스 신호를 주기적으로 발생할 수 있는 신기술을 개발했다고 17일 밝혔다. ☞ 마이크로공진기(microresonator): 특정 공진 주파수에서 공진을 일으킬 수 있도록 한 마이크로미터~밀리미터 크기의 소자이다. 굴절률 차이에 의한 내부전반사로 공진기 내부에서 광 파워가 공진 형태로 집약되는 특성을 보인다. 이 기술을 이용하면 3 밀리미터(mm) 지름의 칩으로부터 22 기가헤르츠(GHz)의 높은 *반복률과 2.6 펨토초(385조 분의 1초)의 매우 낮은 *펄스 간 시간 오차를 동시에 가지는 광 펄스열(optical pulse train)을 발생할 수 있다. 따라서 초고속 광대역 아날로그-디지털 변환기(analog-to-digital converter, ADC)의 샘플링 클럭이나 5G·6G 통신용 초 저잡음 마이크로파 신호원으로 활용이 기대된다. ☞ 반복률(repetation rate): 단위 시간(1초) 동안 지나가는 펄스의 수로 주기의 역수에 해당한다. 반복률이 22GHz일 경우, 펄스틑 1초 동안 220억 번 지나간다. ☞ 펄스 간 시간 오차(timing jitter): 펄스가 이상적인 주기로부터 얼마나 어긋나는지를 나타내는 값으로 펨토초 펄스 레이저의 중요한 특성 중 하나이며 일반적으로 레퍼런스 신호원과 비교하여 어긋나는 정도를 나타낸다. 펨토초(1펨토초는 1,000조분의 1초) 수준의 펄스 폭을 가지는 광 펄스를 생성하는 모드 잠금 레이저(mode-locked laser)는 광 주파수 빗 분광학(optical frequency comb spectroscopy, 2005년 노벨 물리학상)이나 펄스 확장 증폭 기술(chirped pulse amplification, 2018년 노벨 물리학상)과 같이 기초 과학 분야에서 매우 중요한 광원으로 활용되고 있다. 최근에는 펨토초 펄스를 레이저 장비가 아닌 칩-스케일의 마이크로공진기 소자에서 생성하는 마이크로콤(micro-comb) 기술이 활발하게 연구되고 있다. 특히 기존의 모드 잠금 레이저가 100메가헤르츠(MHz) 정도의 반복률을 가진 것에 반해 마이크로콤은 기존보다 100배 이상인 수십 기가헤르츠(GHz) 이상의 높은 반복률을 가지기 때문에 다양한 ICT 시스템의 개발 및 제작 등에 폭넓게 적용될 것으로 기대되고 있다. 마이크로콤은 이론적으로는 1펨토초 수준의 매우 낮은 시간 오차를 가질 수 있을 것으로 예측됐지만, 기존에는 측정의 한계 때문에 이러한 성능을 정확하게 규명할 수 없었고 잡음 성능을 최적화할 수도 없었다. 공동연구팀의 이번 연구는 이한석 교수팀이 보유한 1억 이상의 매우 높은 *Q 인자를 갖는 온칩 마이크로공진기 제작기술과 김정원 교수팀이 보유한 100아토초(100아토초는 1경분의 1초) 분해능의 펄스 간 타이밍 측정기술의 결합으로 가능했다. ☞ Q 인자(Quality factor): 진동자나 공진기(resonator)가 얼마나 오랫동안 에너지(여기서는 빛)를 담아둘 수 있는지를 나타내며, 중심주파수에 따른 공진기의 대역폭을 특성 짓는 값이다. 공진기는 높은 Q 인자 값을 가질수록 더 오래 진동할 수 있으며, 외부로부터 주입되는 에너지를 내부에 더욱 고밀도로 집중시킬 수 있다. 반도체 미세공정기술을 기반으로 칩 상에 제작된 마이크로공진기는 높은 Q 인자를 갖는다고 하더라도 대략 1000만 정도의 값을 갖는 것이 일반적이다. 공동연구팀은 기존 연구보다 100배 이상 정밀한 타이밍 측정기술을 이용해 펄스 간 시간 오차를 정확하게 측정할 수 있었고, 그 결과를 이용해 마이크로공진기의 최적 동작 조건을 찾아냄으로써 마이크로콤의 잡음 성능을 획기적으로 높일 수 있었다. 공동연구팀 관계자는 이 신기술을 활용할 경우 다양한 온-칩 광신호처리 시스템의 구현이 가능하다고 내다봤다. 그는 특히 아날로그-디지털 변환기의 경우 샘플링 클럭의 지터 성능에 의해 제한되고 있는데, 이번 연구의 타이밍 성능은 22 기가헤르츠(GHz)의 샘플링 속도에서 12비트의 유효 비트 수(effective number of bits, ENOB)를 달성할 수 있어 기존 장비의 성능을 뛰어넘을 것으로 예상했다. 