-
2.4배 가격 효율적인 챗GPT 핵심 AI반도체 개발
오픈AI가 출시한 챗GPT는 전 세계적으로 화두이며 이 기술이 가져올 변화에 모두 주목하고 있다. 이 기술은 거대 언어 모델을 기반으로 하고 있다. 거대 언어 모델은 기존 인공지능과는 달리 전례 없는 큰 규모의 인공지능 모델이다. 이를 운영하기 위해서는 수많은 고성능 GPU가 필요해, 천문학적인 컴퓨팅 비용이 든다는 문제점이 있다.
우리 대학 전기및전자공학부 김주영 교수 연구팀이 챗GPT에 핵심으로 사용되는 거대 언어 모델의 추론 연산을 효율적으로 가속하는 AI 반도체를 개발했다고 4일 밝혔다.
연구팀이 개발한 AI 반도체 ‘LPU(Latency Processing Unit)’는 거대 언어 모델의 추론 연산을 효율적으로 가속한다. 메모리 대역폭 사용을 극대화하고 추론에 필요한 모든 연산을 고속으로 수행 가능한 연산 엔진을 갖춘 AI 반도체이며, 자체 네트워킹을 내장하여 다수개 가속기로 확장이 용이하다. 이 LPU 기반의 가속 어플라이언스 서버는 업계 최고의 고성능 GPU인 엔비디아 A100 기반 슈퍼컴퓨터보다 성능은 최대 50%, 가격 대비 성능은 2.4배가량 높였다. 이는 최근 급격하게 생성형 AI 서비스 수요가 증가하고 있는 데이터센터의에서 고성능 GPU를 대체할 수 있을 것으로 기대한다.
이번 연구는 김주영 교수의 창업기업인 ㈜하이퍼엑셀에서 수행했으며 미국시간 7월 12일 샌프란시스코에서 진행된 국제 반도체 설계 자동화 학회(Design Automation Conference, 이하 DAC)에서 공학 부문 최고 발표상(Engineering Best Presentation Award)을 수상하는 쾌거를 이뤘다.
DAC은 국제 반도체 설계 분야의 대표 학회이며, 특히 전자 설계 자동화(Electronic Design Automation, EDA)와 반도체 설계자산(Semiconductor Intellectual Property, IP) 기술 관련하여 세계적인 반도체 설계 기술을 선보이는 학회다. DAC에는 인텔, 엔비디아, AMD, 구글, 마이크로소프트, 삼성, TSMC 등 세계적인 반도체 설계 기업이 참가하며, 하버드대학교, MIT, 스탠퍼드대학교 등 세계 최고의 대학도 많이 참가한다.
세계적인 반도체 기술들 사이에서 김 교수팀이 거대 언어 모델을 위한 AI 반도체 기술로 유일하게 수상한 것은 매우 의미가 크다. 이번 수상으로 거대 언어 모델의 추론에 필요한 막대한 비용을 획기적으로 절감할 수 있는 AI 반도체 솔루션으로 세계 무대에서 인정받은 것이다.
우리 대학 김주영 교수는 “미래 거대 인공지능 연산을 위한 새로운 프로세서 ‘LPU’로 글로벌 시장을 개척하고, 빅테크 기업들의 기술력보다 우위를 선점하겠다”라며 큰 포부를 밝혔다.
2023.08.04
조회수 5662
-
면역항암치료 부작용 인공지능으로 예측
면역항암치료는 환자의 면역 시스템을 활성화해 암을 치료하는 혁신적인 3세대 항암 치료 방법으로 알려져 있다. 하지만 면역항암 치료제는 면역활성화에 의해 기존 항암제와는 구분되는 자가면역질환과 유사한 부작용을 유발할 수 있다는 새로운 문제가 제기됐다. 이러한 부작용은 심각한 경우 환자를 죽음에까지 이르게 할 수 있기에 부작용에 대한 연구가 절실한 상황에 놓여있다.
우리 대학 바이오및뇌공학과 최정균 교수팀과 서울아산병원 종양내과 박숙련 교수팀은 면역항암제 치료를 받은 고형암 환자에 대한 대규모 전향적 코호트를 구축하고, 다차원적 분석을 통해 면역항암제 부작용의 위험요인을 규명했다고 22일 밝혔다. 또한 인공지능 딥러닝을 이용해 치료 전 환자에게서 부작용이 나타날지를 예측할 수 있는 모델까지도 개발했다고 알렸다.
기존의 관련 연구들은 소규모로 진행이 되거나, 적은 수의 지표로 국한된 범위에 대해서만 행해졌다. 또한 수행된 연구들은 면역 관련 부작용을 위해 디자인된 연구 설계가 아닌, 다른 목적을 위해 모집된 환자군을 모아 수행하는 후향적 연구 설계로 진행됐다는 한계점이 있었다.
연구팀은 이러한 한계점을 극복하기 위해, 서울아산병원을 필두로 국내 9개 기관과 협력하여 면역 관련 부작용의 포괄적인 위험요인을 밝히기 위한 대규모 전향적 코호트를 구축했다. 또한 환자의 유전체, 전사체, 혈액 지표 등 폭넓은 범위에서 면역 관련 부작용에 대한 위험요인을 밝혀냄으로써, 궁극적으로는 치료 전 미리 환자가 면역항암치료에 대한 부작용을 보일지 알아낼 수 있는 딥러닝 예측 모델을 개발했다. 해당 연구 결과는 다양한 고형암 환자의 임상데이터와 혈액 유전체 데이터에 기반했기에, 향후 환자의 암종과 상관없이 폭넓게 적용될 수 있을 것으로 기대된다.
우리 대학 바이오및뇌공학과 성창환 박사(現 : 서울아산병원 핵의학과)와 안진현 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 캔서(Nature Cancer)’ 에 게재됐다. (논문명 : Integrative analysis of risk factors for immune-related adverse events of checkpoint blockade therapy in cancer).
이번 연구에는 고려대학교 안암병원, 인제대학교 해운대백병원, 국립암센터, 서울삼성병원, 분당서울대학교병원, 고려대학교 구로병원, 연세대학교 세브란스병원, 서울대학교병원의 연구자들도 참여했다.
최정균 교수는 “이번 연구를 통해 면역항암 치료의 아킬레스건이라고 할 수 있는 면역관련 부작용에 대한 폭넓은 분석과 예측모델의 제시를 통해 향후 전세계 연구진이 사용할 수 있는 대규모 면역관련 부작용 리소스를 제공할 수 있을 것이라 기대한다”라고 말했다.
