본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4
최신순
조회순
팬데믹을 예견할 의사공학자 양성을 꿈꾸며
최근 25년간 노벨 생리의학상 수상자의 37%, 글로벌 상위 10개 제약회사 대표 과학책임자의 70%가 의사과학자다. 코로나를 겪으며 한국에서도 임상 현장과 최신 연구를 연결하는 가교 역할을 하는 의사과학자 양성이 더욱 절실해졌다. 우리 정부도 바이오·디지털헬스 글로벌 중심국가로의 도약을 위해 의사과학자 육성사업을 국정과제로 추진하고 있으며, 과학적 소양을 바탕으로 임상의 과제를 해결하는 의사과학자가 의료계와 바이오산업의 화두로 떠오르고 있다. 우리 대학은 글로벌 바이오헬스사업을 선두할 MD-데이터 공학자, AI 전문가 등의 의사공학자 양성을 위해 그간 추진해온 의과학대학원의 성공적인 운영을 12일 밝혔다. 이와 함께 그간의 성과를 바탕으로 바이오의료 분야에 특화된 과학자 및 공학자 양성을 위해 과학기술의학전문대학원을 설립할 계획이라고 밝혔다. 우리 대학은 2004년 의과학대학원을 설립하여 의사들이 첨단과학 연구역량을 습득할 수 있는 혁신적인 교육환경을 마련하고 현재까지 184명의 의사과학자를 양성하여 산·학·연·병 생태계에 새로운 활력을 불어넣는데 성공하였다. 국내 이공계대학 최초로 의사를 대상으로 선도 연구자 양성을 위한 의사과학자 양성과정(박사학위)을 시행하여 지난 30여년 간 우리나라 의사과학자 양성의 절반 이상을 담당했다. KAIST 의과학대학원에서는 의학, 생명과학, 자연과학, 공학 등 다양한 학문적 배경을 지닌 28명의 교수진이 연간 총액 330억 원이 넘는 규모의 다학제 융합연구와 교육을 수행하고 있다. 이러한 연구 환경은 우수한 실적으로 이어져, 연간 100편 이상의 SCI급 논문이 의과학대학원에서 발표된다. 논문의 질도 세계 최고 수준이다. 발표 논문의 FWCI(논문영향력지수)의 평균도 3.59에 달한다. 참고로 세계 상위 20개 대학의 FWCI 평균값은 2.06이다. 의과학대학원의 연구가 질적으로 높은 수준을 유지하는 데는 설립 이후 KAIST의 연구풍토로 자리잡은 ‘문제해결형’ 접근법이 큰 역할을 했다. 해결할 과제와 목표를 명확하게 정의하고, 현재 보유한 자원을 고려하여 해결 전략을 수립하는 공학적 방법론이다. 대표적인 사례가 코로나19 팬데믹 기간 중 의과학대학원 신의철 교수가 수행한 연구다. 신 교수 연구팀은 코로나19 대응 방안을 모색하는 과정에서 바이러스에 대한 인체 면역반응의 특성을 규명하여 코로나19 환자의 치료 전략을 마련하는 데 기여했다. KAIST 특유의 공학적인 방법론 덕분에 의과학대학원은 임상 현장에서 해답을 찾기 어려운 문제를 해결하는 데 탁월한 역량을 보인다. 김진국 교수는 데이터 과학을 기반으로 진단 프로세스를 설계하여 유전체 분석으로 희귀질환을 조기에 찾아내 환자맞춤형 치료제를 개발하는 방법을 제시했다. 김 교수의 성과는 난치병 치료에 중대한 돌파구를 마련하여 세계적으로 주목받았다. 의과학대학원 박종은 교수 연구팀은 인공지능을 활용한 빅데이터 분석을 바탕으로 신개념 암 치료에 활용할 수 있는 ‘스마트 면역세포’를 개발하는 데 성공했다. 박 교수 연구팀의 출발점 역시 데이터과학과 인공지능이었다. 연구팀은 KAIST 내 협력 연구를 통해 수백만 개의 세포에 대한 유전자 발현 데이터베이스를 구축하고, 종양세포와 정상세포 간 유전자 발현 양상 차이를 찾아내는 딥러닝 알고리즘을 개발했다. 의과학대학원의 질병문제 해결에 집중한 혁신적인 연구는 의과학대학원 교수와 졸업생의 딥테크 기반의 바이오 벤처 창업으로 이어지고 있다. 대표적인 사례로 의과학대학원 주영석 교수와 이정석 교수는 지놈인사이트를 공동으로 창업하였다. 지놈인사이트는 세계 최초로 전장유전체분석(WGS·Whole Genome Sequencing) 기반 암 정밀진단 플랫폼을 만들고, 샌디에이고로 본사를 이전하여 적극적인 해외 진출에 나서고 있다. 최근에는 WGS 기반 암 정밀진단 서비스 ‘캔서비전(CancerVision)’을 미국에서 출시하였다. 이외에도 김필한 교수(아이빔테크놀로지(주), CEO), 이정호 교수(소바젠(주), CTO) 등 약 10명의 교원이 6개 기업을 창업했으며, 의과학대학원을 졸업한 의사과학자들도 온코크로스 등 다양한 창업 사례를 내고 있다. 온코크로스는 인공지능을 기반으로 한 의약개발 솔루션 기업이다. 의과학대학원의 우수한 연구 성과는 의과학대학원 교수와 학생에 대한 높은 평가로 이어지고 있다. 의과학대학원의 고규영 교수(특훈교수)는 2023년 대한민국 최고 과학기술인상을 수상하였고, 신의철 교수와 함께 기초과학연구원(IBS) 연구단장으로 활동중이다. 의과학대학원 교수 세 명이 한국연구재단의 개인기초 리더과제에 선정되었고, 네 명이 서경배과학재단의 신진연구자 지원 프로그램에 선정되었다. 그리고 졸업생들은 지난 수년간 분쉬의학상과 아산의학상의 젊은의학자부문, 연강학술상등 젊은과학자에게 수여하는 상의 다수를 수상하였다. 의과학대학원은 KAIST가 보유한 탄탄한 글로벌 네트워크를 바탕으로 국제적인 교류에도 본격적으로 나섰다. 지난 4월에는 미국 보스턴에서 세계적인 연구중심 병원인 하버드의대 매사추세츠 종합병원(MGH) 및 바이오테크놀로지 기업 모더나(Moderna)와 MOU를 체결했다. 이를 바탕으로 향후 보스턴에 소재한 바이오의료 분야 기관들과 의과학자 양성을 위한 공동연구, 인적교류 등 국제 협력을 이어나갈 계획이다. 우리 대학 의과학대학원이 적지 않은 성과를 낳았지만 여전히 우리나라의 의사과학자는 부족하다. 현재 우리나라의 의사과학자는 전체 의사의 1% 미만으로 미국 등 선진국과 비교하면 턱없이 적다. 게다가 임상을 위한 기초 이론을 연구하는 의사과학자를 넘어, 진단이나 치료의 효율적인 프로세스와 방법론을 개발하는 의사공학자의 역할에 대한 인식이 커지고 있지만 의사공학자의 양성은 거의 전무하다. 바이오헬스 산업생태계를 구축하려면 두 부류의 인재가 모두 필요하다. 특히 AI와 빅데이터를 이용한 연구와 진단 및 치료제 개발이 일반화될 것이 자명함을 고려하면 의학에 대한 공학적인 접근이 가능한 의사공학자의 양성을 더욱 시급하다. 이미 산업계에서도 지각변동이 일어나고 있다. 