이한석 교수는 "펄스 발생효율과 잡음 성능을 더욱 개선하기 위한 새로운 광소자 구성기법을 연구 중ˮ이라고 말했다. 아울러 김정원 교수도 "개발된 기술을 매우 낮은 위상잡음의 K-밴드 마이크로파 신호원과 초고속 아날로그-디지털 변환기용 샘플링 클럭으로 활용하는 후속연구를 진행 중ˮ이라고 밝혔다. 우리 대학 나노과학기술대학원 정동인 박사과정 학생과 기계공학과 권도현 박사과정 학생이 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `옵티카(Optica)' 8월 28일 字에 게재됐다. (논문명: Ultralow jitter silica microcomb) 한편 이번 연구는 정보통신기획평가원 양자센서핵심원천사업과 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2020.09.17
조회수 26742
OLED에 적용 가능한 새 스트레처블 기판 개발
전기및전자공학부 최경철 교수 연구팀이 높은 신축성을 갖는 유연한 기둥과 멤브레인 형태가 결합한 새로운 스트레처블 기판을 개발했다. 스트레처블 전자 소자의 핵심 부품 기술이 될 수 있는 이 기술을 활용해 연구팀은 스트레처블 OLED(유기발광다이오드)를 제작해 높은 유연성과 신축성을 갖는 새로운 스트레처블 디스플레이 기술을 개발했다. 임명섭 박사와 남민우 박사과정 주도한 이번 연구는 나노 분야 국제학술지 ‘나노 레터스(Nano Letters)’ 1월 28일 자 온라인판에 게재됐다. (논문명 : Two-dimensionally stretchable organic light-emitting diode with elastic pillar arrays for stress-relief) 스트레처블 디스플레이 기술은 한 방향으로 구부리거나 접는 기존의 플렉서블 OLED 디스플레이의 기술을 뛰어넘어 두 방향 이상으로 변환할 수 있다. 이에 따라 웨어러블, 사물인터넷, 인공지능, 차량용 디스플레이에 적합한 차세대 디스플레이 기술로 주목받고 있다. 최근 자유롭게 늘어날 수 있도록 OLED 소자와 디스플레이에 신축성을 주는 방법이 연구돼왔다. 하지만 모든 재료를 신축성 있는 재료로 바꾸는 방식은 효율이 낮아 상용화가 어렵고 패턴을 형성하기 어렵다는 한계가 있다. 기판을 먼저 늘리고 난 뒤 다시 원래대로 복원해 얇은 주름을 형성하는 방식의 스트레처블 OLED는 효율이 높고 안정적이지만 주름의 형태가 일정하지 않고 신축에 따른 화면의 왜곡이 있다. 최 교수 연구팀은 높은 휘도와 신축성을 가지는 디스플레이 구현을 위해, 단단하게 패턴화된 기판과 신축 시 이 기판에 가해지는 힘이 최소화할 수 있는 기둥구조가 형성된 유연 기판의 결합을 통해 새로운 형태의 핵심 부품 기술인 스트레처블 기판을 개발했다. 연구팀은 개발된 스트레처블 구조 기판과 기존 공정을 그대로 활용해 신축성 있는 OLED 디스플레이를 구현했다. 기존 공정을 그대로 활용하더라도 새로운 스트레처블 기판 부품 기술을 활용하면 스트레처블 디스플레이를 구현할 수 있다는 것을 증명했다. 이는 기존의 스트레처블 디스플레이 기술이 기존 공정을 활용할 수 없다는 단점을 극복한 것이다. 개발된 신축성 OLED 디스플레이는 실제 소자에 걸리는 기계적 스트레스가 거의 없어, 화면의 왜곡이나 급격한 휘도 변화 없이 안정적인 소자 구동이 가능하다. 또한, 발광 빛의 각도 의존성이 없어 다양한 스트레처블 디스플레이 응용 분야에 적용이 가능할 것으로 기대된다. 남민우 연구원은 “새로운 물질의 개발이 아닌 상용화된 공정 및 물질을 사용해 새로운 스트레처블 기판 위에 OLED 디스플레이를 구현했다”라며 “기존의 스트레처블 디스플레이 연구가 가지는 단점들을 뛰어넘어, 상용화될 수 있는 스트레처블 부품 기술을 개발하고자 했다”라고 말했다. 최경철 교수는 “제작된 스트레처블 기판을 활용하면 스트레처블 OLED, 마이크로LED, 센서 등이 구현 가능하며, 바이오 및 의료 분야와 결합한 다양한 치료 분야에 적용할 수 있다”라며 “스트레처블 및 웨어러블 전자 소자 및 전자약 기술 발전에 도움이 되기를 바란다”라고 말했다.