임상연구를 총괄한 서울아산병원 박숙련 교수는 “현재 면역항암제가 임상에서 광범위하게 사용되고 있고 그 치료 영역을 완치적 세팅으로까지 확장하고 있어 치료 효과뿐 아니라 환자 안전성이 더욱 중요한데 그동안 치료 부작용을 예측할 수 있는 좋은 지표가 없던 상황에서, 이번 연구 결과는 개별 환자의 임상데이터와 유전체 데이터에 기반해 면역항암제의 부작용 발생을 예측할 수 있어 암 환자의 정밀 의료 치료를 실현할 수 있는 기반이 될 것으로 기대한다”고 전했다.
이번 연구는 과학기술정보통신부 인공지능 신약개발 플랫폼 구축 사업의 지원을 받아 수행됐다.
2023.06.22
조회수 4275
-
폐암 전이를 막고 치료 가능한 세포로 되돌리는 원천기술 개발
고령화에 따라 암의 발생이 늘어나면서 암은 인류의 건강수명을 위협하는 가장 치명적인 질환이 됐다. 특히 조기 발견을 놓쳐 여러 장기로 전이될 때 암의 치명률은 높아진다. 이러한 문제를 해결하기 위해 암세포의 전이 능력을 제거하거나 낮추려는 시도가 이어졌으나 오히려 중간상태의 불안정한 암세포 상태가 되면서 더욱 악성을 보이게 되어 암 치료의 난제로 남아 있었다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 폐암 세포의 성질을 변환시켜 암세포의 전이를 막고 약물에 대한 저항성을 제거할 수 있는 기술을 개발하는 데 성공했다고 30일 밝혔다.
조광현 교수 연구팀은 폐암 세포의 전이능력이 없는 상피(epithelial, 세포 방향성이 있어 유동성 없이 표면조직을 이루는 상태)세포에서 전이가 가능한 중간엽(mesenchymal, 방향성없이 개별적인 이동성을 가진 상태)세포로 변화되는 천이 과정(epithelial-to-mesenchymal transition, 이하 EMT)에서 나타나는 다양한 암세포 상태들을 나타낼 수 있는 세포의 분자 네트워크 수학모델을 만들었다. 컴퓨터 시뮬레이션 분석과 분자 세포실험을 통해 악성종양으로 증식하여 인접한 조직이나 세포로 침입하거나 약물에 내성을 가진 중간엽세포 상태에서 전이가 되지 않은 상피세포 상태로 다시 바뀔수 있도록 세포의 성질을 변환시켜주는 핵심 조절인자들을 발굴했다.
특히 이 과정에서 그동안 난제로 남아 있었던 중간과정의 불안정한 암세포 상태(EMT 하이브리드 세포 상태)를 피하는 동시에 항암 화학요법(chemotherapy) 치료가 잘 되는 상피세포 상태로 온전히 역전하는 데 성공했다.
우리 대학 김남희 박사과정, 황채영 박사, 김태영 연구원, 김현진 박사과정이 참여한 이번 연구 결과는 미국암학회(AACR)에서 출간하는 국제저널 `캔서 리서치(Cancer Research)' 1월 30일 字 온라인판 논문으로 출판됐다. (논문명: A cell fate reprogramming strategy reverses epithelial-to-mesenchymal transition of lung cancer cells while avoiding hybrid states)
암세포의 EMT 과정에서 불완전한 천이(변화과정)로 인해 발생하는 EMT 하이브리드 상태의 세포들은 상피세포와 중간엽세포의 특성을 모두 갖고 있으며, 높은 줄기세포능*을 획득해 약물저항성 및 전이 잠재성이 큰 것으로 알려져 있다. 불안정한 암세포 상태(EMT)는 매우 복잡하여 높은 전이 능력과 약물저항성을 가지는 EMT 하이브리드 세포 상태를 회피하면서 암세포를 전이 능력과 약물저항성이 제거된 상피세포 상태로 온전히 역전시키는 것은 매우 어려운 일이었다.
*줄기세포능: 줄기세포가 지속적 자가복제를 할 수 있도록 하는 세포내 신호전달체계
조광현 교수 연구팀은 복잡한 EMT를 지배하는 유전자 조절 네트워크의 수학모델을 정립한 후, 대규모 컴퓨터 시뮬레이션 분석 및 복잡계 네트워크 제어기술을 적용해 중간엽세포 상태인 폐암 세포를 EMT 하이브리드 세포 상태를 회피하면서 전이 능력이 상실된 상피세포 상태로 역전시킬 수 있는 세 개의 핵심 분자 타깃인 ‘p53 (암 억제 단백질)’, ‘SMAD4 (EMT를 조절하는 대표적 신호전달을 매개하는 중심물질로 SMAD 그룹에 포함된 단백질)’와 ‘ERK1/2 (세포의 성장 및 분화에 관여하는 조절인자)’를 발굴하고 이를 분자 세포실험을 통해 검증했다. 이러한 발견은 실제 인체 내 암 조직의 환경에서처럼 자극이 주어진 상황에서 중간엽세포 상태가 상피세포 상태로 역전될 수 있음을 증명해 그 의미가 크다.
암세포의 비정상적인 EMT는 암세포의 이동과 침윤, 화학요법 치료에 대한 반응성 변화, 강화된 줄기세포능, 암의 전이 등 다양한 악성 형질로 이어지게 된다. 특히 암세포의 전이 능력 획득은 암 환자의 예후를 결정짓는 매우 중요한 요소다. 이번에 개발된 폐암 세포의 EMT 역전 기술은 암세포를 리프로그래밍해 높은 가소성과 전이 능력을 제거하고 항암 화학치료의 반응성을 높이도록 하는 새로운 항암 치료 전략이다.
조광현 교수는 "높은 전이 능력과 약물저항성을 획득한 폐암 세포를 전이 능력이 제거되고 항암 화학요법치료에 민감한 상피세포 상태로 온전히 역전시키는 데 성공함으로써 암 환자의 예후를 증진할 수 있는 새로운 치료전략을 제시했다ˮ라고 말했다.
조광현 교수 연구팀은 암세포를 정상세포로 되돌리는 가역 치료원리를 최초로 제시한 뒤 2020년 1월에 대장암세포를 정상 대장 세포로 되돌리는 연구 결과를 발표했고, 2022년 1월에는 가장 악성인 유방암세포를 호르몬 치료가 가능한 유방암세포로 리프로그래밍하는 연구에 성공한 바 있다. 이번 연구 결과는 전이 능력을 획득한 폐암 세포 상태를 전이 능력이 제거되고 약물 반응성이 증진된 세포 상태로 되돌리는 가역화 기술 개발의 세 번째 성과다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업 등의 지원으로 수행됐다.