바이오의료는 더 이상 제약회사나 대형병원의 전담분야가 아니다. ‘디지털 의료’라는 현재의 바이오의료 패러다임 전환을 이끄는 주축은 다름아닌 애플, 구글, IBM 아마존, NVIDIA와 같은 이른바 ‘빅테크’다. 국내에서도 삼성 등 IT 분야의 대기업들이 이러한 흐름에 동참하여 바이오의료 분야에 적극적으로 진출하려 한다. 그러나 우리나라에서는 과학과 공학을 기반으로 바이오의료의 문제를 해결하려는 의사과학자와 의사공학자가 부족해서 세계적인 흐름을 따라잡기 쉽지 않다. 이에 우리 대학은 메디컬 산업의 대전환에 대비하고자 새로운 도전을 준비하고 있다. 그간 축적해 온 의사과학자 양성 시스템과 노하우를 기반으로 ‘과학기술의학전문대학원(과기의전원)’의 설립을 추진하고 있다. 과기의전원은 의학교육 단계부터 과학 및 공학적 소양을 갖춘 의사공학자를 양성하고 이후 박사과정을 통해 MD-데이터공학자·AI전문가·전자공학자·신약개발자 등으로 양성하는 것을 목표로 하고 있다. 우리 대학이 과기의전원을 신설하려는 이유는 현재의 의과학대학원만으로 미래의 바이오의료 환경에 완벽하게 대응하기는 어렵기 때문이다. 의과학대학원은 기존의 의과대학을 졸업한 의사를 대상으로 운영되는 프로그램으로 생명과학분야의 연구에는 탁월한 성과를 냈지만, 공학분야에서는 아직 성과가 미약하다. 이는 의과학대학원 연구자의 학술적 배경이 의학이다 보니 지금처럼 전공자도 따라잡기 벅찰 만큼 빠르게 발전하는 공학적 자원을 자유자재로 활용하기는 어렵고, 최신 기술적 성과를 신속하게 의료 분야에 접목하기는 어렵기 때문이다. 과기의전원은 과학과 공학을 기반으로 의학적 소양을 갖춘 인재를 양성하는 데 목표를 둔다. 의학교육단계부터 시작하는 MD-PhD 융합 과정을 운영하려는 이유가 여기에 있다. 과기의전원은 이처럼 급변하는 기술과 산업 트렌드를 바이오의료와 실시간으로 조화시키는 특화된 인재를 양성함으로써 바이오의료의 최신 연구 성과가 산업계에 조기에 안착하는 데 중요한 역할을 할 것이다. 무엇보다 학부 때부터 공학 기반 의료라는 특화된 교육을 실시한다면 과학/공학박사와 임상의 훈련 과정을 모두 거쳐야 했던 기존의 의사과학자 양성과정에 비해 훨씬 신속하게 바이오의료 산업에 필요한 전문가를 공급할 수 있을 것이다. 한편으로는 우수한 과학기술 인재에게 ‘공학과 의학의 융합’이라는 새로운 진로를 제시하여 의료 분야를 지망하는 우수한 인재들이 자신의 관심사를 좇아 연구자의 길을 선택하는 데 기여할 것으로 기대된다. 이처럼 기존의 의학이나 공학과 전혀 다른 융합교육을 받은 혁신 인재들이 바이오헬스 산업의 주역으로 성장한다면 우리나라도 연간 2조달러가 넘는 글로벌 바이오 헬스산업 시장의 퍼스트무버(First-mover)에 당당히 이름을 올릴 수 있을 것이다.
2023.09.12
조회수 5891
150% 쭉쭉 늘어나는 전자 섬유 개발
전자 섬유는 최근 각광받고 있는 사용자 친화 웨어러블 소자, 헬스케어 소자, 최소 침습형 임플란터블 전자소자에 핵심 요소로 여겨져 활발하게 연구가 진행되고 있다. 하지만 고체 금속 전도체 필러(Conductive filler)를 사용한 전자 섬유를 늘려서 사용하려 할 경우, 전기전도성이 급격하게 감소해 전기적 성질이 망가진다는 단점이 있다. 우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅, 바이오및뇌공학과 박성준 교수 공동 연구팀이 높은 전도도와 내구성을 가지는 액체금속 복합체를 이용해 신축성이 우수한 전자 섬유를 개발했다고 25일 밝혔다. 전자 섬유의 늘어나지 않는 단점을 해결하기 위해 연구팀은 고체처럼 형상이 고정된 것이 아닌 기계적 변형에 맞춰 형태가 변형될 수 있는 액체금속 입자 기반의 전도체 필러를 제시했다. 액체금속 마이크로 입자는 인장이 가해질 경우에 그 형태가 타원형으로 늘어나면서 전기 저항 변화를 최소화할 수 있다. 하지만 그 크기가 수 마이크로미터이기 때문에, 기존에 이용된 딥-코팅(dip-coating)과 같은 단순한 방법으로 실에 코팅하는 것이 불가능하다. 연구진은 액체금속 입자가 높은 밀도로 실 위에 전달될 수 있고, 블레이드와 기판 사이에서 현탁액의 조성을 실시간으로 바꾸면서 화학적 변성을 통해 액체금속 입자를 실과 접착시킬 수 있는 새로운 방법인 현탁액 전단(suspension shearing) 방법을 통해 이를 해결했다. 추가로 기계적 안정성이 우수한 탄소나노튜브(CNT)가 포함된 액체금속 입자를 한층 더 코팅하는 방식으로, 액체금속 복합체의 기계적 안정성도 확보할 수 있었다. 제작된 신축성 전자 섬유는 추가적인 공정이 필요 없이 우수한 초기전도성을 보였고(2.2x10^6 S/m), 기존의 고체 금속 전도체 기반 섬유들과는 다르게 150% 늘려도 전기저항 변화가 거의 없다. 기계적 안정성도 우수해 반복되는 변형 실험에도 전기적 성질을 유지할 수 있었고, 다양한 전자 부품들과 쉽게 통합될 수 있다. 연구팀은 이를 이용해 실제 상용화된 옷에 다양한 전자회로를 구현했다. 나아가서 연구팀은 액체금속 복합체를 코팅하는 방법이 다양한 실에 호환 가능하고, 재료의 생친화성이 우수하기 때문에, 이를 이용해 신경과학 연구에 사용할 수 있는 섬유형 바이오 전자 섬유를 구현했다. 연구팀은 제안된 코팅 방법을 이용해 기계적 변형에 영향을 받지 않는 뇌 활동 전극, 신경 자극 전극, 다기능성 옵토지네틱 프로브를 제작해 넓은 범용성과 높은 공정 신뢰성을 갖는다는 것을 보였다. 우리 대학 이건희 박사, 이도훈 박사과정, 전우진 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이쳐 커뮤니케이션즈(Nature Communications)' 온라인 판에 7월 13일자 출판됐다. (논문명: Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics) 스티브박 교수는 "옷에 다양한 전자 공학적인 기능을 웨어러블 형태로 구현하는 가능성을 보여준 연구로 최근에 각광받고 있는 환자 편의성을 높인 웨어러블 헬스케어 소자나 최소침습형 임플란터블 전자소자 개발의 새로운 방향성을 제시한 의미있는 결과ˮ 라고 말했다. 한편 이번 연구는 한국연구재단, KAIST의 지원을 받아 수행됐다. 이건희 박사는 포스코청압재단의 지원을 받고 있다.