2020.02.25
조회수 15380
임미희 교수, 손상된 뇌 신경교세포 회복 물질 개발
우리 대학 화학과 임미희 교수 연구팀이 손상된 뇌의 신경교세포를 회복시키는 저분자 화합물(Small molecule)을 발견했다. 연구팀의 이번 연구는 기억력 등 인지기능이 저하돼 일상생활의 장애를 유발하는 알츠하이머 등 만성질환의 치료 가능성을 제시할 수 있을 것으로 기대된다. 경북대 의대 박민희 교수가 1 저자로 참여하고 경북대 배재성, 진희경 교수가 공동 교신저자로 참여한 이번 연구는 미국 국립과학원에서 발행하는 국제 학술지 ‘PNAS’ 11월 4일 자 온라인판에 게재됐다. 퇴행성 뇌 질환인 치매의 일종인 알츠하이머병은 다양한 원인에 의해 발생된다. 이 질병을 치료하기 위해서 병의 원인을 정확히 파악하고 그에 맞는 치료제들을 개발하는 것이 무엇보다 중요하다. 아밀로이드-베타 펩타이드는 알츠하이머병과 밀접한 관계가 있다고 알려져 있다. 또한, 뇌의 신경 세포이며 면역 세포인 신경교세포는 신경염증 반응에 중추적인 역할을 한다. 최근 들어, 아밀로이드-베타 펩타이드와 신경교세포의 신경염증 반응 사이의 상관관계가 알츠하이머병을 일으킬 수 있는 주요한 원인으로 주목받고 있다. 신경교세포는 뇌에서 면역기능을 담당하는 신경세포의 일종으로, 탐식기능 및 식세포 작용을 통해 노폐물을 처리하는 역할을 한다. 연구팀은 알츠하이머 동물 모델들에게 저분자 화합물을 주입한 후, 동물들의 인지능력과 뇌 속에 존재하는 베타 아밀로이드의 양을 관찰해 알츠하이머 치료제로서 어떠한 유효한 효과가 있는지 실험했다. 이를 통해 ‘저분자 화합물’이 주입된 동물들은 손상된 신경교세포가 회복돼 뇌 속에 존재하는 베타 아밀로이드 단백질이 감소하는 등 인지능력이 향상된다는 사실을 발견했다. 임미희 교수는 “이 연구는 마이크로글리아의 식세포 작용 손상을 복구시켜 알츠하이머병을 치료할 수 있다는 것을 증명했다”라며 “발견된 합성 분자를 바탕으로 다양한 퇴행성 뇌질환의 치료제 개발에 더욱 박차를 가할 것이다”라고 말했다. 이번 연구는 한국보건산업진흥원, 한국연구재단, KAIST, 그리고 국가과학기술연구회 지원으로 수행됐다.
2019.11.25
조회수 9518
윤동기 , 김형수 교수, DNA 마이크로패치 제작 기술 개발
〈 윤동기 교수, 김형수 교수, 박순모 연구원 〉 우리 대학 화학과/나노과학기술대학원 윤동기, 기계공학과 김형수 교수 공동 연구팀이 마이크로 크기의 DNA 2차원 마이크로패치 구조체를 제작하고 이를 제어, 응용하는 기술을 개발했다. 윤 교수 연구팀은 커피가 종이에 떨어지고 물이 마르면 동그랗게 환 모양이 생기는 이른바 ‘커피링 효과’라 불리는 현상을 DNA 수용액에 적용해 세계 최초로 DNA 기반의 마이크로패치를 제작했다. 차윤정 박사, 박순모 박사과정 학생이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 7일 자 온라인판에 게재됐다. (논문명 : Microstructure arrays of DNA using topographic control) 유전 정보를 저장하는 기능을 하는 DNA는 이중나선 구조와 나노미터 주기의 규칙적인 모양을 가져 소재 분야에서 일반적인 합성방법으로는 구현하기 힘든 정밀한 구조재료이다. 정밀한 DNA 합성과 오리가미(Origami) 기술을 이용해 스마일 패치(smile patch) 등의 재미있는 모양을 구현해 왔지만, 재료의 가격이 높아 실제 응용에 어려움을 겪었다. 윤 교수 연구팀은 이를 극복하기 위해 연어에서 추출한 DNA 물질을 이용해 기존보다 1천 배 이상 저렴한 비용으로 잘 정렬된 뜨개질(knit) 혹은 아이스크림콘 모양의 기존에 없던 마이크로패치 구조체를 대면적에서 구현했다. 연구팀은 DNA가 물에 녹으면 마치 물풀과 끈적끈적해지면서 서로 적당한 힘으로 끌어당기며 일정한 방향으로 정렬하는 액정상(liquid crystal phase)을 보인다는 점에 주목했다. 액정 표시장치(LC display 혹은 LCD)에서 액정분자들이 전기장을 통해 방향성이 제어되는 것처럼 수용액 상태의 DNA 액정상이 두 기판 사이에서 문질러지며 물의 증발이 이뤄질 때 DNA 나노 구조체들이 원하는 방향으로 정렬하게 된다. 