-
박수형 교수, 간암 복합면역치료 적용 가능성 확인
〈 박 수 형 교수 〉
우리 대학 의과학대학원 박수형 교수와 서울아산병원 황신, 송기원 교수 공동연구팀이 간암 환자의 탈진(exhausted)된 종양 침투 면역세포 구성의 차이에 따른 간암 환자군을 구분하는 데 성공했다.
이번 연구를 통해 간암 환자의 새로운 면역치료법 적용 가능성을 확인함으로써 향후 맞춤 의학의 근거를 제시할 수 있는 기반이 될 것으로 기대된다.
특히 이번 연구는 서울아산병원 임상 연구팀과 KAIST 의과학대학원이 동물 모델이 아닌 임상을 통해 새 면역 항암 치료법을 위한 협업을 진행한 것으로 중개 연구(translational research)의 우수 모델로 평가받는다.
김형돈 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘소화기학(Gastroenterology)’ 12월 4일 자에 게재됐다.
암이 발생하면 인체는 암세포를 제거하기 위해 면역세포인 ‘T세포’를 활성화하는데, 종양은 T세포의 기능을 억제하기 위한 환경을 구성한다. 이때 침투한 T세포들은 ‘피디-1(PD-1)’ 단백질과 같은 면역 관문 수용체를 세포 표면에 발현하면서 활성이 저하되고 탈진된 상태가 된다.
‘PD-1 억제제’로 대표되는 면역 관문 억제제는 PD-1 신호에 의해 저하된 T세포의 활성을 회복시키는 역할을 한다. 암세포는 생존을 위해 면역세포로부터 몸을 숨기는데, 면역 관문 억제제는 암세포가 숨는 데 도움을 주는 PD-1, PD-L1의 작용을 차단함으로써 면역세포가 정상적으로 암세포를 공격할 수 있게 되는 것이다.
그러나 면역 관문 억제제는 약 2~30%의 환자에게만 효능이 있고 70% 이상의 환자에게는 효과가 없어 면역항암제의 치료 효능을 높이기 위한 연구가 계속되고 있다.
연구팀은 간암 환자의 탈진한 T세포 중에서 PD-1 단백질을 많이 발현하는 T세포가 그렇지 않은 T세포에 비해 면역세포의 기능이 더 많이 저하돼 있고, PD-1 이외의 다양한 면역 관문 수용체를 동시에 발현하는 것을 발견했다.
특히 간암 환자 중에서 약 절반 정도의 환자만이 PD-1을 많이 발현하는 탈진 T세포를 갖고 있으며, 이러한 환자들이 복합 면역 관문 억제제에 의해 T세포의 기능이 효과적으로 회복됨을 확인했다.
이번 결과를 통해 복합 면역 관문 억제제의 대상이 되는 환자군을 제시함으로써 효과적인 면역 치료를 효율적으로 적용하는 데 기여할 것으로 예상된다.
박 교수는 “이번에 새롭게 제시된 환자군은 현재 적용 중인 면역 관문 억제제 치료의 반응을 예측할 수 있는 바이오 마커로서 유용하게 활용될 수 있다”라며 “복합 면역 관문 억제제가 특정 환자에게만 효능이 있음을 제시해 맞춤 의학의 근거가 될 수 있다는 임상적 의의를 갖는다”라고 말했다.
이번 연구는 보건복지부 첨단의료기술개발 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. PD-1 발현에 따른 각 세포군의 특징적인 유전자 발현 양상
그림2. PD-1을 과발현하는 세포군의 존재 유무에 따른 특징적인 두가지 환자군
2018.12.12
조회수 8618
-
홍순형 교수, 초경량 다기능성 그래핀 나노복합소재 개발
〈 홍 순 형 교수 〉
우리 대학 신소재공학과 홍순형 교수 연구팀이 고분자 기지 내 2차원 나노소재인 그래핀 나노플레이트렛 (GNP)을 복합화해 초경량 다기능성 나노복합소재를 개발했다.
이번 기술은 항공기 및 인공위성용 초경량 소재, 전자파 차폐용 스텔스 소재 등 다양한 분야에 적용 가능할 것으로 기대된다.
김준희 박사과정이 1저자로 참여한 이번 연구는 재료분야 국제 학술지 ‘파티클 (Particle & Particle Systems Characterization)’지 6월 22일자 표지논문에 선정됐다. (논문명 : Polymer Nanocomposites: Fabrication of Graphene Nanoplatelet/Epoxy Nanocomposites for Lightweight and High-Strength Structural Applications)
그래핀 나노플레이트렛은 현존하는 소재 중 가장 물성이 우수한 2차원 나노소재로 제조 단가를 낮출 수 있는 기술이 개발되면서 상용화가 유망해진 신소재이다.
최근 그래핀 연구가 활발히 진행되면서 기존 소재와 혼합된 복합소재로 다양한 상업적 응용 가능성이 커지고 있지만 기지에 첨가 시 응집현상이 일어나는 단점이 있어 기존 강화재료에 비해 경쟁력이 부족했다.
연구팀은 문제 해결을 위해 기지 내 그래핀 나노플레이트렛의 표면을 기능기화 물질인 멜라민으로 개질(改質)했다. 멜라민이 가진 벤젠 구조를 이용한 파이 결합(π-π)을 통해 연구팀은 멜라민을 매개체로 그래핀 나노플레이트렛과 기지소재 사이에 강한 화학결합을 유도했다.