2023.01.30
조회수 7305
-
난치성 심혈관 질환인 폐동맥 고혈압의 새로운 모델 및 병리기전 제시
우리 대학 의과학대학원 및 의과학센터 연구진(책임자: 김인준 교수)과 서울대학교병원 연구진(책임자: 박준빈 교수)이 협력하여 폐동맥 고혈압(pulmonary arterial hypertension)의 새로운 동물모델을 구축하고 치료방법을 제시하였다고 지난 10월 7일 소개됐다.
연구팀은 혈관내피세포에서 Sox17 유전자가 결핍된 생쥐에 저산소 환경을 제공하여 새로운 폐동맥 고혈압 동물모델을 성공적으로 개발하였으며, 전사체 분석(transcriptomic analysis)으로 Sox17과 관련된 폐동맥 고혈압 발생의 병리현상에 Dll4/Notch 신호경로가 연관됨을 확인하였다. 또한 심혈관계 질환에서 역할이 잘 알려져 있지 않았던 HGF/c-Met 경로가 활성화됨을 발견하고, 기존의 폐동맥 고혈압 치료 약물 투여와 함께 해당 경로를 차단함으로써 동물모델에서 폐동맥 고혈압을 효과적으로 치료/예방할 수 있음을 확인하였다. 동물모델과 유사하게, 폐동맥 고혈압 환자의 폐조직에서 정상군에 비해 Sox17 발현이 감소하고 HGF 발현은 증가함을 확인하였다. 우리 대학 의과학대학원 졸업생 박찬순 박사가 (현 서울대병원 순환기내과 임상강사) 1저자로 주도한 이번 연구 결과는 심혈관 기초연구 분야 최고 학술지인 Circulation Research에 온라인 게재되었다.
기존 폐동맥 고혈압 동물모델은 실제 폐동맥 고혈압 환자들이 보이는 만성 진행성 임상양상을 잘 나타내지 못한다는 한계가 있었다. 예를 들어, 저산소-유발 폐동맥 고혈압 동물모델은 정상 산소 농도에 다시 두면 증상이 종종 호전되는데, 이는 환자의 질병 경과와는 차이가 있다. Sox17 내피결핍 생쥐에서 발생한 폐동맥 고혈압은 질병 상태가 만성적으로 유지되는 등 실제 병태생리를 잘 반영하였다. 이러한 장점으로 인해, 새로운 모델은 약제 개발 및 치료반응 확인에 보다 효과적으로 사용될 수 있을 것으로 기대된다. 더불어 이번 연구는 사망률을 경감시키는 효과적인 치료제가 없는 폐동맥 고혈압 치료 분야에 HGF/c-Met 신호경로를 새로운 약제 개발의 타겟으로 제시했다.
이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2022.10.12
조회수 4850
-
수학 모델로 개별 세포 간 이질성의 원인 밝혀
우리 연구진이 항생제와 같은 동일한 외부 자극에도 개별 세포마다 반응하는 정도가 다른 근본적인 원인을 밝혔다.
우리 대학 수리과학과 김재경 교수(기초과학연구원(IBS) 의생명수학 그룹 겸임) 연구팀이 외부 자극에 대한 세포 간 이질성(cell-to-cell heterogeneity)의 크기가 세포 내 신호 전달 과정의 반응 속도 제한 단계(rate-limiting step)의 수에 비례한다는 사실을 규명했다고 21일 밝혔다.
똑같은 유전자를 가진 세포들이 동일한 외부 자극에 다르게 반응하는 이유는 오랫동안 미스터리였다. 특히, 외부 자극에 대한 반응의 이질성은 항암 치료 시 화학 요법을 적용할 때 암세포의 완전 사멸을 막는 원인이 되기도 한다. 따라서, 세포 간 이질성을 유발하는 요인으로서 속도 제한 단계를 제시한 이번 연구는 화학 요법 치료의 효과를 개선하는 데에 이용될 수 있을 것으로 기대된다.
우리 대학 수리과학과 김대욱 박사와 홍혁표 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `사이언스 어드밴시스(Science Advances)' 3월 18일 字 온라인판에 실렸다. (논문명 : Systematic inference identifies a major source of heteogeneity in cell signaling dynamics: the rate-limiting step number)
우리 몸속에 있는 세포는 항생제, 삼투압 변화 등 다양한 외부 자극에 반응하는 신호 전달 체계를 갖고 있다. 이러한 신호 전달 체계는 세포가 외부 환경과 상호 작용하는 데에 가장 핵심적인 역할을 한다.
동일한 외부 자극을 세포들에 가했을 때 반응하는 정도가 다르기 때문에 약물에 대한 이질적인 반응과 약물 내성이 강한 존속성 세균(persister cell)이 발생한다. 이러한 현상을 유발하는 세포 간 이질성의 원인을 찾기 위해 많은 시도가 있었다. 특히, 신호 전달 체계를 이루는 많은 중간 과정들이 영향을 미친다는 것이 제안됐으나, 실험적으로 모든 중간 과정을 직접 관측하는 것이 현재 기술로는 불가능하기에 난제로 남아 있었다.
김 교수 연구팀은 이 난제 해결을 위해 세포 내 신호 전달 체계를 묘사하는 큐잉 모형(Queueing model)을 개발했다. 개발된 큐잉 모형을 바탕으로 통계적인 추정 방법론인 베이지안 모형(Bayesian model)과 혼합 효과 모형(Mixed-effects model)을 결합해 신호 체계의 중간 과정에 대한 관측 없이도 신호 체계를 분석할 수 있는 컴퓨터 소프트웨어(MBI; Moment-based Bayesian Inference method)를 개발했다. 이를 이용해 분석한 결과, 연구팀은 외부 자극에 반응하는 세포 간 이질성이 신호 전달 체계를 구성하는 속도 제한 단계의 수에 비례한다는 사실을 밝혔다.
김 교수는 "신호 전달 체계를 이루는 속도 제한 단계의 수가 늘어날수록 유전적으로 같은 세포 집단일지라도 전달하는 신호가 더 다양하게 나타날 수 있음을 확인했다ˮ고 설명했다.
김 교수팀은 수리 모델 분석을 위한 이론적 토대를 마련하는 것에서 그치지 않고, 실제 대장균(E. coli)의 항생제 반응 실험 데이터를 이용해 이론적 결과를 검증했다. 이러한 연구 결과는 항생제 내성 세균 연구에 새로운 패러다임을 제시할 것으로 예상된다.
김 교수는 "항암 치료시 중요하게 고려되는 세포 간 이질성에 대한 이해를 수리 모델을 통해서 높인 연구ˮ라고 소개하면서 "이번 성과를 통해 항암 치료 개선 방안이 개발되기를 기대한다ˮ라고 말했다.