2023.07.25
조회수 7785
염증없이 체내·외 측정 가능한 전자 신소재 개발
생체전자 의료기기는 체내에서 발생하는 신호를 읽어 생물학적 활동을 감지하거나, 조직을 자극해 질병 등을 치료하는 데 사용된다. 하지만 의료기기에 사용되는 전극 물질은 딱딱한 물성을 가지고 있어 체내에 염증반응을 일으키고 조직에 다량의 손상으로 이어질 수 있다. 따라서 조직과 같이 부드러운 성질을 가지면서도 전도성을 띠는 하이드로겔과 같은 연성 물질에 생체적합성이 높은 전도성 고분자를 체내 전극으로 사용하는 연구들이 활발하게 진행되고 있다. 우리 대학 신소재공학과 강지형 교수와 바이오및뇌공학과 박성준 교수 공동연구팀이 기존에 없었던 고전도성, 유사 조직 접착성 하이드로겔이란 신소재를 개발해 고성능 생체전자 기기를 구현했다고 4일 밝혔다. 대부분 전기 전도도가 높을수록 전도성 도메인들의 결정성이 높아지는 원리에 의해, 전도성이 높은 하이드로겔은 딱딱해지고, 부드러운 하이드로겔은 전도성이 낮을 수밖에 없다는 한계를 가진다. 이에 따라 전도성 고분자를 사용하는 하이드로겔 중, 전기 전도도가 높으면서도(10 S/cm 이상) 부드러운 물성(100 kPa 이하)을 가진 하이드로겔은 지금까지 보고된 바 없었다. 강지형 교수 연구팀은 기존에 없었던 고전도성, 유사 조직 물성 하이드로겔을 개발했다. 이 하이드로겔은 보고된 전도성 고분자 하이드로겔 중 가장 높은 전기 전도도(247 S/cm)를 띄며, 조직과 비슷한 물성(탄성율 = 60 kPa, 파괴변형률 = 410%)을 갖는다. 또한, 본 재료는 지속적인 움직임과 팽창, 수축이 있는 심장, 위와 같은 조직에서 안정적으로 기기가 작동하기 위해 필수조건인 조직에 쉽게 접착되는 장점을 가지고 있다. 공동연구팀은 원하는 생체 조직에 맞게 조정하고 그 형태에 맞추는 주형의 그물 구조에 따라 높은 질서도를 가지는 고분자 주형 네트워크를 도입했다. 따라서 주형에 맞추어 형성된 그물 네트워크는 기존 네트워크 대비 100배 이상 높은 전기 전도도를 보이며, 동시에 주형 고분자의 부드러운 특성 때문에 조직과 비슷한 물성을 지니게 된다. 변형에도 저항이 바뀌지 않아 생체전극으로서 최적의 성능을 갖는다. 또한 연구팀은 개발한 하이드로겔을 전극을 기반으로 한 높은 전기 전도도를 가진 다양한 고성능 생체전자 기기를 제작, 그 기능성을 검증했다. 높은 전기 전도도를 가진 특성으로 좌골신경 자극을 대상으로 하는 디바이스의 경우, 매우 낮은 전압(40 mV)에서 다리 근육의 움직임을 성공적으로 유도할 수 있었다. 또한 심전도 측정(ECG)을 위한 디바이스의 경우에도 매우 높은 신호 대 잡음 비(61 dB)로 신호를 측정하는 데 성공함으로써, 초고품질 생체 신호 측정을 위한 연성 기기 개발 가능성을 입증하였다. 이번 연구를 주도한 강지형 교수는 "이번 연구는 고전도성을 갖고 생체조직과 유사한 기계적 물성을 갖는 하이드로겔 개발을 위한 합성 방향을 새롭게 제시했다는 점에서 의미가 있다고 하면서, "이번에 개발된 전도성 하이드로겔은 급속도로 성장하고 있는 전자약 시장에 게임 체인저가 될 것으로 기대된다고 말했다. 우리 대학 신소재공학과 정주은 박사과정과 바이오및뇌공학과 성창훈 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 4월 18일 게재됐다. (논문명: Highly conductive tissue-like hydrogel interface through template-directed assembly) 한편 이번 연구는 한국연구재단의 나노소재기술개발 미래기술연구실 사업을 받아 수행됐다.
2023.05.04
조회수 8891
이산화탄소에서 바이오 플라스틱 20배 이상 뽑아내다
전 세계적으로 기후변화 문제가 심각해짐에 따라 이를 기후 위기로 인식하고 이에 대응하는 적극적인 관심과 노력이 요구되고 있다. 그중 이산화탄소를 활용해 재자원화하는 여러 방법 중에서 전기화학적 이산화탄소 전환 기술은 전기에너지를 이용해 이산화탄소를 유용한 화학물질로 전환할 수 있는 기술이다. 이는 설비 운용이 용이하고, 태양 전지나 풍력에 의해 생산된 재생 가능한 전기에너지를 이용할 수 있으므로 온실가스 감축 및 탄소 중립 달성에 기여하는 친환경 기술로 많은 관심을 받고 있다. 우리 대학 생명화학공학과 이현주 교수와 이상엽 특훈교수 공동연구팀이 전기화학적 이산화탄소 전환과 미생물 기반의 바이오 전환을 연계한 하이브리드 시스템을 개발해 이산화탄소로부터 높은 효율로 바이오 플라스틱을 생산하는 기술 개발에 성공했다고 30일 밝혔다. 유사한 시스템 대비 20배 이상의 세계 최고 생산성을 보여준 해당 연구 결과는 국제 학술지인 ‘미국국립과학원회보(PNAS)'에 3월 27일 字 온라인 게재됐다. ※ 논문명 : Biohybrid CO2 electrolysis for the direct synthesis of polyesters from CO2 ※ 저자 정보 : 이현주 (한국과학기술원, 교신저자), 이상엽(한국과학기술원, 교신저자), 임진규(한국과학기술원, 현 소속 기관 Stanford Linear Accelerator Center, 공동 제1저자), 최소영(한국과학기술원, 공동 제1저자), 이재원(한국과학기술원, 공동 제1저자) - 총 5명 이산화탄소의 효율적인 전환을 위해 고효율 전극 촉매 및 시스템 개발이 활발히 진행되고 있는데, 전환생성물로는 주로 탄소 1~3개의 화합물만이 제한적으로 생산되고 있다. 일산화탄소, 포름산, 에틸렌과 같은 탄소 1개의 화합물이 비교적 높은 효율로 생산되며, 이 밖에 에탄올, 아세트산, 프로판올과 같은 여러 개 탄소의 액상 화합물도 만들어질 수 있으나 이는 더 많은 전자를 필요로 하는 화학반응 특성상 전환 효율 및 생성물 선택성이 크게 낮다는 한계점이 있다. 이에 우리 대학 생명화학공학과 이현주 교수와 이상엽 특훈교수 공동연구팀은 전기화학적 이산화탄소 전환 기술과 미생물을 이용한 바이오 전환 기술을 연계해 이산화탄소로부터 바이오 플라스틱을 생산하는 기술을 개발했다. 이 전기화학-바이오 하이브리드 시스템은 전기화학 전환반응이 일어나는 전해조와 미생물 배양이 이루어지는 발효조가 연결된 형태로, 전해조에서 이산화탄소가 포름산으로 전환되면, 이 포름산을 발효조에 공급해 커프리아비더스 네케이터(Cupriavidus necator)라는 미생물이 탄소원으로 섭취해 미생물 유래 바이오 플라스틱인 폴리하이드록시알카노에이트(polyhydroxyalkanoate, PHA)를 생산한다. 기존 이러한 하이브리드 콘셉트의 연구 결과에 따르면, 전기화학 반응의 낮은 효율 및 미생물 배양 조건과의 차이 등의 문제로 생산성이 매우 낮거나 비연속적 공정에 그친다는 단점이 있었다. 이를 극복하기 위해 공동연구팀은 기체 상태의 이산화탄소를 이용한 기체 확산 전극(gas diffusion electrode)으로 포름산을 만들었다. 그리고 미생물의 생장을 저해하지 않으면서도 전기화학 반응이 충분히 잘 일어나도록 하는 전해액이자 동시에 미생물 배양 배지로 이용할 수 있는 ‘생리적 호환 가능한 양극 전해액(physiologically compatible catholyte)’을 개발하여 별도의 분리 및 정제과정 없이 바로 미생물에게 공급하도록 했다. 이를 통해 이산화탄소로부터 만들어진 포름산을 포함하고 있는 전해액이 발효조로 들어가 미생물 배양에 쓰이고, 전해조로 들어가 순환되도록 하여 전해액과 남은 포름산의 활용을 극대화했다. 또한, 이 과정에서 필터를 설치해 전극 반응에 영향을 줄 수 있는 미생물이 걸러진 전해액만이 전해조로 공급되고 미생물은 발효조 안에만 존재하도록 하는 두 시스템이 잘 연계되면서도 효율적으로 작동되도록 설계했다. 개발한 하이브리드 시스템을 통해 이산화탄소로부터 세포 건조 중량의 83%에 달하는 높은 함량의 바이오 플라스틱(PHB)를 생산했으며, 이는 4 cm2 전극에서 1.38g의 PHB를 생산한 결과로 세계 최초 그램(g) 수준의 생산이며 기존 연구 대비 20배 이상의 생산성이다. 또한 해당 하이브리드 시스템은 연속 배양(continuous culture)의 가능성을 보여줌으로써 추후 다양한 산업공정으로의 응용 또한 기대된다. 교신저자인 이현주 교수와 이상엽 특훈교수는 “이번 연구 결과는 바이오 플라스틱뿐만 아니라 다양한 화학물질 생산에 응용될 수 있는 기술로서 앞으로 탄소 중립을 위한 핵심 기술로 많은 활용이 기대된다”라고 밝혔다. 한편, 이번 연구는 과기정통부가 지원하는 이산화탄소 저감 촉매 및 에너지 소자 기술 개발 과제, 불균일계 원자 촉매 제어 과제와 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제의 지원을 받아 수행됐다.