이 기능기화에 의한 표면개질 기술은 재료의 표면에 새로운 특성을 형성해 사용 조건을 만족시키는 기능을 부여하는 기술이다. 이 기술을 통하면 그래핀 나노플레이트렛 표면에 결함을 만들어 줄 필요가 없어 그래핀 나노플레이트렛의 우수한 특성을 최대로 활용할 수 있다.
또한 연구팀은 고에너지 밀링공정 기술을 사용해 그래핀 나노플레이트렛과 기능기화 물질을 서로 화학적으로 강하게 결합했다. 이를 이용해 그래핀 나노플레이트렛을 고분자 소재인 에폭시 내에 균질분산시켜 항복강도 1.4배, 탄성계수 2배로 강화된 초경량, 다기능성 그래핀-고분자 나노복합소재를 개발했다.
연구팀의 그래핀 나노복합소재 기술은 비공유 기능기화에 의해 그래핀을 기지 내에 균일하게 분산시킬 수 있으며, 생산성을 크게 향상시킨 고에너지 밀링공정 기술을 개발해 물성 향상과 더불어 산업계 상용화 가능성을 높였다.
이번 연구는 주목받는 신소재인 그래핀 나노플레이트렛의 응집현상을 기능기화 공정을 통해 해결하는 동시에 그래핀 나노복합소재의 상용화 가능성을 제시했다는 면에서 의미를 갖는다.
홍 교수는 “항공기 및 인공위성용 초경량 소재, 내습․내산화용 배리어 소재, 투명 유연전자소재, 전자파 차폐용 스텔스 소재 등 다양한 분야에 적용가능하다”며 “단일 공정을 이용해 그래핀 표면을 개질하고 기지 소재 내 균질 분산시킨 물성이 극대화된 나노복합소재 제조를 위한 원천기술이다”고 말했다.
이번 연구는 소재기술혁신을 목표로 하는 한국연구재단 미래소재디스커버리 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 기능기화에 의한 표면개질된 그래핀 나노플레이트렛을 3D 이미지로 묘사(파티클지 표지)
2018.08.06
조회수 12174
-
전상용 교수, 건선,아토피 치료용 펩타이드 개발
우리 대학 생명과학과 전상용 교수 연구팀이 피부 전달을 통해 건선을 치료할 수 있는 펩타이드 치료제를 개발했다.
연구팀은 수 년 전 발견한 펩타이드를 나노입자로 제작해 피부를 통해 전달함으로써 동물 모델에서 건선을 치료하는 데 성공했다.
김진용 박사가 1저자로 참여한 이번 연구는 나노분야 국제 학술지 ‘에이시에스 나노(ACS Nano)’ 6월 27일자 온라인 판에 게재됐다.(논문명 :Nanoparticle-Assisted Transcutaneous Delivery of a Signal Transducer and Activator of Transcription 3-Inhibiting Peptide Ameliorates Psoriasis-like Skin Inflammation)
건선은 대표적인 만성 염증성 피부질환으로 전 세계 성인의 약 3%가 앓고 있는 자가 면역질환 중 하나이다. 최근 건선의 원인에 STAT3라는 단백질이 핵심 역할을 한다는 사실이 밝혀졌다.
연구팀은 수 년 전 STAT3라는 단백질의 기능을 저하시킬 수 있는 펩타이드를 최초로 발견해 항암 치료제로 개발한 바 있다. 그러나 건선 피부는 각질층이 매우 두껍기 때문에 피부를 통해 펩타이드를 투과시켜 표적 약물 치료를 하는 데에는 기술적인 한계가 존재했다.
연구팀은 이번 연구에서 길이가 서로 다른 두 개의 인지질과 STAT3 억제 펩타이드가 특정 조건에서 약 30나노미터 크기의 매우 작은 원반 모양의 나노입자를 안정적으로 형성함을 발견했다.
연구팀은 특수 지질성분으로 이뤄진 제형(劑形)을 통해 수십 나노미터 크기의 원판형 나노입자로 이뤄진 STAT3 억제용 펩타이드를 제조했다.
연구팀이 개발한 STAT3 억제 펩타이드는 건선 피부를 가진 동물 모델에 투여했을 때 뛰어난 항염증 효과를 보였고, 건선 발병의 핵심 요소인 각질세포의 과증식과 염증성 싸이토카인인 IL-17 등의 분비를 막는 역할을 했다.
연구팀은 의과학대학원 김필한 교수와의 공동 연구를 통해 펩타이드가 피부 속으로 얼마나 깊이 투과되는지 관찰했고, 이를 통해 나노입자가 각질층을 통과해 진피층 상부까지 전달됨을 확인했다.
전상용 교수는 “STAT3 억제 앱타이드가 난치성 염증성 피부질환인 건선에 대해 우수한 치료 효과를 보이는 바이오 신약 후보물질이 될 수 있음을 확인했다.”며 “효율적인 피부 전달이 가능한 시스템을 구축했다는 점에서 큰 의미가 있으며 향후 임상 적용이 될 것으로 기대한다”고 말했다.