한편 이번 연구는 삼성미래기술육성사업의 지원을 받아 수행됐다.
2022.03.21
조회수 8602
-
수학과 실험을 결합하여 생체시계의 역설 규명
수학과 실험을 결합한 융합연구를 통해 생체시계가 안정적 리듬을 유지하면서도 환경변화에 쉽게 적응할 수 있는 원리가 밝혀졌다. 우리 대학 수리과학과 김재경 교수가 이끄는 기초과학연구원(IBS) 수리 및 계산과학 연구단 의생명 수학 그룹과 우리 대학 수리과학과 연구팀, 그리고 아주대 의과대학 뇌과학과 김은영 교수 연구팀은 공동연구를 통해 초파리 뇌의 생체시계 뉴런들의 생체시계 작동원리를 분석했다.
생체시계(Circadian clock)는 생명체가 24시간 주기에 맞춰 살아갈 수 있도록 행동과 생리 작용을 조절하는 역할을 한다. 예를 들어, 생체시계는 밤 9시경이 되면 뇌에서 멜라토닌 호르몬 분비를 유발해 일정 시간이 되면 수면을 취할 수 있도록 하는 등 우리 운동 능력이나 학습 능력에 이르는 거의 모든 생리 작용에 관여한다. 따라서, 평소에는 일정한 시간을 안정적으로 몸에 제시하면서, 동시에 계절 변화에 따른 낮밤의 길이 변화나 해외여행으로 인한 시차 등 환경변화가 생겼을 때는 새로운 환경에 유연하게 적응해서 변화한 시간을 몸에 제시해주어야 한다. 이러한 안정성과 유연성을 동시에 유지하는 생체시계의 역설적인 성질의 원리는 지금까지 알려져 있지 않았다.
초파리 생체시계 뉴런들의 경우, 마스터 뉴런(master neuron)이 외부로부터 들어오는 빛 정보를 취합하여 시간 정보를 슬레이브 뉴런(slave neuron)에 전달하면, 이에 맞춰 슬레이브 뉴런이 일주기 행동을 조절하는 계층구조를 형성하고 있다. 이러한 역할 차이에도 불구하고, 두 뉴런의 생체시계는 동일한 원리로 작동한다고 알려져 있었다. 2017년 노벨 생리의학상을 수상한 마이클 영, 제프리 홀 그리고 마이클 로스바쉬 교수는 PER 단백질이 매일 일정한 시간에 세포핵 안으로 들어가 PER 유전자의 전사를 일정 시간에 스스로 억제하는 음성피드백 루프를 통해 24시간 주기의 리듬을 만드는 것이 생체시계의 핵심 원리임을 밝혔다.
연구진은 초파리에서 CLK에 변이가 생겼을 때 마스터 뉴런과 슬레이브 뉴런에서 서로 다른 PER변화 양상이 나타나는 것에 착안하여 마스터 뉴런과 슬레이브 뉴런이 만들어내는 PER 단백질의 변화 양상을 1000여 개 수리 모델을 개발하여 분석한 결과, 마스터 뉴런의 PER이 슬레이브 뉴런의 PER에 비해 빠르게 합성되었다 분해되고 있음을 예측하였다. 이러한 마스터 뉴런의 독특한 성질 덕분에, 평소에 강한 PER 리듬을 생성해서 안정적인 시계 역할을 하다가 외부 환경에 변화가 일어났을 때 빠르게 적응할 수 있음 역시 가상 시뮬레이션을 통해 예측하였다. 이러한 마스터 뉴런에 관한 수리모델링 예측은 초파리 생체 실험을 통해서도 검증되었다.
김재경 교수는 “모든 세포의 생체시계는 당연히 비슷한 방식으로 작동될 것이란 오래된 믿음이 수학을 이용한 분석 덕분에 틀렸음을 알게 되었다”며 “수학과 실험을 융합한 방식으로 문제에 접근하였기 때문에 문제를 해결할 수 있었다”고 말했다. 또한, 김은영 교수는 “마스터 뉴런 생체시계의 독특한 성질 덕분에 생체시계가 안정성과 유연성이라는 역설적인 성질을 모두 가질 수 있었다”며 “모든 세포의 생체시계가 천편일률적으로 작동하는 대신 자신의 역할에 맞게 다른 작동 방식을 취한다는 점이 놀라웠다”고 말했다.
생체시계가 안정성과 유연성을 동시에 유지하지 못하면 다양한 환경에서 일정한 수면패턴을 유지할 수 없고, 일주기 리듬 수면장애가 발생한다. 이번 연구결과는 일주기 리듬 수면장애의 원인을 규명하고 치료법을 찾는 새로운 패러다임을 제시할 수 있을 것으로 예상된다.
정의민, 권미리, 조은주 박사가 공동 제 1저자로 참여한 이번 연구결과는 2월 15일 오후 5시(한국시간) 자연과학 분야의 저명 국제학술지인 미국국립과학원회보(Proceedings Of The National Academy Of Sciences, PNAS, IF 11.205)에 게재됐다.
* 논문명: Systematic modeling-driven experiments identify distinct molecular clockworks underlying hierarchically organized pacemaker neurons
2022.02.16
조회수 10698
-
코로나19 바이러스의 높은 전파율은 위중증화 비율을 낮춘다는 연구 결과를 수리 모델로 입증
우리 대학 의과학대학원 신의철 교수, 수리과학과 김재경 교수 공동연구팀은 수학 모델 연구를 통해 ‘높은 바이러스 전파율은 궁극적으로 코로나19 위중증화 비율을 낮춘다’는 역설적인 연구결과를 발표했다.
2년 전부터 시작된 코로나19 팬데믹이 아직 종식되지 않은 가운데, 오미크론 변이주가 우세 종이 되면서 한국을 비롯한 세계 각국에서는 코로나19 환자 수가 급증하고 있다. 한편, 이러한 오미크론의 유행이 오히려 코로나19가 경증 호흡기 질환으로 토착화되는 것을 앞당기면서 코로나19 팬데믹의 종식을 가져올 수 있다는 조심스러운 전망들도 나오고 있다. 이와 동시에, 일부 유럽 국가들에서는 사회적 거리두기 등의 방역 대책을 완화하고 코로나19 이전의 일상생활로 돌아가는 정책을 취하기 시작하고 있다.
이렇게 코로나19 팬데믹의 미래가 아직 불분명하고 혼돈스러운 상황에서, 김재경 교수 및 홍혁표 석박사통합과정, 고려대 구로병원 감염내과 노지윤 교수, 신의철 교수 등으로 구성된 공동연구팀은 ‘바이러스 전파율이 변화하면 코로나19 토착화의 과정에서 어떤 일이 일어날까?’하는 질문에 대한 답을 구하기 위해 수학 모델을 만들어 분석했다.