2023.03.30
조회수 9578
암과 치매 등 맞춤형 신약 발굴 플랫폼 개발
우리 대학 화학과 박희성 교수 연구팀이 질병을 유발하는 다양한 바이오마커들에 맞추어 재단하듯이 디자인이 가능한 고리형 펩타이드*기반 신약 발굴 플랫폼 기술을 개발했다고 21일 밝혔다. *고리형 펩타이드: 기본 선형으로 이루어진 펩타이드를 약리 효과를 높일수 있도록 고리형태의 구조로 만들어진 아미노산 중합체를 지칭함 고리형 펩타이드는 낮은 독성과 뛰어난 약리 활성으로 인해 많은 주목을 받아왔지만 자유롭게 디자인하고 제조하기가 어려워 실제 신약 개발에 활용되기 어려운 단점이 있었다. 박 교수팀은 암을 포함한 다양한 질병들에 대한 치료제 후보물질 발굴에 매우 유용하게 활용될 수 있도록 이러한 고리형 펩타이드의 맞춤형 디자인을 가능하게 하는 신약 발굴 플랫폼 기술을 개발하는데 성공하였다. 우리 몸의 세포에서 만들어지는 단백질들은 다양한 변형을 통해 기능과 활성이 조절되며 이러한 변형은 생체 내에서 세포 신호 전달 등 우리 몸의 정상적인 신진대사 활동을 조절하는 매우 중요한 역할을 한다. 하지만 유전적 또는 환경적 요인으로 인해 단백질 변형이 비정상적으로 일어나면 세포의 신호 전달, 대사 활동 등이 손상되어 암, 치매, 당뇨를 포함한 다양한 중증 질환을 유발한다. 기존에는 이러한 비정상적 단백질 변형을 제어할 수 있는 후보물질의 탐색이 용이하지 않아서 질병의 원인 규명 및 신약 개발 연구에 어려움이 있었다. 박 교수팀은 지난 2016년 다양한 비정상 변형 단백질을 합성할 수 있는 단백질 변형기술을 개발해 `사이언스(Science)' 지에 논문을 발표한 바 있다. *논문명: A chemical biology route to site-specific authenic protein modifications 연구팀은 기존 연구를 더 발전시켜 질병의 원인이 되는 비정상적인 단백질 변형을 제어할 수 있는 고리형 펩타이드를 효과적으로 디자인하고 탐색하는 스크리닝 플랫폼 기술을 개발했다. 연구팀은 이 기술을 활용해 비정상적인 단백질에 결합하여 다양한 종류의 암을 유발하는 원인으로 알려진 종양 바이오마커인 HDAC8(histone deaceytylase 8)의 활성을 저해하는 고리형 펩타이드를 효과적으로 발굴할 수 있음을 증명했다. 박희성 교수는 "이 기술이 실용화될 경우 다양한 질병에 대한 혁신신약 후보물질 탐색이 실질적으로 가능해질 것으로 전망된다ˮ며 "향후 맞춤형 표적 항암제 및 뇌 신경 치료제 개발 등 글로벌 신약 연구에 새 패러다임을 열 것이다ˮ고 말했다. 이번 연구는 과학기술정보통신부(장관 이종호)가 창의성 기초연구를 촉진하는 개인연구사업 중견연구와 미래 과학기술을 선도하는 연구자를 발굴하는 삼성미래기술육성사업재단(이사장 김성근)의 지원을 받아 수행됐다. 화학과 강덕희 박사와 김도욱 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지인 `앙게반테 케미(Angewandte Chemie International Edition)' 2023년 1월 16일 자 온라인판으로 게재됐다. *논문명: A Versatile Strategy for Screening Cutson-Designed Warhead-Armed Cyclic Peptide Inhibitors
2023.02.21
조회수 7089
바이오경제를 이끌어가는 대사공학 30년 역사와 미래
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 지난 30년간 대사공학이 발전해온 역사를 정리해, 대사공학이 어떻게 지속 가능한 발전에 기여할 수 있는 분석한 결과를 정리하여 ‘지속 가능성과 건강을 위한 대사공학’ 논문으로 발표했다고 25일 밝혔다. 이번 논문은 셀(Cell) 誌가 발행하는 생명공학 분야 권위 리뷰 저널인 `생명공학 동향(Trends in Biotechnology)'의 40주년 특집호 온라인판에 게재됐다. ※ 논문명 : Metabolic engineering for sustainability and health ※ 저자 정보 : 김기배(한국과학기술원, 공동 제1 저자), 최소영(한국과학기술원, 공동 제1 저자), 조인진(한국과학기술원, 공동 제1 저자), 안다희(한국과학기술원), 이상엽(한국과학기술원, 교신저자) 포함 총 5명 대사공학은 1990년대 초반부터 본격적으로 연구되어 지난 30년간 괄목할 만한 발전을 이뤘다. 대사공학은 산업, 의료, 농업 및 환경 분야를 포함한 대부분의 생명공학 분야에서 적용돼왔으며, 특히 미생물 공학에 중점을 두고 연구가 진행됐다. 다양한 발효 식품과 알코올음료 생산 등, 미생물을 사용한 물질 생산은 오랜 역사가 있다. 미생물은 동식물에 비해 빠르게 자랄 수 있어 실험에 드는 시간과 비용이 적게 든다. 또한 유전자 변형 생물(Genetically Modified Organism; GMO) 관련한 윤리 및 안정성 문제에서 동식물과 비교해 미생물의 유전공학은 상대적으로 자유로워 미생물에 관한 대사공학 연구가 광범위하게 시행돼왔다. 지난 수십 년간 대사공학은 유용한 화학물질을 효율적으로 생산하고, 분해가 어려운 오염 물질을 분해할 수 있는 미생물 균주를 성공적으로 개발하는 등, 지속 가능한 발전을 위한 핵심적인 기술로서의 면모를 보여왔다. 특히, 현재까지 대사공학을 통해 개발한 미생물은 재생 가능한 바이오매스로부터 바이오 연료, 바이오 플라스틱, 산업용 대량 화학물질, 화장품 성분 및 의약품까지 수백 가지의 화학물질이 생산을 가능케 했다. 또한, 대사공학은 미생물과 곤충을 포함한 동식물의 자연적 정화 과정에서 영감을 얻어 미생물 기반의 다양한 생물학적 정화 방법을 개발하기 위해 사용돼왔다. 오염 물질과 독성 화학물질의 분해 경로를 조작함으로써 유출된 기름, 폐플라스틱, 살충제, 폐기된 항생제와 같은 물질을 더 높은 효율로 분해할 수 있도록 미생물을 개량할 수 있고, 이는 환경 보존을 위한 연구의 초석으로서 대사공학이 인류 건강에 기여하는 중요 예시다. 이처럼 대사공학은 유엔이 발표한 지속가능발전목표(Sustainable Development Goals; SDG) 달성에 다방면으로 기여하고 있다. 연구팀은 이번 연구에서 지난 30년간 대사 공학이 발전하며 어떻게 바이오 기반 화학물질의 지속 가능한 생산, 인류 건강 및 환경 문제까지 기여했는지에 대한 광범위한 개요를 제공했다. 특히 이상엽 특훈교수는 대사공학의 태동기부터 연구를 수행해 왔으며 2000년대 들어서 두드러진 합성생물학의 발전과도 함께해 왔다. 연구팀은 이번 논문을 통해 대사공학의 출현부터 인공지능을 활용한 최신 기술의 도입까지, 지난 수십 년 동안 어떻게 사회적, 산업적, 기술적 요구를 해결하기 위해 어떻게 발전해왔는지 정리하고, 최근 대사공학 연구가 어떻게 산업용 대량 화학물질 생산, 바이오 연료 생산, 천연물 생산, 생물학적 정화 분야에 기여하고 있는지 논의했다. 나아가 건강 및 환경 문제의 해결과 지속 가능한 바이오 기반의 화학산업을 정착시키기 위해 극복해야 할 대사공학의 문제점을 함께 제시했다. 공동 제1 저자인 생명화학공학과 김기배 박사과정생은 “기존의 석유화학 공정 기반의 화학물질 생산으로 인한 기후 위기와 화석 연료 고갈 문제를 고려했을 때 대사공학을 이용한 화학물질의 지속 가능한 생산 연구는 더욱 중요해지고 있다”라고 말했으며, 이상엽 특훈교수는 “이번 연구에서 대사공학의 역사를 돌이켜봄으로써 대사공학의 지속가능발전목표를 달성하기 위한 기여를 조명했으며, 우리 사회가 직면한 기후 위기, 환경 오염, 헬스케어, 식량 및 에너지 부족 문제에 대한 해결책으로서 대사공학이 점점 더 중요한 역할을 할 것”이라고 밝혔다. 한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제, 바이오·의료기술개발사업의 맞춤형 세포공장 기반 유해선충제어 바이오소재 기술 개발 과제, 그리고 산업통상자원부가 지원하는 e바이오리파이너리 직접공기포집 C1전환 합성생물학의 통합 과제의 지원을 받아 수행됐다.