이번 연구는 한국연구재단의 글로벌연구실사업과 바이오의료기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 앱타이드-지질 나노복합체의 건선 유발 생쥐 귀 모델에서의 치료효능 평가
그림2. 앱타이드-지질 나노복합체의 건선 유발 생쥐모델에서의 피부투과 효능 평가
2018.07.17
조회수 15706
-
최경철 교수, 초고유연성 의류형 디스플레이 개발
〈 최 승 엽 박사과정 〉
우리 대학 전기및전자공학부 최경철 교수 연구팀이 직물과 유기발광다이오드(OLED)를 융합해 높은 유연성을 갖는 최고 효율의 의류형 디스플레이 기술을 개발했다.
최승엽 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’ 7월 21자 온라인 판에 게재됐다.
디스플레이는 차세대 스마트 제품 외형의 대부분을 차지할 정도로 그 중요성이 커지고 있다. 더불어 사물인터넷과 웨어러블 기술의 비중이 늘어나면서 의류 형태의 웨어러블 디스플레이 기술도 주목받고 있다.
2011년 직물 위에 발광체를 형성한 연구 이후 실제 옷감 위에 디스플레이를 구현하기 위한 노력이 계속됐다. 하지만 직물 특유의 거친 표면과 유연한 특성 때문에 상용화 수준의 성능을 보여주지 못했다.
최 교수 연구팀은 의류 형태의 웨어러블 디스플레이 구현을 위해 직물(fabric)형과 섬유(fiber)형 두 가지 방식으로 연구를 진행했다.
연구팀은 2015년에 열접착 평탄화 기술을 통해 거친 직물 위에서 수백 나노미터 두께의 유기발광소자를 동작하는 데 성공했다. 2016년에는 용액 속 실을 균일한 속도로 뽑는 딥 코팅(dip-coating) 기술을 통해 얇은 섬유 위에서도 높은 휘도를 갖는 고분자발광소자를 개발했다.
위와 같은 연구를 바탕으로 최 교수 연구팀은 옷감의 유연성을 유지하면서 높은 휘도와 효율 특성을 갖는 직물형 유기발광소자를 구현했다.
최고 수준의 전기 광학적 특성을 갖는 이 소자는 자체 개발한 유무기 복합 봉지(encapsulation) 기술을 통해 장기적 수명이 검증됐고, 굴곡 반경 2mm의 접히는 환경에서도 유기발광소자가 동작한다.
연구팀은 최고 수준의 휘도와 효율을 갖는 의류 형태의 유기발광 다이오드를 구현했다는 의의가 있으며 보고된 직물 기반의 발광소자 중 가장 유연하다고 밝혔다.
이번 연구를 통해 의류형 발광소자의 기계적 특성에 대한 심층적 분석이 더해져 직물 기반 전자산업 발전에 도움이 될 수 있을 것으로 기대된다.
최승엽 박사과정은 “직물 특유의 엮이는 구조와 빈 공간은 유기발광소자에 가해지는 기계적 스트레스를 크게 낮추는 역할을 한다”며 “직물을 기판으로 사용해 디스플레이를 구현하면 유연하며 구겨지는 화면을 볼 수 있다”고 말했다.
최경철 교수는 “우리가 매일 입는 옷 위에서 디스플레이를 보는 것이 먼 미래가 아니다”며 “앞으로 빛이 나는 옷은 패션, 이-텍스타일(E-textile) 뿐 아니라 자동차 산업, 광치료와 같은 헬스케어 산업에도 큰 영향을 끼칠 것이다”고 말했다.
이번 연구는 ㈜코오롱글로텍과의 공동 연구로 진행됐고 산업통상자원부 산업기술혁신사업의 지원으로 수행됐다.
□ 사진 설명
사진1. 옷감 위에서 구동 되고 있는 유기발광다이오드 사진
사진2. 유기발광다이오드
사진3.고유연성 직물 기반 유기발광다이오드의 전류-전압-휘도 및 효율 특성
2017.08.24
조회수 17946
-
최인성 교수, 농산물 장기보존 가능한 나노코팅기술 개발
〈 최 인 성 교수 〉
우리 대학 화학과 최인성 교수 연구팀이 친환경 나노코팅 기법을 이용해 과일의 부패 기간을 늦출 수 있는 기술을 개발했다.
이 기술은 식물 기반의 폴리페놀 물질을 이용해 코팅 시료의 종류에 관계없이 사용할 수 있는 범용 스프레이 나노코팅기술이다.
이번 연구결과는 국제학술지 ‘사이언티픽 리포트(Scientific Reports)’ 8월 1일자 온라인 판에 게재됐다.
폴리페놀 물질은 다량의 수산기(-OH)를 갖는 식물의 광합성 대사산물 중 하나로 뛰어난 항산화 작용을 수행하는 식물 기반의 천연물질이다. 잠재적 항암효과와 높은 항균성을 가져 식품 첨가물 등에 사용되고 있다.
폴리페놀은 철 이온과 화학적으로 강하게 결합해 복합체를 형성한다는 특성도 갖는다. 연구팀은 폴리페놀-철이온 복합체의 형성반응과 분사 기술을 접목해 나노코팅기술을 개발했다.
이 스프레이 코팅 기술은 코팅물질을 코팅용액에 담가 코팅하는 침지법에 비해 코팅 시간이 짧고(5초 이내) 원하는 영역에만 선택적 코팅이 가능하다. 또한 침지법에서 발생하는 시료의 변형과 코팅용액의 상호 오염을 막을 수 있다.