이번 연구에서는 코로나19 바이러스에 대한 인체 면역반응을, 짧게 유지되는 중화항체 면역반응과 오래 유지되는 T 세포 면역반응으로 나누어 수학 모델에 적용하는 새로운 접근법을 택했다. 그리고 돌파감염이 빈번히 일어날 수 있지만, 돌파감염 후 회복하고 나면 면역반응이 다시 증강된다는 사실을 바탕으로 분석했다.
그 결과, 백신 접종률이 높은 상황에서는 바이러스 전파율이 높아지면 일시적으로는 코로나19 환자 수는 증가하지만 궁극적으로 코로나19 위중증화 비율이 낮아지면서 위중증 코로나19 환자 수는 줄어들고 결과적으로 코로나19가 경증 호흡기 질환으로 토착화되는 과정이 오히려 빨라질 수 있다는 역설적인 연구 결과를 얻었다.
연구팀이 가정한 바이러스 전파율이 높아지는 상황은, 실제에서는 사회적 거리두기 완화나 오미크론 등 전파가 잘 되는 변이주의 출현으로 일어날 수 있다. 이번 연구 결과는 오미크론 자체의 낮은 위중증 성질은 배제하고, 높은 전파율이 일으키는 결과를 예측한 것으로서 코로나19 토착화 과정에서 일어날 수 있는 일들을 잘 설명해 주고 있다.
연구팀은 연령이나 기저질환 유무에 따라 다르게 나타나는 위중증률을 수학 모델에서 고려하지 않은 제한점을 이야기하며, 특히 고위험군 집단을 대상으로 이번 연구 결과를 적용할 때는 주의가 필요하다고 설명했다. 또한 바이러스 전파율이 높아지는 상황에서 일시적으로 증가하는 코로나19 환자 수가 너무 많아지면 의료체계가 붕괴될 수도 있으므로, 이러한 점을 고려해 연구 결과를 신중하게 해석, 적용할 필요가 있다고 연구팀은 설명하였다. 따라서 향후 단계적 일상회복 정책으로 다시 전환할 때는 그 무엇보다도 위중증 환자를 수용할 병상 확보 등 의료체계의 정비가 중요하다는 점을 강조했다.
김재경 교수와 홍혁표 대학원생은 ‘코로나19 팬데믹과 같이 미래가 불투명한 상황에서 수학 모델을 잘 활용함으로써 인간의 직관으로는 유추하기 어려운 역설적인 연구결과를 얻었다’며 앞으로도 의학 연구에서 수학 모델을 적극적으로 이용하는 것이 중요하다는 점을 역설했다.
노지윤 교수와 신의철 교수는 ‘오미크론이 우세 종이 되고 코로나19 환자 수가 급증하는 현 상황에서 무조건 두려워만 할 것이 아니라 과학적 접근을 통해 미래를 예측하고 이를 정책에 반영하는 것이 매우 중요하다’고 강조했다.
이번 연구 결과는 2월 11일 字로 메드아카이브(medRxiv)에 공개됐다(논문 제목: Increasing viral transmission paradoxically reduces progression rates to severe COVID-19 during endemic transition).
한편, 이번 연구는 기초과학연구원, 한국보건산업진흥원, 한국연구재단의 지원을 받아 수행됐다.
2022.02.14
조회수 7259
-
딥러닝 생성모델의 오류 수정 기술 개발
우리 대학 AI대학원 최재식 교수(설명가능 인공지능연구센터장) 연구팀이 심층 학습(이하 딥러닝) 생성모델의 오류 수정 기술을 개발했다고 25일 밝혔다.
최근 딥러닝 생성모델(Deep Generative Models)은 이미지, 음성뿐만 아니라 문장 등 새로운 콘텐츠를 생성하는 데 널리 활용되고 있다. 이런 생성모델의 발전에도 불구하고 최근 개발된 생성모델도 여전히 결함이 있는 결과를 만드는 경우가 많아, 국방, 의료, 제조 등 중요한 작업 및 학습에 생성모델을 활용하기는 어려운 점이 있었다.
최 교수 연구팀은 딥러닝 내부를 해석하는 설명가능 인공지능 기법을 활용해, 생성모델 내부에서 이미지 생성과정에서 문제를 일으키는 유닛(뉴런)을 찾아 제거하는 알고리즘을 고안해 생성모델의 오류를 수리했다. 이러한 생성 오류 수리 기술은 신경망 모델의 재학습을 요구하지 않으며 모델 구조에 대한 의존성이 적어, 다양한 적대적 생성 신경망에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 또한, 고안된 기술은 딥러닝 생성모델의 신뢰도를 향상해 생성모델이 중요 작업에도 적용될 수 있을 것으로 기대된다.
AI대학원의 알리 투씨(Ali Tousi), 정해동 연구원이 공동 제1 저자로 참여한 이번 연구는 `국제 컴퓨터 비전 및 패턴인식 학술대회 (IEEE Conference on Computer Vision and Pattern Recognition, CVPR)'에서 6월 23일 발표됐다. (논문명: Automatic Correction of Internal Units in Generative Neural Networks, CVPR 2021).
적대적 생성 신경망은 생성기와 구분기의 적대적 관계를 이용한 모델로서, 생성 이미지의 품질이 높고 다양성이 높아, 이미지 생성뿐만 아니라 다양한 분야(예, 시계열 데이터 생성)에서 주목받고 있다.
딥러닝 생성모델의 성능을 향상하기 위해서 적대적 생성기법 및 생성기의 새로운 구조 설계 혹은 학습 전략의 세분화와 같은 연구가 활발히 진행되고 있다. 그러나 최신 적대적 생성 신경망 모델은 여전히 시각적 결함이 포함된 이미지를 생성하고 있으며, 재학습을 통해서 이를 해결하기에는 오류 수리를 보장할 수 없으며, 많은 학습 시간과 비용을 요구하게 된다. 이렇게 규모가 큰 최신 적대적 생성 신경망 모델의 일부 오류를 해결하기 위해 모델 전체를 재학습하는 것은 적합하지 않다.
연구팀은 문제 해결을 위해 생성 오류를 유도하는 딥러닝 내부의 유닛(뉴런)을 찾아 제거하는 알고리즘을 개발했다. 알고리즘은 딥러닝 모델의 시각적 결함의 위치를 파악하고, 딥러닝 모델 내 여러 계층에 존재하는 오류를 유발한 유닛을 찾아서 활성화하지 못하도록 하여 결함이 발생하지 않도록 했다.