2023.01.25
조회수 8350
입을 수 있는 OLED로 소아 황달 치료기술 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 을지대학교 병원(김승연 교수, 임춘화 교수), 가천대학교(전용민 교수), 선문대학교(권정현 교수)와의 공동 연구를 통해 실제 직물 기반의 웨어러블 청색 OLED를 개발하고, 황달 질환을 앓는 신생아의 혈청에서 청색 OLED 광원에 의한 *빌리루빈 감소로 인한 황달 치료 효과를 확인했다고 22일 밝혔다. ☞ 빌리루빈: 혈액에서 산소를 공급해주는 적혈구가 수명을 다해 분해된 결과물로, 보통 간에 의해 해독되고 담즙으로 배설된다. 혈장 내 빌리루빈의 농도가 올라가면 피부와 눈의 흰자위가 누런색을 띠는 황달 증상이 나타난다. 신생아는 수명이 짧은 적혈구를 갖고 있으나 간 대사가 미숙해 빌리루빈을 많이 생산한다. 최경철 교수 연구실의 최승엽 박사, 가천대학교 의공학과 전용민 교수, 선문대학교 권정현 교수가 공동 제1 저자로 참여한 이번 연구는 첨단 과학기술 분야의 국제 저명 학술지인 `어드밴스드 사이언스(Advanced Science)'에 지난 10월 30일 게재되었고, 속 표지 논문으로 선정됐다. 신생아의 황달 치료는 광선 요법, 약물 투여, 교환 수혈 등 다양한 방법으로 시행된다. 이 중 광선 요법은 체내에 축적된 빌리루빈을 빛에 노출해 변형시켜 체외로 방출하는 안전하고 효과적인 치료 방법이다. 대부분의 신생아 황달은 광선 요법으로 치료할 수 있어 가장 널리 활용되고 있다. 병원에서는 신생아의 혈액 내 빌리루빈 농도가 치료 범위를 초과하면 신생아를 신생아 집중치료실(NICU)에 입원시켜 인큐베이터의 스탠드에 장착된 청색 LED의 빛으로 치료한다. 이 방법은 신생아 황달 증상을 완화하는 데 매우 효과적이지만 신생아를 부모로부터 격리하고 치료하는 동안 모유 수유 중단, 청색광에 의한 망막 손상 방지를 위해 신생아의 눈은 반드시 눈가리개로 완전히 가려야 하는 등의 문제와 더불어 기존에는 LED 기반 설치형 플랫폼이 사용돼 웨어러블 치료 적용에 한계가 있었다. 최경철 교수 연구팀은 황달 치료에 효과적인 470nm(나노미터) 파장의 고출력 고신뢰성의 청색 OLED를 사람이 착용 가능한 직물 위에 구현했으며, 직물과 같은 높은 유연성을 유지하는 옷 OLED 소아 황달 치료 플랫폼을 개발했다. 직물 기반의 청색 OLED는 4V 미만의 저전압에서도 황달치료에 충분한 출력(> 20 μW/cm2/nm)을 확보했을 뿐만 아니라 100시간 이상의 구동 수명, 35℃ 미만의 낮은 구동 온도, 물세탁 신뢰성, 2mm(밀리미터) 수준의 낮은 곡률 반경에서 1,000회 이상을 견디는 유연성 등의 신뢰성을 확보할 수 있었다. 이번 연구에서 470nm 파장을 갖는 청색 OLED를 신생아의 혈청에 조사했을 시, 3시간 이내에 황달 치료가 완료됐다고 판단되는 빌리루빈 수치(12 mg/dL)에 도달했으며, 기존 병원에서 활용되는 LED 황달 상용 치료기기 대비 균일하면서도 효과적인 황달 치료 성능을 연구팀은 확인했다. 공동 제1 저자인 최승엽 박사, 전용민 교수(가천대), 권정현 교수(선문대)는 "이번 연구를 통해 실제 신생아가 착용해 황달 치료가 가능한 성능 및 신뢰성을 갖는 섬유 기반의 청색 OLED 개발에 성공했다ˮ며 "설치형 LED 치료기기의 단점을 보완하며 더욱 균일한 효과를 기대할 수 있는 웨어러블 황달 치료 기술이 상용화될 수 있는 기반을 마련했다ˮ고 말했다. 최경철 교수는 "OLED 분야는 우리나라가 최고 기술을 보유하고 있지만, 중국의 기술 추격이 예사롭지 않은 이 시점에, OLED의 다양한 응용 기술을 개발하는 것이 중국과의 OLED 기술격차를 더 벌릴 수 있고, OLED 응용 중, 직물 위 OLED 기반 웨어러블 의료 기술개발로 바이오 헬스케어 시대에 맞는 OLED 응용의 새로운 시장을 개척해, 우리나라의 OLED 기술이 계속 선두를 유지하기를 바란다ˮ라고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단의 선도연구센터 사업의 지원으로 수행됐다.
2022.11.22
조회수 8077
바이오 화학산업에 치명적인 파지 오염 해결방안 개발
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 중국 우한대학교 시 첸(Shi Chen), 리안롱 왕(Lianrong Wang) 교수 연구팀과 공동연구를 통해 `파지 저항성을 갖는 대장균 균주 개발'에 성공했다고 15일 밝혔다. 파지(phage)란 미생물에 대해 특이적 감염성을 갖는 바이러스를 의미한다. 파지에 감염된 미생물은 생리학적 특성이 크게 달라지거나 심한 경우 죽기 때문에 파지 오염은 미생물이 화학공장과 같은 역할을 하는 바이오 화학산업에서 치명적이다. 해당 연구 결과는 국제 학술지인 `네이쳐 커뮤니케이션스(Nature Communications)'에 지난 8월 2일 게재됐다. 또한 해당 연구의 중요성을 인정받아 네이쳐 커뮤니케이션스 에디터의 하이라이트로도 선정됐다. ※ 논문명 : Systematic strategies for developing phage resistant Escherichia coli strains ※ 저자 정보 : 이상엽(한국과학기술원, 공동 교신저자), Shi Chen(우한대학교, 공동 교신저자), Lianrong Wang(우한대학교, 공동 교신저자), Xuan Zou(우한대학교, 제1저자), Xiaohong Xiao(우한대학교, 제2저자), Ziran Mo(우한대학교, 제3저자), Yashi Ge(우한대학교, 제4저자), Xing Jiang(우한대학교, 제5저자), Ruolin Huang(우한대학교, 제6저자), Mengxue Li(우한대학교, 제7저자), Zixin Deng(우한대학교, 제8저자), 포함 총 11명 시스템 대사공학은 미생물 대사회로의 조작을 통해 여러 가지 화학물질들을 지속가능하고 친환경적인 방식으로 생산할 수 있게 하는 학문으로 전 세계적으로 심각한 화석연료 고갈 및 기후변화를 해결하는 데 있어 중요한 역할을 한다. 대장균은 시스템 대사공학적 엔지니어링에 사용되는 여러 가지 미생물 균주 중에서 가장 널리 사용되고 있는 대표적인 균주다. 시스템 대사공학의 도구 및 전략들의 발전과 이로 인해 만들어진 최적화된 미생물 균주들은 저렴하고 쉽게 구할 수 있는 원자재를 경제적 및 산업적 가치가 큰 제품으로 전환하는 데 있어 중요한 역할을 할 것이다. 이러한 재생 가능한 바이오화학산업을 구축하는데 꼭 해결돼야 하는 문제 중 하나는 발효 중 파지 오염이다. 발효 중 파지 오염은 숙주 세포에 치명적인 영향을 미치기 때문에 전체 바이오 공정의 생산성에 큰 영향을 미치며 그 결과 막대한 경제적 손실이 일어난다. 산업적 발효에서 파지 오염은 유전 공학을 통한 파지 방어 시스템 도입을 통해 효과적으로 막을 수 있다. 하지만 지금까지 알려진 대부분의 파지 방어 메커니즘은 한정된 종류의 파지만 방어할 수 있어 제한된 효과를 볼 수 있었다. 이러한 문제를 해결하기 위해 공동연구팀은 대장균 3234/A 균주에서 존재하는 외가닥 DNA(single-stranded DNA) (인산황화)phosphorothioation (이하 Ssp)라 명명한 신규 파지 방어 메커니즘을 발견 및 규명했으며 해당 Ssp 파지 방어 시스템이 산업적으로 유용한 여러 가지 대장균 균주에 적용될 수 있고, 그 결과 여러 종류의 파지를 방어할 수 있음을 확인했다. 또한 게놈 상에 Ssp 방어 모듈을 도입하고 파지 생애주기에 필수적인 유전자의 변형과 같은 체계적인 엔지니어링 전략을 개발했다. 이러한 전략들을 통해 파지 공격에 취약한 대장균 균주를 여러 가지 파지들에 내성을 부여할 수 있었으며, 이렇게 엔지니어링된 대장균들은 파지들이 있을 때도 일반적인 대장균과 똑같은 성장 속도와 생리학적 특성을 갖는 것을 확인했다. 또한 높은 농도의 파지가 존재하는 환경에서도 화학물질 및 재조합 단백질을 생산하는 능력을 유지했다는 것을 연구팀은 확인했다. 우리 대학 생명화학공학과 이상엽 특훈교수는 “이번 연구는 발효 산업에서 큰 문제점이었던 파지 오염을 해결하기 위해 여러 가지 파지에 대한 저항성을 부여하는 체계적인 해법을 제시했다는 점에 의의가 있다”며 “이번 기술을 활용해 미생물 기반의 유용한 화학제품을 만드는 데 한 단계 앞으로 나아갈 수 있을 것”이라고 밝혔다. 이번 연구는 이상엽 특훈교수 연구팀에 의해 과학기술정보통신부가 지원하는 기후환경연구개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제’의 지원을 받아 수행됐다.