연구팀은 개발된 기술을 과일 표면에 적용해 가식성(edible) 항균 코팅으로의 응용이 가능함을 입증했다.
코팅된 귤과 딸기를 각각 28일, 58시간 이후에 상태를 측정했고 코팅되지 않은 과일에 비해 상당수가 모양과 품질을 유지했다.
반면 코딩되지 않은 귤과 딸기는 박테리아 및 곰팡이 균의 번식으로 부패 및 변형이 발생했다.
연구팀은 과일 뿐 아니라 금속표면, 플라스틱, 유리, 섬유시료에도 손쉽게 코팅할 수 있음을 확인했다. 특히 안경알, 신발 밑창 등 생활용품 표면에도 코팅이 가능해 각각 흐림방지, 무좀균 생장을 억제하는 항균 기능도 가능함을 증명했다.
개발된 나노코팅기술은 국내 특허로 등록됐고 현재 과일 신선도 유지 코팅법의 상용화를 진행 중이다.
최 교수는 “나노코팅기술은 큰 잠재력과 응용성을 가진 첨단기술이다”며 “개발된 나노코팅기술은 다양한 목적으로 쉽게 적용가능하고 기존 코팅 기술 및 나노물질과 결합돼 더 큰 시너지를 일으킬 것이다”고 말했다.
이번 연구는 미래창조과학부와 한국연구재단이 추진하는 리더연구자지원사업의 일환으로 수행됐다.
□ 그림 설명
그림1. (a-I, II) 나노코팅된 귤과 코팅되지 않은 귤을 14일, 28일 동안 상온에서 보관하였을 때 비교사진. (b-I, b-II) 나노코팅된 딸기와 코팅되지 않은 딸기를 58시간 동안 상온에서 보관하였을 때 비교사진 및 식품 변질 검사결과
2017.08.10
조회수 16247
-
김일두 교수, 동물 단백질 촉매로 활용한 질병진단센서 개발
〈 김 일 두 교수 〉
우리 대학 신소재공학과 김일두 교수 연구팀이 동물의 단백질을 촉매로 활용해 호흡으로 질병을 진단할 수 있는 센서를 개발했다.
이는 사람의 날숨에 포함된 다양한 질병과 관련된 바이오마커 가스들에 대한 패턴 인식을 통해 질병을 조기 모니터링 할 수 있는 기술이다.
이번 기술은 다양한 단일 금속입자 뿐만 아니라 어떠한 조합의 이종입자도 2 nm 크기로 합성할 수 있는 장점을 갖는다. 연구팀은 기존에도 호흡으로 질병을 진단하는 센서를 개발했으나 이번 기술은 더욱 정확하고 높은 감도를 갖는다는 특징이 있다.
김상준, 최선진 박사가 1저자로 참여한 이번 연구 결과는 미국 화학회의 화학분야 국제 학술지 ‘어카운트 오브 케미칼 리서치(Accounts of Chemical Research)’ 7월호 표지논문으로 선정됐고, 독일 와일리 국제 학술지인 ‘어드밴스드 머터리얼즈(Advanced Materials)’에도 게재가 확정됐다.
혈액 체취나 영상 촬영 없이 내뱉는 숨(호기)만으로 각종 질병 여부를 파악하는 호흡 지문 센서 기술은 핵심 미래 기술이다. 호기 속 특정 가스들의 농도변화를 체크해 건강 이상 여부를 판단할 수 있다.
호기가스 성분에는 수분 외에도 수소, 아세톤, 톨루엔, 암모니아, 황화수소, 일산화질소 등이 포함된다. 이 가스들은 천식, 폐암, 1형 당뇨병, 구취 등 특정 질병 환자에게서 높은 농도로 배출되는 바이오마커 가스이다.
호흡을 이용한 질병 진단은 마치 음주측정기처럼 테들라(Tedlar) 백에 포집된 날숨 가스를 소형 센서 장치로 주입한 후 빠른 속도로 분석되기 때문에 쉽고 간편하게 질병을 진단할 수 있다. 또한 질병 대사가 일어나는 시점에서 검출이 가능해 조기 진단이 가능하다.
하지만 매우 경미한 수준인 10억분의 1(ppb)에서 100만분의 1(ppm) 수준으로 발생하는 가스를 호흡 속에서 정확히 분석하기 위해서는 기술의 진보가 필요하다. 특히 수분을 포함한 수백 종의 방해 가스는 특정 질병 관련 바이오마커 가스를 선택적으로 분석하는 저항 변화식 센서의 취약점으로 남아 있다.
기존의 가스 센서는 백금, 팔라듐 등 특정 촉매를 결합해 감지 특성을 높이려고 시도했으나 ppb 농도에서는 생체지표 가스 감지 특성이 높지 않다는 한계가 있었다.
연구팀은 기존 센서의 한계 극복을 위해 동물의 조직에 존재하는 나노크기의 단백질을 희생층으로 이용해 속이 비어있는 단백질 껍질 안에 석출된 이종촉매(Heterogeneous catalyst) 입자를 합성하는데 성공했다.
이번 연구에 사용된 나노크기의 단백질은 주기율표에 존재하는 원소물질을 조합해 어떠한 형태의 이종촉매도 다양하게 구현할 수 있다는 큰 장점을 갖는다.