연구팀은 설명가능 인공지능 기술을 활용해 시각적 결함이 생성된 이미지의 어느 부분에 분포하는지, 또 딥러닝 내부의 어떤 유닛이 결함의 생성에 관여하는지 찾을 수 있었다. 개발된 기술은 딥러닝 생성모델의 오류를 수리할 수 있고, 생성모델의 구조에 상관없이 적용할 수 있다.
연구팀은 전통적인 구조를 가지는 `진행형 생성모델(Progressive GAN, PGGAN)'에서 개발 기술이 효과적으로 생성 오류를 수리할 수 있음을 확인했다. 수리 성능은 매사추세츠 공과대학(MIT)이 보유한 수리 기술 대비 FID 점수가 10점 정도 감소했으며, 사용자 평가에서 시험 이미지 그룹의 약 50%가 결함이 제거됐고, 약 90%에서 품질이 개선됐다는 결과를 얻었다. 나아가 특이 구조를 가지는 `StyleGAN2'와 `U-net GAN'에서도 생성 오류 수리가 가능함을 보임으로써 개발 기술의 일반성과 확장 가능성을 보였다.
연구팀이 개발한 생성모델의 오류 제거 기술은 다양한 이미지 외에도 다양한 생성모델에 적용돼 모델의 결과물에 대한 신뢰성을 높일 것으로 기대된다.
공동 제1 저자인 알리 투씨와 정해동 연구원은 "딥러닝 생성모델이 생성한 결과물에 있는 시각적 오류를 찾고, 이에 상응하는 활성화를 보이는 생성모델 내부의 유닛을 순차적으로 제거함으로써 생성 오류를 수리할 수 있음을 보였다ˮ라며 이는 "충분히 학습된 모델 내부에 미학습 혹은 잘못 학습된 내부요소가 있음을 보여주는 결과다ˮ라고 말했다.
한편 이번 연구는 2021년도 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 혁신성장동력프로젝트 설명가능인공지능 및 한국과학기술원 인공지능 대학원 프로그램과제를 통해서 수행됐다.
2021.06.25
조회수 19004
-
수학 모델로 불안정한 수면 사이클 원인 밝혀
우리 대학 연구진이 수학적 모델을 이용해 세포질 혼잡을 유발하는 비만과 치매, 노화가 어떻게 불안정한 수면을 유발하는지를 밝히고 해결책을 제시했다.
수리과학과 김재경 교수 연구팀은 수학적 모델을 이용해 세포 내 분자 이동을 방해하는 세포질 혼잡(Cytoplasmic congestion)이 불안정한 일주기 리듬(Circadian rhythms)과 수면 사이클을 유발함을 예측하고, 미국 플로리다 주립대학 이주곤 교수 연구팀과 실험을 통해 검증하는 데 성공했다고 9일 밝혔다.
수리과학과 김대욱 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `미국국립과학원회보(PNAS)' 10월 26일 字 온라인판에 실렸다. (논문명 : Wake-sleep cycles are severely disrupted by diseases affecting cytoplasmic homeostasis)
우리 뇌 속에 있는 생체시계(Circadian clock)는 인간이 24시간 주기에 맞춰 살아갈 수 있도록 행동과 생리 작용을 조절하는 역할을 한다. 생체시계는 밤 9시경이 되면 우리 뇌 속에서 멜라토닌 호르몬의 분비를 유발해 일정 시간에 수면을 취할 수 있도록 하는 등 운동 능력이나 학습 능력에 이르기까지 거의 모든 생리 작용에 관여한다.
2017년 노벨생리의학상을 수상한 마이클 영, 제프리 홀 그리고 마이클 로스바쉬 교수는 *PER 단백질이 매일 일정한 시간에 세포핵 안으로 들어가 PER 유전자의 전사를 일정 시간에 스스로 억제하는 음성피드백 루프를 통해 24시간 주기의 리듬을 만드는 것이 생체시계의 핵심 원리임을 밝혔다.
☞ PER 단백질: 포유류의 일주기 리듬을 통제하는 핵심 생체시계 단백질이다. 세포질에서 번역(translation)된 PER 단백질은 핵 안으로 들어가 자기 자신의 DNA 전사(transcription)를 조절한다. 이로 인해 세포 내 PER 단백질의 농도는 24시간 주기로 변화한다.
하지만 다양한 물질이 존재하는 복잡한 세포 내 환경에서 어떻게 수천 개의 PER 단백질이 핵 안으로 일정한 시간에 들어갈 수 있는지는 오랫동안 생체시계 분야의 난제로 남아있었다. 이는 서울 각지에서 출발한 수천 명의 직원이 혼잡한 도로를 통과해서 매일 같은 시간에 회사에 들어갈 수 있는 방법을 찾는 것과도 같은 문제다.
김 교수 연구팀은 난제 해결을 위해 세포 내 분자의 움직임을 묘사하는 시공간적 확률론적 모형(Spatiotemporal Stochastic model)을 자체 개발했다. 또 이를 이용해 분석한 결과, PER 단백질이 세포핵 주변에서 충분히 응축돼야만 동시에 인산화돼 핵 안으로 함께 들어간다는 사실을 알아냈다.
김 교수는 "인산화 동기화 스위치 덕분에 수천 개의 PER 단백질이 일정한 시간에 함께 핵 안으로 들어가 안정적인 일주기 리듬을 만들어낼 수 있음을 확인했다ˮ고 설명했다.
김 교수팀은 또 PER 단백질의 핵 주변 응축을 방해하는 지방 액포와 같은 물질들이 세포 내에 과도하게 많아져 세포질이 혼잡해지면 인산화 스위치가 작동하지 않아 불안정한 일주기 리듬과 수면 사이클이 유발된다는 사실도 확인했다.
김재경 교수팀의 수리 모델 예측은 미국 플로리다 주립대학 이주곤 교수 팀과 협업을 통해 실험으로 검증하는 한편 한 발짝 더 나가 비만·치매·노화가 세포질 혼잡을 일으킴으로써 수면 사이클의 불안정을 가져오는 핵심 요인임을 규명하는 데도 성공했다. 세포질 혼잡 해소가 수면 질환 치료의 핵심이기 때문에 김 교수팀의 이번 연구는 수면 질환 치료의 새로운 패러다임을 제시했다는 점에서 큰 의미가 있다.
김재경 교수는 "비만과 치매, 그리고 노화가 불안정한 수면을 유발하는 원인을 수학과 생명과학의 융합 연구를 통해 밝힌 연구ˮ라고 소개하면서 "이번 성과를 통해 수면 질환의 새로운 치료법이 개발되기를 기대한다ˮ라고 말했다.