2022.09.15
조회수 8450
대규모 한국인 자폐증 가족 유전체 연구를 통한 새로운 자폐 유전변이 최초 발견
우리 대학 의과학대학원 이정호 교수와 바이오및뇌공학과 최정균 교수, 생명과학과 김은준 교수(IBS 시냅스뇌질환연구단장), 분당서울대병원 유희정 교수, KISTI 공동 연구팀이 아시아 최초로 대규모 한국인 자폐증 가족 코호트를 모집하고 전장 유전체 분석을 실시해 자폐증 유발 유전변이가 단백질을 암호화하지 않는 유전체 영역인 비-부호화 영역에서 발생할 수 있다는 사실을 규명했고, 이를 통해 자폐증 원인의 새로운 이해와 치료 전기를 마련했다고 19일 밝혔다. 이번 연구내용은 세계적 정신의학 학술지 ‘분자 정신의학(Molecular Psychiatry)’에 7월 15일 자에 게재됐다. 자폐증은 사회적 의사소통 결핍이나 이상, 반복적이거나 틀에 박힌 행동 문제가 유아 시절 시작돼 거의 평생 지속되는 뇌 신경 발달장애로, 질환 발생의 근본적인 원인에 대한 이해가 매우 부족하며, 공식적으로 인정된 치료 약제가 전무하다. 자폐증 원인에 대한 이해의 필요성은 대중들의 높은 관심을 통해서도 가늠해볼 수 있는데, 예를 들어 최근 세간의 이목이 집중된 드라마 ‘이상한 변호사 우영우’의 주인공이 자폐증을 앓고 있다. 연구진은 자폐증 유발 유전변이가 비-부호화 유전체 영역에서 발생한다는 사실을 발견했으며, 이를 세계 최초로 한국인 자폐증 샘플로 제작한 인간 줄기세포를 이용해 증명했다. 자폐증의 근본 원인을 규명한 획기적인 연구 결과로서, 기존 연구의 한계를 뛰어넘어 그간 유전체 분야의 난공불락으로 여겨졌던 비-부호화 영역에 초점을 맞춘 혁신적인 발상으로 자폐증 치료의 새로운 전기가 마련될 것으로 예상된다. 연구진은 IBS와 한국연구재단, 국가바이오빅데이터 사업단의 지원을 통해 2011년부터 현재 3,708명에 달하는 자폐 환자와 그 가족들로 구성된 대규모 한국인 코호트를 구축하고 유전체 분석을 진행하고 있으며, 이번 연구 결과는 813명의 전장 유전체 염기서열 분석을 바탕으로 이뤄졌다. (그림 1) 유전체 데이터의 98% 이상을 차지하고 있으나 그간 자폐증 유전체 연구에서 조명받지 못했던 비-부호화 영역을 집중적으로 규명하고자, 연구진은 3차원 공간상의 염색질 상호작용(three-dimensional chromatin interaction)이라는 새로운 분석 방식을 사용했으며 (그림 2), 비-부호화 영역에서 발생한 유전변이가 멀리 떨어져 있는 자폐 유전자의 기능에 심각한 이상을 초래할 수 있음을 증명했다. (그림 3) 특히, 본 코호트의 한국인 자폐증 가족으로부터 직접 인간 줄기세포를 제작해 태아기 신경세포를 재현했으며, 이러한 생애 초기 신경 발달단계에서 비-부호화 영역의 유전변이에 의해 최대 500,000 base-pair(유전체 거리 단위) 이상 떨어져 있는 유전자의 발현이 비정상적으로 낮아지거나 높아질 수 있음을 세계 최초로 증명했다 (그림 4) 이번 연구 성과는 자폐증 유발 유전변이가 단백질을 부호화하지 않는 비-부호화 영역에서 발생해, 멀리 떨어져 있는 유전자의 기능에 영향을 미침으로써 신경 발달단계 초기부터 질병 발병에 기여한다는 획기적인 자폐증 원인에 대한 발견이다. 연구팀은 그간 단백질을 부호화하는 영역에만 쏠려 있던 정신질환 연구 풍토 속에서, 비-부호화 영역을 규명하는 방향으로 전환해야 자폐증 치료의 비밀을 풀 수 있다는 새로운 접근법을 제시했다. IBS 시냅스뇌질환연구단(김은준 교수팀 프로젝트 제안 및 개시), 서울의대 및 분당서울대병원(유희정교수팀 코호트 구축 및 임상 평가), KISTI(대용량 컴퓨팅 리소스 및 유전체 데이터 분석 파이프라인 제공), KAIST (이정호 교수팀, 최정균 교수팀 비-부호화 영역 유전변이 분석) 공동 연구팀이 통합된 유전체-임상 데이터에 대해 3차원 공간상의 염색질 상호작용 분석을 통해 비-부호화 영역에서 발생한 유전변이가 자폐증 발병에 기여함을 규명했다. 이는 순수 국내의 임상가와 기초과학자, 생물정보학 전문가의 융합연구로 이루어낸 성과이며, 아시아 최초의 대규모 전장-유전체 데이터 기반 코호트 구축과 유전체 분석 모델의 기틀을 마련함으로써 대한민국 유전체 연구의 선도적인 역할을 한 것이다. 자폐 유전체 연구는 지난 10년간 북미와 유럽을 위주로 대규모로 진행됐으나, 한국을 비롯한 아시아에서는 상대적으로 연구가 덜 진행됐다. 논문의 공동 제1 저자인 KAIST 의과학대학원 졸업생 김일빈 박사는 “신경발달장애 중 자폐증은 특히 치료가 어려운 것으로 알려져 있는데, 발병 원인 중 하나로 지목되는 유전체 영역의 이상을 한국인 고유의 데이터를 사용해 순수 국내 연구진들의 힘으로 발견해냈다는 데 큰 의미가 있으며, 이 연구 성과가 언젠가는 이루어질 자폐증 치료제 개발을 위한 작은 발판이 되길 바란다”라고 말했다. 분당서울대병원의 유희정 교수도 “우리나라 연구진의 힘을 모아 자폐증의 비밀을 풀기 위한 첫걸음을 내딛었다. 연구에 참여해 준 당사자와 가족들의 헌신으로 이룬 일이라고 생각한다. 하지만 우리가 자폐증의 발병 기전을 완전히 이해하고 나아가 치료제를 개발하기 위해서는 아직 연구해야 할 것이 많다. 유전체 연구에 대한 국가 차원의 지원이 절실하며, 자폐증을 가진 분들과 가족들의 관심도 꼭 필요하다”는 점을 강조했다. 한편 이번 연구는 서경배과학재단, 한국연구재단, 보건산업진흥원사업을 통해 수행됐다.