특히 이종 원소간 조성비를 쉽게 조절할 수 있고 금속간화합물도 제조할 수 있어 신조성을 갖는 촉매 합성 측면에서 매우 획기적인 방법이다.
예를 들어 백금이 기준 촉매일 때 백금팔라듐(PtPd), 백금니켈(PtNi), 백금루테늄(PdRu), 백금이트륨(PtY3) 등 다양한 이종 합금촉매로 확장할 수 있다.
연구팀은 개발된 이종촉매 입자를 넓은 비표면적과 다공성 구조를 갖는 금속산화물 나노섬유에 결착시켜 특정 생체지표 기체에만 선택적으로 반응하는 감지소재를 개발했다. 이종촉매가 결착된 나노섬유 센서는 기존에 촉매 활성이 가장 뛰어나다고 알려진 백금이나 팔라듐 촉매보다 약 3~4배 이상 감지 특성이 향상됨을 확인했다.
특히 아세톤이나 황화수소 가스는 1ppm에서 감도가 100배 수준으로 바뀌는 최고 수준의 감도 특성이 관찰됐다.
연구팀은 다양한 종류의 감지 소재가 적용된 복합 센서 배치(sensor array) 시스템을 이용해 사람의 지문을 인식하듯 개개인의 호흡을 패턴 인식해 일반인도 쉽게 건강 이상을 판별할 수 있는 질병진단 플랫폼을 개발했다.
16종의 다른 선택성을 갖는 센서를 어레이화하는데 성공했으며, 환자의 건강상태에 따라 날숨 농도변화가 다르게 나타나기 때문에 날숨 속 가스 정보를 지문처럼 패턴화하여 개인의 건강 변화를 지속적으로 모니터링 하는 헬스케어 기기에 적용할 수 있다.
김 교수는 “기존에 센서에 사용된 적이 없는 2 nm 크기의 이종촉매를 단백질을 이용하여 적용함으로써, 질병과 연관된 생체지표 가스에 고감도 및 고 선택성으로 반응하는 센서소재 라이브러리를 구현할 수 있다”며 “앞으로 다양한 촉매 군을 확보하면 수많은 질병을 진단할 수 있는 센서를 개발할 수 있다”고 말했다.
또한 “호흡으로 질병을 진단하는 센서는 누구나 손쉽게 스스로 진단할 수 있는 자가 진단 기기의 시작으로 의료비 지출 상승을 막고 지속적 건강관리에 큰 도움이 될 것이다”고 말했다.
이번 기술과 관련된 특허들은 지난 3월과 6월 각각 벤처기업과 중소기업에 기술이전 됐다.
본 연구는 미래창조 과학부 웨어러블 플랫폼소재 기술센터 과제와 바이오의료기술개발사업 과제의 지원으로 이루어졌다.
□ 그림 설명
그림1. 어카운트 오브 케미칼 리서치 표지 이미지
그림2. 다종 입자 촉매
그림3. 함금촉매 합성
그림4. 다종센서 어레이_날숨 분석 센서
2017.07.18
조회수 29140
-
김정, 박인규 교수, 로봇의 피부 역할 할 수 있는 촉각센서 개발
우리 대학 기계공학과 김정, 박인규 교수 공동 연구팀이 실리콘과 탄소 소재를 활용한 로봇의 피부 역할을 할 수 있는 촉각 센서를 개발했다.
이 기술은 충격 흡수가 가능하면서 다양한 형태의 촉감을 구분할 수 있어 향후 로봇의 외피로 이용 가능할 것으로 기대된다.
이효상 박사과정이 1저자로 참여한 이번 연구결과는 네이처 자매지인 ‘사이언티픽 리포트(Scientific Report)’ 1월 25일자 온라인 판에 게재됐다.
피부는 인체에서 가장 많은 부분을 차지하는 기관이며 주요 장기를 외부 충격으로부터 보호하는 동시에 섬세한 촉각 정보를 측정 및 구분해 신경계에 전달하는 역할을 한다.
현재 로봇 감각 기술은 시각, 청각 부분에서는 인간의 능력에 근접하고 있으나 촉각의 경우는 환경의 변화를 온몸으로 감지하는 피부 능력에 비해 많이 부족한 것이 사실이다
인간과 비슷한 기능의 피부를 로봇에게 적용시키기 위해선 높은 신축성을 갖고 충격을 잘 흡수하는 피부 센서 기술의 개발이 필수이다. 전기 배선을 통해 몸 전체에 분포된 많은 센서를 연결하는 기술 또한 해결해야 할 문제이다.
연구팀은 문제 해결을 위해 실리콘과 탄소나노튜브(CNT)를 혼합해 복합재를 만들었고 이를 전기임피던스영상법(EIT)라는 의료 영상 기법과 결합했다. 이를 통해 넓은 영역에 가해지는 다양한 형태의 힘을 전기 배선 없이도 구분할 수 있는 기술을 개발했다.
이를 통해 개발된 로봇 피부는 망치로 내려치는 수준의 강한 충격도 견딜 수 있으며 센서의 일부가 파손돼도 파손 부위에 복합재를 채운 뒤 경화시키면 재사용이 가능하다.
또한 3D 프린터 등으로 만들어진 3차원 형상 틀에 실리콘-나노튜브 복합재를 채워 넣는 방식으로 제작할 수 있다. 기존 2차원 평판 뿐 아니라 다양한 3차원 곡면으로 제작이 가능해 새로운 형태의 컴퓨터 인터페이스도 개발할 수 있다.