과일 잼을 식빵에 바르면 과일 알맹이(pulp)가 한 방향으로 잘 펴 발라지면서 마르는 현상과 유사하다. 연구팀은 DNA가 한 방향으로 문질러져서 마를 때 바닥에 평평한 기판 대신 일정한 모양을 갖는 수 마이크론 크기의 기둥(혹은 요철)들이 있는 기판을 사용하면 2차원의 뜨개질 모양, 아이스크림콘 모양 등 좀 더 흥미로운 들을 제작할 수 있음을 확인했다. 또한, 금 나노막대와 같은 플라즈몬 공명(plasmon resonance)을 나타내는 소재와 결합해 디스플레이 소자에 응용을 시도했다. 플라스몬 공명은 금속으로 만들어진 기판에 빛을 쪼일 때 그 표면 위에서 전자가 일정하게 진동하면서 자신의 에너지와 일치하는 빛에만 반응하는 현상으로 특정한 색만 반사하여 선명도와 표현력을 높이는 데 사용된다. 이 방식에서 가장 중요한 점은 어떤 방향으로 금 나노막대가 정렬하는지를 나타내는 배향(orientation)이다. 즉 막대들이 한 방향으로 나란히 정렬될 때 광학·전기 특성이 극대화된다. 윤 교수 연구팀은 이러한 점에 착안해 DNA 마이크로패치를 일종의 틀로 삼아 금 나노막대들을 독특한 형태로 배향하고 플라즈몬 컬러 기판을 제작하는 데 성공했다. 연구팀이 개발한 DNA 2차원 마이크로패치 제작 기술은 DNA를 구조재료 및 전자소재로써 활용할 수 있는 단서를 마련했을 뿐 아니라 증발 현상과 DNA 액정물질이 접목될 때 나타나는 독특한 형태의 복잡한 분자 거동 해석에 대한 단서를 제공할 것으로 기대된다. 윤 교수는 “연구를 통해 밝힌 것처럼 DNA가 금 나노막대와 같은 광학 소재와 복합체를 쉽게 만들 수 있는 만큼, 자연계에 무한히 존재하는 DNA를 디스플레이 관련 분야의 신소재로서 응용할 수 있을 것으로 기대한다”라고 말했다. 이번 연구는 과학기술정보통신부-한국연구재단의 전략과제, 멀티스케일 카이랄 구조체 연구센터, 미래유망 융합기술 파이오니아사업과 신진연구 과제의 지원을 받아 수행됐다. □ 그림 설명 그림1. DNA 분자 배향 모식도 그림2. DNA-금 막대 입자 복합체의 배향 양상과 나타나는 플라즈모닉 광학 현상
2019.06.18
조회수 17343
전성윤 교수, 8시간 안에 항생제 조합 성능 확인하는 기술 개발
〈 김승규 연구원, 전성윤 교수 〉 우리 대학 기계공학과 전성윤 교수 연구팀(바이오미세유체 연구실)이 미세유체 칩을 이용해 두 개의 항생제 간 시너지 효과를 8시간 만에 검사할 수 있는 기술을 개발했다. 이번 연구는 항생제의 시너지 효과 검사에 최소 24시간 소요돼 활용이 어려웠던 기존 기술을 크게 개선한 것으로, 향후 환자들에게 적절한 항생제 조합치료를 할 수 있는 기반 기술이 될 것으로 기대된다. 김승규 석박사통합과정이 1 저자로 참여하고 생명과학과 정현정 교수 연구팀과 공동으로 수행한 이번 연구는 영국 왕립화학회(Royal Society of Chemistry)에서 발행하는 ‘랩온어칩(Lab on a Chip)’ 3월 21일 자 뒤표지 논문으로 게재됐다. (논문명 : On-chip phenotypic investigation of combinatory antibiotic effects by generating orthogonal concentration gradients, 직교 농도구배 형성을 통한 칩 상 항생제 조합 효과 검사) 항생제에 매우 높은 저항성을 갖는 ‘슈퍼박테리아’의 등장은 세계적으로 병원 및 관련 기관에 큰 위협으로 떠오르고 있다. 지난 2014년에는 세계보건기구(WHO)가 병원균의 항생제에 대한 내성이 심각한 수준에 도달했다고 공식적으로 처음 보고하기도 했다. 이러한 항생제 저항성 병원균을 효과적으로 억제하기 위해 두 종류 이상의 항생제를 섞어 처리하는 ‘항생제 조합 치료’가 주목받고 있지만, 항생제의 종류와 적정한 농도 범위가 큰 영향을 미쳐 정확한 조합을 해야 할뿐더러 치료가 항상 효과적이지는 않다는 문제점이 있다. 따라서 미지의 항생제 저항성 병원균을 대상으로 체외 항생제 조합 검사를 통해 적합한 항생제 조합과 농도 범위를 찾는 것은 매우 중요한 과정이다. 