2022.07.19
조회수 10362
대량의 고농도 일산화탄소를 고부가가치 바이오케미칼로 전환하는 기술 개발
우리 대학 생명과학과 조병관 교수 연구팀이 산업 부생가스 등으로 대량 발생하는 고농도의 일산화탄소를 고부가가치 바이오케미칼로 전환할 수 있는 생체촉매 기반 C1 바이오 리파이너리 기술*을 개발했다고 14일 밝혔다. * 제철 공정과 같은 산업공정에서 발생하는 부생가스, 합성가스는 다량의 일산화탄소, 이산화탄소 등의 탄소 1개로 이루어진 C1 가스로 구성되어 있음. 이러한 C1 가스를 미생물과 같은 생체촉매를 활용하여 다양한 화학물질로 전환하는 공정을 C1 가스 바이오 리파이너리(bio-refinery) 기술이라고 함. 최근 탄소 포집 및 전환과 같은 기술들에 대한 산업계의 요구가 커지는 가운데, 미생물을 활용한 친환경 생체촉매 기술이 크게 성장하고 있다. 조병관 교수 연구팀은 아세토젠 미생물을 생체촉매로 활용한 C1 가스 바이오 리파이너리 기술을 개발했다. 이 미생물들은 혐기성 미생물들로 우드-융달 대사회로라는 매우 독특한 대사회로를 이용하여 C1 가스로부터 아세트산을 만드는 미생물로 알려져 있다. 이러한 아세토젠 미생물을 생체촉매로 활용해 산업 부생가스를 활용하는 기술에는 한 가지 문제가 있는데, 바로 독성가스인 일산화탄소의 농도다. 이 미생물은 60% 이상의 고농도 일산화탄소 조건에서는 생명 활동이 크게 저해를 받기 때문에, 생체촉매로써 사용할 수 없게 된다. 다양한 산업에서 발생하는 C1 가스는 공정 과정에 따라 10~70% 정도의 일산화탄소가 포함돼있는데, 특히 철강산업 공정에서 발생하는 고로가스(BFG)에는 약 60%가 넘는 일산화탄소가 포함돼 있다. 따라서, 미생물 기반 고효율 생체촉매 개발을 위해서는 일산화탄소에 대한 저항성을 높이는 것이 필수적으로 선행돼야 한다. 연구팀은 아세토젠 미생물 중 하나인 유박테리움 리모좀(Eubacterium limosum) 균주를 고농도 일산화탄소 조건에 지속적으로 노출해 일산화탄소에 대한 내성이 뛰어난 돌연변이체(ECO2)를 발굴했는데, 해당 돌연변이체는 일산화탄소가 약 60% 이상 포함된 합성가스 조건에서 야생형 미생물보다 약 6배 정도 빠른 성장 속도를 보였다. 이러한 성장 속도는 현재까지 보고된 아세토젠 미생물 중 고농도 일산화탄소 조건(CO 함량 60% 이상)에서 전 세계에서 가장 빠른 속도다. 연구팀은 위의 돌연변이 미생물의 유전체 서열분석을 통해 아세틸 조효소 A 합성 단백질(acetyl-CoA synthase)을 암호화하는 유전자(acsB) 내 돌연변이가 발생한 것을 규명하고, 인공지능 기반의 구조예측을 통해 이러한 변이가 일산화탄소 내성 및 고정률 향상을 유도했음을 밝혔다. 연구팀은 일산화탄소에 대한 내성이 향상된 ECO2 돌연변이 미생물에 2,3-부탄다이올(2,3-butanediol, 2,3-BDO)* 생합성 경로를 도입해 C1 가스를 C4 화학물질로 전환할 수 있는 미생물 기반 생체촉매 시스템을 개발했다. ECO2 기반의 생체촉매가 가스 발효과정을 통해 야생형 미생물 대비 약 6.5배 정도의 높은 2,3-BDO 생산성을 보여줌으로써, C1 가스를 효율적으로 C4 화학연료로 전환하는데 성공했다. *2,3-부탄다이올(2,3-butanediol, 2,3-BDO): 농업용 자재, 식품첨가제, 의약품 첨가제, 고분자 첨가제 등 활용 범위가 광범위한 바이오케미칼 연구를 주도한 조병관 교수는 “산업공정 과정에서 발생하는 C1 가스는 일산화탄소, 이산화탄소 등의 혼합가스로, 이를 직접적으로 미생물이 이용하기 위해서는 일산화탄소에 대한 내성 및 전환율 향상이 필수적이다”라고 설명했으며, “다양한 합성생물학 기술들 활용하면 아세토젠 미생물 생체촉매의 활용도를 더욱 개선할 수 있으며, 이러한 고효율 C1 가스 전환 생체촉매 연구는 C1 가스 바이오 리파이너리의 핵심 원천기술로 다양한 산업현장에 적용할 수 있을 것”라고 밝혔다. 생명과학과 진상락(석박사통합과정), 강슬기(박사과정) 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘화학 공학 저널(Chemical Engineering Journal, 영향력지수 14.66)’에 6월 22일 字 온라인판에 게재됐다. (논문명: Development of CO gas conversion system using high CO tolerance biocatalyst) 한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 사업단의 지원을 받아 수행됐다.
2022.07.15
조회수 9897
암, 뇌졸중, 치매 등 각종 난치병 진단하는 멀티 바이오마커를 동시에 탐지하는 고성능 기술 개발
우리 대학 신소재공학과 장재범 교수, 전기및전자공학부 윤영규 교수 연구팀이 기존 기술 대비 5배 이상 더 많은 단백질 바이오마커를 동시에 탐지할 수 있는 멀티 마커 동시 탐지 기술 개발을 했다고 23일 밝혔다. 바이오마커란, 단백질이나 DNA, RNA, 대사 물질 등의 생체 분자로써 이를 통해 몸 안의 변화를 알아낼 수 있어 암을 비롯해 뇌졸중, 치매 등 각종 난치병을 정밀하게 진단하는 표지자로 각광받고 있다. 최근 환자별로 암 조직 내부에 발현되는 단백질 마커가 서로 다르다는 사실이 밝혀지고 있으며, 이러한 차이에 따라서 암의 예후 및 항암제 반응성 등이 결정된다는 연구 결과가 발표되고 있다. 이에 따라서 암 조직에서 여러 단백질 마커를 동시에 탐지하는 기술이 반드시 요구된다. 이에 장 교수 연구팀은 기존 기술 대비 5배 이상 더 많은 수의 단백질 마커를 동시에 관찰할 수 있는 기술을 개발했다. 이 기술은 특수한 시약이나 고가의 장비가 필요하지 않아 암의 정확한 진단 및 항암제 개발, 새로운 단백질 마커 발굴 등에 폭넓게 활용될 수 있을 것으로 기대된다. 우리 대학 신소재공학과 서준영, 심연보, 김지원 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature communications)' 5월 13권에 출판됐다. (논문명 : PICASSO allows ultra-multiplexed fluorescence imaging of spatially overlapping proteins without reference spectra measurements). 그동안 정밀 암 연구는 암 환자 조직 내부의 유전자를 분석하는 유전체 연구를 중심으로 진행돼왔다. 하지만 유전자 분석으로는 실제로 이 유전자로부터 단백질 마커가 얼마나 많이 발현되는지 혹은 어떤 공간적 분포로 발현되는지는 알 수 없다는 한계가 있다. 이에 따라서 최근 연구는 유전체 및 단백체를 동시에 분석하는 방향으로 나아가고 있다. 실제로 기존의 유전체 분석으로 유방암으로 진단받은 수백 명의 유방암 환자의 암 조직 내부 단백질 마커를 분석한 결과, 환자들을 생존율 및 약물 반응성이 서로 다른 여러 서브 타입으로 나눌 수 있다는 연구 결과가 발표된 바 있다. 또한, 최근 암을 정복할 신약으로 주목받고 있는 3세대 항암제인 면역항암제의 경우, 암 조직 내부의 면역세포를 활성화해 암을 치료한다. 이때, 암 조직 내부에 어떤 면역 단백질 마커가 발현되어 있는지에 따라서 그 약물 반응성에 큰 차이가 나타난다고 보고된 바 있다. 