이 기술은 다른 형태의 위치나 크기 등을 촉각적으로 구분할 수 있고 충격 흡수가 가능한 로봇의 피부, 3차원 컴퓨터 인터페이스, 촉각 센서 등에 적용 가능할 것으로 예상된다.
특히 이번 연구는 나노 구조체 및 센서 분야의 전문가인 박인규 교수와 바이오 로봇 분야 전문가인 김정 교수가 공동으로 진행해 실제 제품 적용 가능성이 높다.
김정 교수는 “신축성 촉각 센서는 인체에 바로 부착 가능할 뿐 아니라 다차원 변형상태에 대한 정보를 제공할 수 있다”며 “로봇 피부를 포함한 소프트 로봇 산업 및 착용형 의료기기 분야에 기여할 것이다”고 말했다.
박인규 교수는 “기능성 나노 복합소재와 컴퓨터단층법의 융합을 이용해 차세대 유저인터페이스를 구현한 것이다”고 말했다.
이번 연구는 1저자 이효상 박사과정 외 권동욱, 조지승 연구원과의 공동연구로 진행됐고, 미래창조과학부 이공분야 기초연구사업(중견연구자 지원사업)과 초정밀 광기계기술 연구센터(선도연구센터지원사업)의 지원으로 수행됐다.
□ 그림 설명
그림1. 제작한 촉각 센서와 연결돼 저항에 반응하는 로봇 손
그림2. 실리콘 고무와 카본나노튜브를 이용한 압저항 복합재 제작 과정
그림3. 압저항 복합재를 활용한 컴퓨터 인터페이스
2017.02.02
조회수 18748
-
홍순형, 류호진 교수, 세라믹과 고온용 2차원나노소재 합성기술 최초개발
우리 대학 신소재공학과 홍순형 교수와 원자력및양자공학과 류호진 교수 공동 연구팀이 고온용 2차원 나노소재인 질화붕소 나노플레이트렛(BNNP)을 세라믹 재료의 강화재로 응용하는 기술을 개발했다.
이번 연구는 질화붕소 나노플레이트렛을 통해 내충격성이 약한 세라믹의 성능을 높일 수 있음을 규명했다는 의미를 갖는다. 이를 통해 향후 인공치아, 인공뼈 및 우주항공용 고온 소재 등에 사용 가능할 것으로 기대된다.
KAIST 신소재공학과 이빈 박사과정 학생이 제 1저자로 참여한 이번 연구는 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 6월 8일자 온라인 판에 게재됐다.
세라믹은 다른 소재들에 비해 내충격성이 약해 쉽게 깨지는 단점이 있다. 따라서 나노물질 강화재를 첨가해 내충격성을 향상시킬 수 있는 복합소재를 개발하는 것이 중요하다.
신소재로 각광받는 그래핀은 전기전도도가 높아 절연 특성을 요하는 기판용 세라믹 재료에 적합하지 않다. 또한 섭씨 350℃에서 산화, 검은 색깔 등의 특성을 갖기 때문에 심미성이나 실용성의 문제로 우주항공용 소재나 인공치아 등에 활용이 어렵다.
반면 질화붕소 나노플레이트렛은 섭씨 1천℃에서도 안정적이고 투명하며 생체적합성이 뛰어나 고온용 소재나 생체용 세라믹 재료의 강화재로 응용할 수 있다면 물성을 크게 향상시킬 수 있다.
이번 연구에서 제조된 질화붕소 나노플레이트렛은 질소와 붕소 원자가 육각형의 벌집모양 형태로 화학결합을 한 두께 10나노미터 이하의 2차원 나노소재이다.
이와 같은 장점에도 불구하고 제조공정이 어렵다는 단점 때문에 연구가 활발하지 않아 그래핀에 비해 널리 활용되지 못했다.
연구팀은 질화붕소 나노플레이트렛을 제조하기 위해 ‘고에너지 볼밀링’ 공정을 이용했다. 볼밀링 공정은 용기 내에 볼과 대상 물질을 넣고 회전시켜 에너지를 가하는 방식이다.
대상 물질인 질화붕소와 철로 만들어진 볼을 넣고 회전을 가하는 간단한 방법으로 질화붕소 각각의 층을 박리하는 데 성공했다. 그리고 이를 통해 정밀한 질화붕소 나노플레이트렛을 대량으로 제조하는 데 성공했다.
또한 계면활성제를 통해 질화붕소 나노플레이트렛을 세라믹 재료 내에 균일하게 분산시키는 데 성공했다.대표적 세라믹 소재인 질화규소에 첨가했을 때 2%의 첨가만으로 강도 10%, 파괴인성 20%, 내마모 특성을 30% 향상시켰다.
홍 교수는 “질화붕소 나노플레이트렛의 우수한 기계적 물성, 열전도율, 고온 안정성 등을 세라믹 소재에 접목해 우주항공용 고온 소재, 인공치아용 소재, 전자기기 기판 소재 등에 응용이 가능하다”고 말했다.
류 교수는 “세라믹 소재의 특성을 획기적으로 향상시키고 응용 분야를 넓혀 신산업을 창출할 수 있을 것이다”고 말했다.