하지만 기존 검사 방식은 항생제 희석 및 샘플 준비 과정이 불편하고 결과 도출까지 24시간 이상이 걸려 대부분 경험적 치료에 의존하고 있다. 연구팀은 문제 해결을 위해 필요한 샘플 양이 수십 마이크로리터에 불과한 미세유체 칩을 이용했다. 머리카락 굵기 수준의 좁은 미세채널에서 유체 흐름을 제어할 수 있는 시스템인 미세유체 칩을 통해 두 개의 항생제 간 농도조합 121개를 단 35분 만에 자동으로 형성했다. 연구팀은 박테리아 샘플을 아가로스 젤과 섞어 미세채널에 주입해 굳힌 뒤 이를 둘러싸는 미세채널들에 각 항생제가 포함된 시약과 항생제가 포함되지 않은 시약을 주입했다. 항생제가 첨가된 채널로부터 항생제가 없는 채널로 항생제 분자들의 확산이 이뤄지고 결국 두 항생제의 조합이 박테리아가 굳혀있는 아가로스 젤에 35분 만에 형성된다. 연구팀은 이후 6시간 동안 억제되는 박테리아의 성장을 현미경을 통해 관찰했다. 연구팀은 서로 다른 항균 원리를 갖는 다섯 종류의 항생제를 두 개씩 조합해 녹농균(Pseudomonas aeruginosa)을 대상으로 항생제 조합 효능 검사를 시행했다. 그 결과 항생제 짝에 따라 각기 다른 항균효과를 확인할 수 있었고 검사한 항생제 짝의 시너지 관계를 분류할 수 있었다. 연구팀의 미세유체 칩 기반의 검사 방식은 번거로운 희석과정과 긴 검사 시간으로 인해 불편했던 기존 검사 방식을 크게 개선했다. 이전에도 전 교수 연구팀은 ‘미세유체 칩 기반의 항생제 효능 신속검사 기술’을 개발해 지난 2월 5일 ‘바이오마이크로플루이딕스(Biomicrofluidics)’지에 피처 기사로 게재한 바 있다. 이번 논문은 그 후속 연구로 미세유체 칩이 차세대 약물 검사 플랫폼으로 활용될 가능성을 제시했다는 의의가 있다. 연구책임자인 전 교수는 “미세유체 칩의 약물 검사 플랫폼으로써의 발전 가능성은 무궁무진하다”라며 “개발한 미세유체 칩이 상용화돼 실제 현장에서 항생제 조합치료를 위해 활용되기를 기대한다”라고 말했다. 이번 연구는 EEWS 기후변화연구허브사업과 교육부 이공분야기초연구사업 및 BK21 플러스프로그램의 지원을 받아 수행됐다. 그림 설명 그림1. Lab on a Chip 표지 이미지 그림2. 본 연구의 미세유체 칩과 분석결과 예시
2019.04.05
조회수 19240
이현주 교수, 국건 박사과정, 실크 피브로인 박막의 대면적 소자공정 개발
우리 대학 전기및전자공학부 이현주 교수 연구팀과 KIST 최낙원 박사팀이 생분해성 실크피브로인 박막의 대면적 소자 공정을 개발하고 이를 통해 실크피브로인이 미세 공정된 마이크로소자의 제작기술을 개발했다. 이번에 개발된 실크피브로인 박막의 대면적 소자 공정은 포토리소그래피로 제작하는 폴리머나 금속 등의 구조와 동시에 미세공정이 가능해 실크피브로인을 기판으로 하는 생분해성 전자소자나 실크피브로인 패턴을 통한 국소부위 약물전달을 구현하는 데에 중요한 기술이 될 것으로 기대된다. 국건 박사과정과 KIST 정소현 박사과정이 주도한 이번 연구는 국제학술지 ‘에이씨에스 에이엠아이(ACS AMI : ACS Applied Materials & Interfaces)’ 1월 16일자 표지논문에 게재됐다. (논문명 : Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics) 실크피브로인 박막은 투명하고 유연하며 생체에서 분해되기 때문에 생분해성 소자와 약물전달의 기판으로 쓰여왔다. 연구팀은 지난 2년간의 연구로 현재까지 실크피브로인에 적용되지 못했던 미세공정을 적용할 수 있도록 새로운 공정기술을 개발했다. 기존의 미세공정은 실크피브로인과 같은 생고분자의 구조를 변형시키는 강한 식각액과 용매가 동반됐다. 연구팀은 실크피브로인에 영향을 주지 않는 물질을 추려내고 이를 이용해 실크피브로인이 공정 중에 훼손되지 않도록 개선된 미세공정기술을 확보했다. 개발한 공정은 알루미늄 금속 박막을 사용해 실크피브로인을 보호하기 때문에 기존 미세공정의 핵심 기술인 포토리소그래피(Photolithography)로 실크피브로인 박막을 다른 소자 위에 패터닝하거나 실크피브로인 박막 위에 다른 물질을 패터닝하는 것이 모두 가능하다. 