2020.11.09
조회수 36366
-
인공지능을 이용해 숨겨진 소재를 탐색하는 기술 개발
우리 대학 생명화학공학과 정유성 교수 연구팀이 인공지능(AI) 기술을 이용해 숨겨진 소재 공간을 탐색, 숨겨진 새로운 물질을 예측하는 기술을 개발하는 데 성공했다고 27일 밝혔다.
소재 연구의 궁극적인 목표는 원하는 *물성을 갖는 소재를 발견하는 것이다. 그러나 무기화합물의 가능한 모든 조성과 결정구조를 고려할 때 무한대에 가까운 경우의 수를 샅샅이 탐색하기는 쉽지 않다. 이러한 문제 해결을 위한 방안으로 컴퓨터 스크리닝 소재 탐색 방법이 널리 사용되고 있지만 찾고자 하는 소재가 스크리닝 후보군에 존재하지 않을 때는 유망한 물질 후보들을 놓치는 경우가 종종 발생한다.
☞ 물성(physical properties): 물질의 전기적, 자기적, 광학적, 역학적 성질 따위를 통틀어 이르는 말
정유성 교수 연구팀이 개발한 *소재 역설계 방법은 데이터 학습을 통해 주어진 조성을 갖는 결정구조를 새롭게 생성하게 함으로써 기존 데이터베이스에는 존재하지 않던 신물질을 발견할 수 있도록 한다. 특히, 기존의 역설계 방법에서는 원하는 조성을 제어할 수 없지만, 정 교수팀이 개발한 역설계 방법은 원하는 조성을 제어함으로써 숨어있는 화학 공간을 효율적으로 탐색해 물질을 설계할 수 있다.
☞ 소재 역설계(Materials Inverse Design): 주어진 구조에 대한 물성을 측정하는 방식의 반대 개념으로, 특정한 물성을 갖도록 소재의 구조를 역으로 찾아가는 방법
이번 정 교수팀의 연구성과인 결정구조 예측기술은 인공지능 생성모델인 적대적 생성 신경망(GAN, Generative Adversarial Network)을 기반으로 개발됐다. 또 기존의 복잡한 3차원 이미지 기반 물질 표현자의 단점을 해소하기 위해 비교적 간단한 원자들의 3차원 좌표를 기반으로 한 물질 표현자를 사용했다.
정 교수팀은 이번 연구를 통해 개발한 소재 역설계 방법을 활용, 빛을 이용한 수소생산 촉매로 활용될 수 있는 마그네슘-망간-산화물 기반의 광촉매 물질의 결정구조를 예측하는 데도 성공했다. 기존 데이터베이스에 존재하지 않는 조성들을 생성조건으로 다양한 마그네슘-망간-산화물 구조를 생성한 결과, 기존에 알려지지 않았으면서 광촉매로서 전도유망한 특성을 갖는 신물질을 다수 발견했다.
정유성 교수는 "광촉매 물질의 설계에 적용한 이번 소재 설계 프레임워크는 화합물의 화학적 조성뿐 아니라 사용자가 원하는 특정 물성을 갖는 소재를 역설계하는데 적용이 가능하다ˮ면서 "여러 소재 응용 분야에서 활용될 수 있을 것으로 기대된다ˮ고 말했다.
우리 대학 생명화학공학과 김성원 박사과정과 노주환 박사과정이 공동 제1 저자로, 토론토 대학의 아스푸루-구지크(Aspuru-Guzik) 교수가 공동연구로 참여한 이 연구성과는 미국화학회(ACS)가 발행하는 국제학술지 ACS 센트럴 사이언스(ACS Central Science) 지난 8월호에 실렸다.(논문명: Generative Adversarial Networks for Crystal Structure Prediction)
한편, 이번 연구는 과학기술정보통신부 산하 한국연구재단의 기초연구사업(중견연구) 지원을 받아 수행됐다.
2020.10.28
조회수 27474
-
바이오및뇌공학과 김진우 학사과정, 국제 학술지 표지 논문 게재
우리 대학 바이오및뇌공학과 백세범 교수 연구팀에 소속된 대학생(학사과정)의 연구논문이 뇌신경과학 분야 저명 국제학술지에 게재됐음은 물론 해당 저널의 표지 논문으로 선정돼 화제가 되고 있다.
바이오및뇌공학과 4학년에 재학 중인 김진우 학생(22세)이 백세범 교수의 지도하에 수행한 학부생 개별연구 프로젝트에서 두뇌의 *시각 피질에서 관측되는 주요 신경망 연결 구조 중 하나인 '장거리 수평 연결(Long-range horizontal connection)'이 두뇌 발생 초기에 형성되는 원리를 규명한 연구결과가 뇌신경과학 분야 '저널 오브 뉴로사이언스'의 표지 논문으로 선정됐다.
☞ 시각 피질(Visual Cortex): 두뇌에서 시각 정보처리를 담당하는 영역. 망막 신경망 영역을 통해 입력받은 외부 공간에 대한 시각 정보를 처리하여 인지 과정을 구현하는 기능성 신경망 구조로 이루어져 있다.
연구팀은 이번 연구를 통해 어린 포유류 동물이 눈을 뜨기 전, 시각적인 학습이 전혀 이뤄지지 않은 상태, 즉 두뇌 발생 초기 상태에서 *망막 내 신경세포들의 자발적인 활동으로부터 발생하는 '*망막 파동'이 두뇌 시각 피질의 신경세포들을 특정한 공간적 패턴으로 자극하고, 이를 통해 시각 정보 처리에서 중요한 역할을 담당하는 '장거리 수평 연결'을 형성한다는 사실을 밝혀냈다.
☞ 망막(Retina): 눈의 안쪽을 둘러싸고 있는 신경세포의 얇은 층으로, 시각 시스템에서 외부 시각 정보가 신경세포 신호로 처음 변환되는 영역
☞ 망막 파동(Retinal Wave): 포유류의 초기 발달과정의 망막에서 나타나는, 신경절 세포들이 차례대로 발화하며 파도와 같은 파형으로 활동패턴이 확산하는 현상
김진우 학생과 송민 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 뇌신경과학 분야의 대표 국제학술지인 '저널 오브 뉴로사이언스 (Journal of Neuroscience)' 19일 字에 게재되는 한편 해당 호 표지 논문으로 선정됐다. (논문명: Spontaneous retinal waves generate long-range horizontal connectivity in visual cortex)
포유류의 시각 피질에서는 신경세포들이 외부 시각 자극의 특정 요소에만 선택적으로 반응하는 신경 선택성(neural tuning)을 보이는데, 비슷한 신경 선택성을 가지는 세포들은 공간적으로 멀리 떨어져 있어도 '장거리 수평 연결'이라는 특별한 상호 연결망 회로로 이어져 있다. 이처럼 특이한 신경망 연결 구조는 포유류의 시각 인지기능에 중요한 역할을 하는 것으로 생각돼왔지만, 이러한 회로가 뇌의 발생 초기 단계에서 외부 시각 정보에 의한 자극 없이 어떻게 자발적으로 발생하는지는 아직까진 명확히 알려진 바가 없었다.