이번 연구는 미래창조과학부 글로벌프론티어 사업, 소프트 광소자용 2D 및 차원융합 하이브리드 소재 개발 기술 과제의 지원을 받아 수행됐다.
□ 그림 설명
그림1.볼밀링 공정을 통해 질화붕소를 BNNP로 박리하는 공정
그림2. 본 연구를 통해 제조된 BNNP 강화 질화규소 나노복합분말 및 나노복합소재
2016.07.04
조회수 10914
-
유승협 교수, 효율성과 유연성 갖춘 OLED 기술 개발
〈 유 승 협 교수 〉
우리 대학 전기및전자공학부 유승협 교수와 POSTECH 신소재공학과 이태우 교수 공동 연구팀이 손상 없이 반복적으로 휘어지면서 우수한 효율을 갖는 플렉서블 유기발광다이오드 (OLED) 기술을 개발했다.
그래핀, 산화티타늄, 전도성 고분자를 복합 전극으로 활용하는 이 기술로 효율 극대화와 우수한 유연성을 동시에 얻을 수 있어 향후 편의성과 활용도를 높일 수 있을 것으로 기대된다.
최성율 교수, 김택수 교수가 공동 연구팀으로 참여하고 이재호 박사과정 학생, POSTECH 한태희 박사와 박민호 박사과정 학생이 공동 1저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 2일자 온라인 판에 게재됐다.
현재 플렉서블 OLED 기술은 엣지형 스마트폰, 커브드 OLED 텔레비전 등에 사용되지만 플렉서블 OLED를 곡면 형태로 휘게 만든 후 고정 시키는 방식으로만 적용되고 있다.
반복적 휨이 가능한 플렉서블 OLED의 구현을 위해선 소재 및 관련 기술의 지속적 발굴이 중요하다. 특히 반복적으로 휘어질 때 각 구성 요소들이 깨지거나 손상되지 않도록 하는 것이 매우 중요하다.
그래핀은 얇은 두께를 통한 우수한 유연성 및 전기적 특성, 광학적 투명성을 갖는다. 이 특성들은 OLED에 주로 사용되는 산화물계 투명전극의 쉽게 깨지는 현상을 극복할 수 있는 기술로 각광받고 있다.
그러나 플렉서블 OLED가 주로 쓰이는 웨어러블 기기는 배터리 용량이 제한적이기 때문에 유연성과 동시에 OLED의 효율을 함께 확보하는 것이 중요하다.
OLED는 일반적으로 공진현상(Resonance)(용어설명) 현상을 활용해 발광 효율을 향상시킬 수 있다. 공진현상을 일으키기 위해서는 일정량 이상의 빛 반사가 발생하는 투명 전극이 필요한데 그래핀만을 투명전극으로 사용하면 반사가 적어 광 효율이 낮다는 한계가 있다.
연구팀은 위의 유연성 및 효율성 문제를 해결하기 위해 기존의 그래핀에 산화티타늄(TiO2)과 전도성 고분자 형태를 결합한 복합 전극층을 개발했다. 이 구조에서 각각의 전극 층은 서로의 단점을 보완해주는 협력적 역할을 해 공진 효과를 극대화한다.
연구팀이 개발한 복합전극 층은 산화티타늄의 높은 굴절률과 전도성 고분자의 낮은 굴절률이 함께 활용된다. 이를 통해 전극으로부터의 유효 반사율을 높여줘 공진현상이 충분히 활용될 수 있다.
또한 전도성 고분자의 낮은 굴절률은 표면 플라즈몬의 손실로 인한 효율 감소까지 줄여준다. 기존 27.4%의 양자효율에서 1.5배 향상된 40.5%의 외부양자효율을 보이는 OLED를 구현했다. 이는 동일 발광재료를 이용해 보고된 그래핀 기반 OLED 중 가장 높은 효율이다.
효율을 향상시키는 구조를 도입하면 유연성 등의 다른 특성이 나빠지는 트레이드 오프 현상이 종종 발생한다. 연구팀은 산화티타늄 막이 구부러질 때 깨짐을 방해하는 자체 특성이 있어 기존 산화물 투명전극보다 4배 높은 변형에도 견디는 것을 확인했다. 이를 이용해 유연성 저하를 최소화하고 성능 극대화에 성공했다.
연구팀의 플렉서블 OLED는 곡률 반경 2.3mm에서 1천 회 구부림에도 밝기 특성이 변하지 않아 높은 성능과 유연성을 동시에 확보할 수 있음을 증명했다.
유 교수는 “분야를 넘어선 융합연구가 아니었다면 이번 연구는 불가능했을 것이다”며 “이번 연구 성과가 플렉서블, 웨어러블 디스플레이나 인체 부착형 센서용 플레서블 광원의 성공에 중요한 기틀을 제공할 것이다”고 말했다.
이번 연구는 한국연구재단 공학연구센터 사업의 일환인 차세대 플렉서블 디스플레이 융합센터 (CAFDC), 글로벌 프론티어 소프트 일렉스토닉스 연구단, KAIST 그래핀 연구센터, 산업통상자원부의 IT R&D 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 그래핀 복합 전극층 기반 OLED의 동작사진
그림2. 산화티타늄 (TiO2)-그래핀-전도성 고분자 복합 전극 기반 플렉시블 OLED 구조 모식도
2016.06.03
조회수 15079
-
최민기 교수, 고성능의 이산화탄소 흡착제 개발
〈 최 민 기 교수 〉
우리 대학 생명화학공학과 최민기 교수 연구팀이 이산화탄소를 효율적이고 안정적으로 포집할 수 있는 흡착제를 개발했다.