이처럼 암 조직 내부에서 여러 단백질 마커를 동시에 탐지하는 기술은 새로운 암 서브 타입의 발굴, 각 서브 타입을 표적으로 하는 신약 개발, 적합한 항암제 추천 등을 위해 필수적으로 요구된다. 그동안 암 조직 내부에서 여러 단백질 마커를 동시에 탐지하기 위해서 질량 분석 이미지 처리법 혹은 형광염색법이 사용돼왔다. 질량 분석 이미지 처리법은 하나의 조직에서 다수의 단백질 마커를 동시에 탐지할 수 있다는 장점이 있으나, 고가의 특수 장비가 필요하고, 분석 과정에서 조직이 파괴되며, 전체 과정이 오래 걸린다는 단점이 있다. 형광염색법은 이와 같은 단점은 없으나, 한 번에 3개의 단백질 마커만 관찰할 수 있다는 단점이 있다. 장 교수 연구팀은 이러한 형광염색법의 한계를 해결하기 위해 한 번에 15개 이상, 최대 20개까지의 단백질 마커를 동시에 탐지할 수 있는 기술인 `피카소(PICASSO)' 기술을 개발했다. `PICASSO는 “Process of ultra-multiplexed Imaging of biomoleCules viA the unmixing of the Signals of Spectrally Overlapping fluorophores'의 약자로, 기술을 통해 다양한 생체분자들의 이미지를 형형색색으로 얻어낼 수 있기에 일반인들에게 가장 친숙한 화가 피카소의 이름을 기술명으로 정했다. 연구팀은 이를 위해 발광 스펙트럼이 유사한 형광 분자들을 동시에 사용하고, 이러한 형광 분자들의 신호를 정확하게 분리할 수 있는 기술을 개발했다. 연구팀은 이 기술을 이용해 하나의 조직에서 15개의 단백질 마커를 탐지하는 과정을 세 번 반복해 총 45개의 단백질 마커를 탐지하는 데 성공했다. 장 교수 연구팀이 개발한 `피카소(PICASSO)' 기술은 기존 멀티 마커 동시 탐지 기술 중 가장 낮은 비용으로, 가장 많은 수의 단백질 마커를, 가장 빠르게 탐지할 수 있는 기술로, 향후 암 진단 및 제약 등에 활용될 가능성이 매우 크다. 연구팀은 이 기술 개발 과정에서 4건의 국내 특허, 3건의 미국 특허, 2건의 EPO(유럽 특허) 및 PCT(국제 특허)를 출원해 이번 기술의 지적 재산권을 확보했다고 밝혔다. 제1 저자인 서준영 연구원은 "`피카소(PICASSO)' 기술을 통해 그동안 관찰하기 어려웠던 조직 내 수많은 단백질 마커의 발현 정도 및 분포 관찰에 성공했다ˮ며, "특수한 시약이나 고가의 장비 없이 연구자들에게 친숙한 형광현미경만을 사용해 기술 구현이 가능하므로 접근성이 매우 높은 유용한 기술이 될 것이고, 새로운 생명현상 규명, 암 바이오마커 발굴, 정밀진단 및 치료제 개발 등에 활발히 사용될 수 있을 것이다ˮ 라고 말했다. 한편 이번 연구는 삼성미래기술육성사업의 지원을 받아 수행됐다.
2022.05.23
조회수 10745
합성생물학 기반 차세대 미생물 대사 조절 밸브 개발
국제 공동연구진이 대장균의 모든 전사종결부위*를 해독하고, 이를 바탕으로 미생물의 대사 경로를 수도꼭지처럼 자유자재로 조절하는 합성생물학** 기반 차세대 대사 조절 밸브 기술을 개발했다. *전사종결부위: DNA가 암호화하는 정보를 RNA로 전사할 때, RNA 합성이 종결되도록 조절하는 DNA 서열 **합성생물학: 생명현상의 복잡성, 다양성으로 인해 발생하는 낮은 재현성, 예측효율 저하 등의 기존 바이오기술의 문제를 해결하기 위해 생명체의 구성요소를 설계, 제작, 조립하는 공학적 접근방식의 바이오 기술 우리 대학 생명과학과 조병관 교수, 한국생명공학연구원 이승구 박사, 바이오융합연구소 조수형 교수, 미국 캘리포니아대학교 샌디에이고(UCSD) 생명공학과(Bioengineering)의 최동희 박사, 버나드 팔슨(Bernhard Palsson) 교수 국제 공동연구팀이 대장균에 존재하는 1,600여 개의 전사종결부위를 대량으로 해독 및 발굴하고, 이를 기반으로 고부가가치 바이오화합물 생산을 위한 미생물 대사 회로 설계를 가능케 하는 합성생물학 기반 기술을 개발했다고 14일 밝혔다. 전사종결부위는 DNA가 암호화하는 유전 정보가 RNA로 전사될 때, 원하는 유전자만이 정확히 전사되도록 조절하는 역할을 한다. 그 중요성에도 불구하고 기존에는 전사 종결에 관한 데이터의 부족으로, 구체적인 조절 기작에 대한 이해가 부족했다. 연구진은 전사종결부위가 다양한 세기를 가져 인접한 유전자들의 발현을 정교하게 조절한다는 사실을 발견하고, 이를 대사회로 조절에 이용했다. 한편 미생물은 다양한 유용 바이오화합물 생산에 이용되고 있는데, 효율적인 생산을 위해서는 대사 회로의 조절이 필수적이다. 그 이유는 단순히 원하는 물질 생산을 위한 유전자만을 과도하게 발현할 경우, 미생물 생장에 필요한 양분과 에너지까지 소모해 생산에 실패하기 때문이다. 공동연구진은 개발한 전사종결부위를 통해 서로 다른 대사 회로의 세기를 수도꼭지처럼 조절해 대사물질 생산을 최적화할 수 있는 '대사 밸브 기술'을 개발했다. 기존에는 전사의 시작이 되는 프로모터, 번역의 시작이 되는 리보솜 결합 부위를 통해 유전자 발현을 조절했는데, 이에는 수많은 인자가 관여하고 있어 실험 간 편차가 크고, 고가의 화학물질을 요구하는 등 한계를 지니고 있었다. 하지만 연구진이 개발한 대사 밸브는 실험 간 편차를 기존 시스템 대비 최대 75% 억제할 수 있는 것으로 나타났고, 대사 밸브를 이용한 생산 최적화를 통해 유용 대사물질인 비타민 B8의 생산을 최대 11배 증대하는 데 성공했다. 또한 개발된 기술은 미생물의 생장 조건(영양분 및 배양 환경)에 거의 영향을 받지 않는 것으로 나타나 실험실 조건에서 출발해 산업 규모로 확장할 시 부수적인 최적화 과정을 최소화할 수 있고, 목적 화합물에 따라 첨가하는 원료와 배양 조건이 변화해도 조절 기작이 유지되는 것으로 나타났다. 이번 연구 결과는 기존에 알려지지 않았던 전사종결부위의 특성을 규명하고, 이를 대사 조절에 이용한 획기적인 시도로 차세대 대사 조절 합성생물학 기반 기술로 기대받고 있다. 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 프로그램 및 한국 바이오 그랜드챌린지 프로그램의 지원을 받은 KAIST 조병관 교수 연구진과 한국생명공학연구원이 추진하는 KRIBB 연구 혁신 프로그램(Research Initiative Program)의 지원을 받은 이승구 박사(한국생명공학연구원), 기초과학 연구 프로그램(Basic Science Research Program)의 지원을 받은 KAIST 조수형 교수, 노보 노르디스크 재단(Novo Nordisk Foundation)의 연구지원을 받은 버나드 팔슨(Bernhard Palsson) 교수 연구진의 협업을 통해 수행됐으며, 국제적인 학술지인 `핵산 연구(Nucleic Acids Research, 영향력지수 16.971)' 에 3월 31일 게재됐다. (논문명 : Synthetic 3'-UTR valves for optimal metabolic flux control in Escherichia coli)
2022.04.17
조회수 11110
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 10