연구진은 뇌세포(Primary Neuron)를 공정을 거친 실크피브로인의 미세패턴 위에 성공적으로 배양해 실크피브로인이 공정 전후로 높은 생체적합성을 지녀 생체 임플란트 소자에 적용될 수 있음을 확인했다. 연구진은 개발한 기술을 통해 실크피브로인 기판 위에 여러 층의 금속 박막과 실크피브로인 박막의 미세패턴을 구현해 저항 및 실크피브로인을 유전체로 하는 축전기로 이루어진 생분해성 미세전자회로를 실리콘웨이퍼에서 대면적으로 제작했다. 또한 연구진이 독립적으로 개발한 유연 폴리머 기반 뇌전극 위에 해당 기술을 이용해 실크피브로인 박막의 미세패턴을 전극의 가까이에 위치시켰고 색소분자를 실크피브로인 박막에 탑재해 미세패턴으로부터의 분자전달을 확인했다. 실크피브로인 박막이 미세패턴된 뇌전극을 이용하면 뇌세포의 행동을 촉진하거나 제한하는 분자 약물을 탑재해 뇌회로의 연구에 활용되는 등 다양한 활용이 가능할 것으로 기대된다. 이 교수는 “대면적 공정이 불가능하다고 여겨졌던 민감한 바이오물질도 실리콘처럼 대면적의 미세공정이 가능해졌다”며 “향후 바이오메디컬 소자 분야에 광범위하게 적용될 것으로 기대한다”고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단의 선도연구센터 사업 지원을 받아 수행됐다. □ 그림 설명 그림1. ACS AMI 표지 그림2. 연구진이 개발한 실크피브로인 박막의 대면적 미세소자공정 그림3. 공정 이후의 실크피브로인 패턴에 배양된 Primary Neuron의 모습
2019.02.21
조회수 15929
정기훈 교수, 곤충 눈 구조 모방한 초박형 카메라 개발
〈 왼쪽부터 장경원 박사과정, 정기훈 교수, 황순홍 박사과정 〉 우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 독특한 눈 구조를 가진 곤충인 제노스 페키(Xenos peckii)를 모사한 초박형 디지털카메라를 개발했다. 제노스 페키를 모사해 개발한 초박형 디지털카메라는 기존 이미징 시스템보다 더 얇으면서 상대적으로 넓은 광시야각과 높은 분해능을 갖는다. 감시 및 정찰 장비, 의료용 영상기기, 모바일 등 다양한 소형 이미징 시스템에 적용 가능할 것으로 기대된다. 금동민, 장경원 박사과정이 주도한 이번 연구결과는 국제 학술지 ‘빛 : 과학과 응용(Light : Science & Applications)’ 10월 24일 자에 게재됐다. (논문명: 제노스 페키의 시각기관을 모사한 초박형 디지털카메라, Xenos peckii vision inspires an ultrathin digital camera) 정 교수 연구팀은 자연계에서 발견되는 광학 구조를 모방하는 연구를 꾸준히 진행해 왔다. 반딧불이의 배 마디 구조를 분석해 광효율을 높은 LED 렌즈를 개발한 바 있고, 생체모사를 통한 무반사 기판을 제작하는 등 해당 분야를 선도하고 있다. 최근 전자기기 및 광학기기의 소형화로 초박형 디지털카메라에 대한 수요가 증가하고 있다. 그러나 기존의 카메라 모듈은 광학적 수차를 줄이기 위해 광축을 따라 복수의 렌즈로 구성돼 있어 부피가 매우 크다는 단점이 있다. 이런 모듈을 단순히 크기만 줄여 소형기기에 적용하면 분해능과 감도가 떨어지게 된다. 연구팀은 문제 해결을 위해 곤충인 제노스 페키의 시각구조를 적용한 렌즈를 제작했고 이를 이미지 센서와 결합한 초박형 디지털카메라를 개발했다. 곤충의 겹눈구조는 수백, 수천 개의 오마티디아라 불리는 아주 작은 광학 구조로 이뤄져 있다. 일반적인 겹눈구조는 수백, 수천 개의 오마티디아에서 한 개의 영상을 얻지만, 제노스 페키는 다른 곤충과는 달리 각 오마티디아에서 개별의 영상을 획득할 수 있다. 또한 오마티디아 사이에 빛을 흡수할 수 있는 독특한 구조를 가져 각 영상 간 간섭을 막는다. 연구팀이 개발한 카메라는 2mm 이내의 매우 작은 크기로 제노스 페키의 겹눈구조를 모방해 수십 개의 마이크로프리즘 어레이와 마이크로렌즈 어레이로 구성된다. 