백 교수 연구팀은 망막 내 신경망 구조를 모델화하고, 이를 통해 망막 파동의 패턴이 시각 피질 내 구조 형성에 미치는 영향을 시뮬레이션했다. 그 결과, 연구팀은 망막의 신경절에서 자발적으로 발생하는 망막 파동이 시각 피질로 전달되는 과정에서 형성되는 선택적 활동 패턴이 시각 피질 내의 장거리 연결 구조를 형성함을 밝혀냈고, 이 모델을 기반으로 동물실험에서 관측되는 초기 시각 피질의 특징적인 신경 활동 패턴을 재현하는 데 성공했다.
이 연구를 통해 연구팀은 동물실험에서 관측된 시각 피질의 장거리 수평 연결이 형성되는 과정과 주요 인자들을 정확히 확인했다. 이 결과를 기반으로 연구팀은 뇌 피질 내에서의 활동 패턴이 피질 구조를 결정한다는 기존 모델의 오류를 지적하는 한편, 망막에서 전달된 활동 패턴이 시각 피질의 구조를 형성하는 데 결정적인 영향을 끼친다는 새로운 발생 모델을 제시했다.
백세범 교수는 "외부의 정보를 학습할 수 없는 감각 신경망의 발생 초기 단계에서, 감각기관 말단의 신경 활동 패턴이 뇌 신경망의 주요 구조 형성에 결정적으로 기여한다는 새로운 뇌 구조 발생 모델을 제시한 연구라는 점에서 의미가 크다ˮ고 설명했다.
김진우 학생은 "이번 연구는 뇌가 외부 세계에 대한 감각 정보를 처음으로 경험하기 이전에 어떻게 비 지도적으로 학습을 하는지에 대해, 알려진 실험 데이터에 기반한 명확한 이론적 설명을 제공한다는 점에서 흥미롭다ˮ고 말했다. 그는 이어 "이와 같은 방향의 연구가 향후 데이터 학습에 의존하지 않는 새로운 형태의 인공신경망 연구에도 큰 도움이 될 것으로 기대가 된다ˮ고 덧붙였다.
이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2020.08.23
조회수 26211
-
AI대학원 김기응 교수 연구팀, 인공지능 전력망 운영관리 국제대회 1위 달성
우리 대학 AI대학원 김기응 교수 연구팀(홍성훈, 윤든솔 석사과정, 이병준 박사과정)이 인공지능 기반 전력망 운영관리 기술을 겨루는 국제경진대회인 'L2RPN 챌린지(Learning to Run a Power Network Challenge 2020 WCCI)'에서 최종 1위를 차지했다. 이 대회는 기계학습 연구를 촉진하기 위한 각종 경진대회를 주관하는 비영리단체 ChaLearn, 유럽 최대 전력망을 운영관리하는 프랑스 전력공사의 자회사 RTE(Réseau de Transport d'Électricité)社 및 세계 최대 규모의 전력 회사 SGCC(State Grid of China)의 자회사인 GEIRI North America(Global Energy Interconnection Research Institute)에서 공동주최해, 세계 각국의 약 50팀이 약 40일간 (2020.05.20.~06.30) 온라인으로 참여해 성황리에 마감됐다.
단순한 전력망이 스마트 그리드를 넘어서 에너지 클라우드 및 네트워크로 진화하려면 신재생 에너지의 비율이 30% 이상이 돼야 하고, 신재생 에너지 비율이 높아지면 전력망 운영의 복잡도가 매우 증가한다. 실제로 독일의 경우 신재생 에너지 비율이 30%가 넘어가면서 전력사고가 3,000건 이상 증가할 정도로 심각하며, 미국의 ENRON 사태 직전에도 에너지 발전과 수요 사이의 수급 조절에 문제가 생기면서 잦은 정전 사태가 났던 사례도 있다.
전력망 운영에 인공지능 기술 도입은 아직 초기 단계이며, 현재 사용되고 있는 전력망은 관리자의 개입 없이 1시간 이상 운영되기 힘든 실정이다. 이에 프랑스의 RTE(Réseau de Transport d'Électricité) 社는 전력망 운영에 인공지능 기술을 접목하는 경진대회 'L2RPN'을 2019년 처음 개최했다. 2019년 대회는 IEEE-14라는 14개의 변전소를 포함하는 가상의 전력망에서 단순한 운영을 목표로 열렸다. 2020년 대회는 L2RPN 2020 WCCI 챌린지라는 이름으로 특정 국가 수도 규모의 복잡한 전력망을 72시간 동안 관리자의 개입 없이 스스로 안전하고 효율적으로 운영될 수 있는 인공지능 전력망 관리 에이전트를 개발하는 것을 목표로 열렸다. 시간에 따른 공급-수요의 변화, 시설 유지보수 및 재난에 따른 급작스러운 단전 등 다양한 시나리오에 대해 전력망 운영관리 능력의 평가가 이뤄졌다.
김 교수 연구팀은 이번 2020년 대회에서 전력망 구조를 효과적으로 반영할 수 있는 그래프 신경망 모델 기반의 강화학습 에이전트를 개발해 참가했다. 기존의 에이전트들은 소규모의 전력망에서만 적용 가능하다는 한계가 있었지만, 김 교수 연구팀은 국가 수도 규모의 복잡한 전력망에도 적용 가능한 에이전트를 개발했다. 연구팀이 개발한 인공지능 전력망 운영관리 에이전트는 주어진 모든 테스트 시나리오에 대해 안전하고 효율적으로 전력망을 운영해 최종 1위의 성적을 거뒀다. 우승팀에게는 상금으로 미국 실리콘밸리에 있는 GEIRI North America를 방문할 수 있는 여행경비와 학회참가 비용 3,000달러가 주어진다. 연구진은 앞으로도 기술을 고도화해 국가 규모의 전력망과 다양한 신재생 에너지원을 다룰 수 있도록 확장할 계획이다.
한편 이번 연구는 과기정통부 에너지 클라우드 기술개발 사업의 지원으로 설치된 개방형 에너지 클라우드 플랫폼 연구단과제로 수행됐다. (연구단장 KAIST 전산학부 문수복 교수)
※ 대회 결과 사이트 관련 링크: https://l2rpn.chalearn.org/competitions
※ 개방형 에너지 클라우드 플랫폼 연구단 사이트: https://www.oecp.kaist.ac.kr
2020.07.28
조회수 27505