마이크로프리즘과 마이크로렌즈가 한 쌍으로 채널을 이루고 있으며 각각의 채널 사이에는 빛을 흡수하는 중합체가 존재하며 각 채널 간 간섭을 막는다. 각각의 채널은 화면의 다른 부분들을 보고 있으며 각 채널에서 관측된 영상들은 영상처리를 통해 하나의 영상으로 복원돼 넓은 광시야각과 높은 분해능을 확보할 수 있다. 정기훈 교수는 “초박형 카메라를 제작하는 새로운 방법을 제시했다”며 “이 연구는 기존의 평면 CMOS 이미지 센서 어레이에 마이크로 카메라를 완전히 장착한 초박형 곤충 눈 카메라의 첫 번째 데모이며 다양한 광학 분야에 큰 영향을 미칠 것으로 확신한다.”라고 말했다. □ 그림 설명 그림1. (좌) 제노스 페키의 SEM 영상. (우) 형광 염색된 제노스 페키의 시각구조 그림2. (좌) MEMS 공정을 통해 제작된 마이크로프리즘 어레이의 SEM 영상. (우) 완성된 초박형 디지털 카메라의 광학 영상 그림3. (좌) Xenos peckii의 시각기관을 통해 얻은 영상. (우) 초박형 디지털 카메라를 통해 얻은 영상
2018.11.20
조회수 9128
성형진 교수, 마이크로스케일 액적 내 입자의 세정 및 집속기술 개발
우리 대학 기계공학과 성형진 석좌교수 연구팀(유동제어연구실)이 고주파수 표면탄성파 기반 음향방사현상을 이용해 마이크로스케일 액적 내 입자의 세정 및 집속 기술을 개발했다. 박진수 박사과정이 제 1저자로 참여한 이번 연구는 영국왕립화학회에서 발간하는 미세유체역학 및 마이크로타스 분야의 국제학술지 랩온어칩(Lab on a Chip)지 2018년 19호의 표지논문으로 선정됐다 (논문명: In-droplet microparticle washing and enrichment using surface acoustic wave-driven acoustic radiation force). 이는 같은 학술지 2016년 4호, 17호, 2017년 6호, 2018년 3호에 이은 다섯 번째 표지논문으로 미세유체역학 분야의 선도적 연구 성과이다. 동전 크기의 초소형 미세유체칩 내에 서로 섞이지 않는 두 유체로 조성된 마이크로스케일 액적을 기반으로 하는 액적 기반 미세유체역학 분야에서 액적 내 입자, 세포, 생체분자 등의 샘플을 제어하기 위해 많은 노력이 기울여져 왔다. 하지만 지금까지 개발된 액적 내 샘플 세정 및 집속 기술은 복잡한 시스템이 요구되고 자성 혹은 극성을 띈 샘플만 제어할 수 있다는 한계를 지니고 있었다. 이번 연구에서 성 석좌교수 연구팀은 고주파수 표면탄성파를 이용해 마이크로스케일 액적과 액적 내 입자에 음향방사력을 인가해 입자의 위치를 음향장 내에 고정시켰다. 그리고 액적을 포획, 분할, 병합, 방출함으로써 액적 내 입자의 매개 용액을 교체하고 더 나아가 입자의 개체수를 원하는 수준까지 농축할 수 있음을 증명했다. 개발된 기술은 액적 내 입자를 비접촉·비표지 방식으로 세정할 수 있으며 액적 내 샘플의 개체수를 증가시킬 수 있는 기술이라는 점에서 기존보다 진일보했다는 평을 받았다. 아울러 음파와 탄성 고체 입자의 상호작용 이론을 바탕으로 표면탄성파의 주파수와 액적 내 입자 크기 사이의 관계를 규명해 효율적인 음향영동 현상 유발을 위한 조건을 제시했다. 박진수 박사과정은 “개발된 음향미세유체역학 기술을 통해 마이크로스케일 액적 내 샘플의 매개용액을 자유롭게 교체할 수 있음은 물론 액적 내 샘플을 원하는 수준으로 농축할 수 있다”고 말했다. 성형진 석좌교수는 “이 기술이 다양한 액적 기반 미세유체역학 시스템에서 액적 내 입자, 세포, 생체분자 등 다양한 샘플의 전처리를 위한 핵심 기술로 널리 활용될 수 있을 것으로 기대된다”고 말했다. 성형진 석좌교수 연구팀은 그동안 광력과 음향력 기반의 미세유체역학, 난류, 고체-유체 상호작용 연구 분야에서 탁월한 연구 성과를 내 SCI급 국제학술지에 320여편의 논문을 게재한 바 있다. 특히 이번 연구는 올해 우리 대학에서 국내 최초로 시행된 초세대 협업연구실(헬스케어 음향미세유체 연구실)의 공동 연구 성과로, 헬스케어 음향미세유체 연구실은 기계공학과 성형진 석좌교수가 책임을 맡고 같은 학과 조연우 교수, 김형수 교수가 참여하고 있다. 이번 연구는 KAIST-KUSTAR, 한국연구재단의 창의연구지원사업과 글로벌박사펠로우십, 극지연구소, KAIST 초세대 협엽연구실(헬스케어 음향미세유체 연구실)의 지원으로 수행됐다. □ 그림 설명 그림1. 논문 대표 이미지 그림2. 표지논문 이미지
2018.10.05
조회수 13772
스티브 박 교수, 유기반도체 결정크기 10배 성장 기술 개발
〈 이정찬 석사과정, 스티브 박 교수, 김진오 박사과정 〉 우리 대학 신소재공학과 스티브 박 교수 연구팀이 유기반도체 결정의 크기를 성장시키고 제어할 수 있는 기술을 개발했다. 이는 무기고분자 재료를 이용해 마이크로미터 크기 수준의 구조물을 제작한 뒤 용액전단법이라는 공정과 결합하는 기술로, 용액 기반의 프린팅 공정에서 유기반도체 결정의 성장 과정을 미세하게 제어함으로써 정밀하고 균일한 대면적 크기의 유기반도체 박막 제조의 기반 기술이 될 것으로 기대된다. 김진오 박사과정, 이정찬 석사과정이 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 7월 16일자 표지논문에 선정됐다. (논문명 : Inorganic Polymer Micropillar-Based Solution Shearing of Large-Area Organic Semiconductor Thin Films with Pillar-Size-Dependent Crystal Size, 필러 크기에 따른 유기반도체 결정 크기 성장 가능한 무기고분자 마이크로 필러 기반 용액전단법) 유기반도체는 용액을 이용한 프린팅 공정이 가능하다는 점에서 큰 주목을 받고 있다. 저가 및 대면적 제작이 가능하고 유연한 전자 소자 제작이 가능하기 때문에 다양한 연구가 지속되고 있다. 유기반도체 성능의 지표인 이동도(Mobility)는 유기반도체의 결정성, 결정의 성장방향, 결정의 크기 등의 영향을 받는다. 유기반도체의 결정성이나 결정방향을 제어하기 위한 연구는 많이 발전됐지만 결정 크기를 성장시킬 수 있는 기술은 부족한 상황이다. 최근에는 유기반도체의 균일한 박막을 만들기 위한 기술이 발전되고 있는데 잉크젯 프린팅, 딥 코팅, 그리고 용액전단법이 대표적인 기술이다. 그러나 기존의 프린팅 공정은 용액의 흐름을 적절히 통제하지 못한 상태에서 용매의 증발이 무작위로 발생하기 때문에 결정 크기가 큰 유기반도체를 제작하는 데 어려움이 있다. 연구팀은 문제 해결을 위해 유기용매에 내성을 갖는 무기 고분자 재료를 이용해 다양한 형태의 전단판을 제작한 후 이를 용액전단 기술에 결합했다.(용액전단법: 기판과 전단판 사이에 용액을 주입하고 일정 속도로 전단판을 이동시켜 한 방향으로 정렬된 균일한 유기반도체 박막 제작이 가능한 프린팅 기술) 무기 고분자 재료는 유연하고 유기용매에 대한 내성을 갖고 있기 때문에 유기반도체를 이용한 프린팅 공정에 적합하다. 또한 기존의 실리콘 재료 기반의 전단판 제조 공정을 간단한 소프트리소그래피 공정으로 대체할 수 있다. 연구팀은 일렬 형태로 배열된 사각형 모양의 마이크로미터 크기 구조물을 이용해 용액이 균일한 굴곡을 가지며 기판에 맺히도록 조절했다. 이를 통해 용매의 증발 속도를 조절해 핵 생성이 일어나는 지점을 정밀하게 통제했다. 여기서 마이크로 구조물의 크기를 변화시키며 유기반도체 결정의 크기를 성장시키는 데 성공했고, 그 결과로 반도체 소자의 성능이 함께 향상됨을 확인했다. 스티브 박 교수는 “무기고분자 재료를 결합한 용액전단법은 프린팅 공정에서 정밀한 제어가 가능하다”며 “유기반도체 뿐 아니라 다른 재료를 이용한 균일 박막 제조가 가능한 원천 기술을 확보했다는 의미를 갖는다”고 말했다. 이번 연구는 한국산업기술평가관리원이 추진하는 센서산업고도화 전문기술개발사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 무기고분자를 이용한 마이크로 필러 구조의 용액전단법(어드밴스드 머티리얼즈 7월호 표지)
2018.08.03
조회수 11587
<<
첫번째페이지
<
이전 페이지
1
2
3
4
>
다음 페이지
>>
마지막 페이지 4