이번에 개발된 이산화탄소 흡착제는 제올라이트와 아민 고분자를 기반으로 해 값싸고 대량 생산이 가능할 뿐 아니라 효율적인 성능과 뛰어난 재생 안정성을 갖는다.
연구 결과는 에너지 및 환경 분야 학술지인 ‘에너지&인바이러먼털 사이언스(Energy & Environmental Science)’ 3월 16일자 온라인 판에 게재됐다.
지구 온난화의 주요 원인인 이산화탄소의 포집을 위한 흡착제 연구가 활발히 진행 중이다. 특히 에너지 효율이 높고 환경에 무해한 고체 흡착제 중심으로 연구가 이뤄지고 있는데 제올라이트와 아민 고분자 기반의 흡착제가 가장 대표적이다.
그러나 제올라이트 기반 흡착제는 이산화탄소와 수분이 동시에 존재하는 경우 수분을 우선적으로 흡착하는 한계를 갖는다. 아민 고분자 기반 흡착제는 수분이 존재해도 효율적인 이산화탄소 흡착이 가능하지만 재생을 위해 130oC 이상 열을 가했을 때 요소가 생성돼 심각한 비활성화를 겪는 문제가 있다.
연구팀은 문제 해결을 위해 아민 고분자와 제올라이트의 장점을 모두 갖는 ‘아민-제올라이트 복합체’를 개발했다.
암모늄(NH4+)을 골격 외 양이온으로 갖는 제올라이트를 고온 열처리하면 암모니아(NH3)가 제거되고 수소 양이온이 남아 산성 제올라이트가 만들어진다. 이 제올라이트에 염기성을 갖는 에틸렌다이아민 증기를 처리하면 산-염기 반응에 의해 제올라이트 기공 내부에 아민이 기능화되는 원리이다.
이를 통해 이산화탄소 포집 공정에서 효율적으로 이산화탄소를 흡착하는 것을 확인했고, 매우 우수한 재생 안정성을 확인했다. 새로 개발한 흡착제는 제올라이트 내부에서 흡착된 물이 아민의 비활성화를 억제하는 상쇄효과를 보여 안정성을 더욱 높였다.
기존 연구들은 이산화탄소 흡착 성능 향상에만 집중됐지만 이번 연구는 우수한 흡착 성능 뿐 아니라 재생 안정성을 비약적으로 상승시켰다.
최 교수는 “값싸고 대량 생산이 가능한 제올라이트 기반의 흡착제로 실용화가 가능할 것으로 기대된다”며 “합성 방법의 최적화를 통해 더 높은 이산화탄소 흡착 성능을 갖는 흡착제 개발에도 힘쓸 것이다”고 말했다.
전남대학교 응용화학공학과 조성준 교수 연구팀과 공동으로 진행한 이번 연구는 미래창조과학부의 ‘Korea CCS 2020’ 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 아민-제올라이트 복합체를 이용한 이산화탄소 포집 공정의 개념도
그림2. 연속적인 온도교대흡착 공정에서 흡착제들의 이산화탄소의 흡착능 비교
2016.04.25
조회수 14916
-
C형간염바이러스의 면역회피 기전 밝혀
C형간염은 우리나라 국민의 약 1~2%가 감염된 것으로 알려져 있다. C형간염바이러스에 감염되면 대부분 만성으로 진행되며 간경변증 및 간암이 발생해 사망에 이를 수도 있다.
A형이나 B형간염과는 달리 예방백신이 없어 감염원 노출을 피하는 것만이 최선의 예방법으로 알려진 가운데 우리학교 연구진이 백신 개발에 탄력을 받을 만한 연구 성과를 냈다.
우리학교 의과학대학원 신의철 교수팀은 C형간염바이러스가 체내에서 면역반응을 일으키지 않는 원인을 규명했다. 연구결과는 소화기병 분야 세계적 학술지 ‘위장병학(Gastroenterology)’ 5월호에 게재됐다.
우리 몸에서는 외부로부터 침입한 바이러스를 제거하기 위해 면역반응이 일어난다. 이 과정에서 바이러스에 감염된 세포의 제거에 필요한 T세포 반응을 적절하게 유도하는데 제1형 주조직복합체가 핵심적인 역할을 한다.
세포가 바이러스에 감염되면 인터페론이라는 물질에 의해 제1형 주조직복합체 발현이 증가되고 T세포는 증가된 제1형 주조직복합체를 인식해 바이러스에 감염된 세포를 찾아낼 수 있다.
그러나 그동안 C형간염바이러스의 경우 제1형 주조직복합체 발현에 어떤 영향을 미치는지 명확히 밝혀지지 않았다.
연구팀은 세포배양을 이용한 감염시스템을 통해 C형간염바이러스가 제1형 주조직복합체 단백질 발현을 억제함을 밝혔다. 또 이에 대한 메커니즘을 분자 수준에서 규명, C형간염바이러스가 세포내의 PKR이라는 단백질을 활성화시켜 제1형 주조직복합체 단백질 발현을 억제하는 사실도 입증했다.
이와 함께 실제 C형간염바이러스 환자로부터 분리한 T세포 배양 기술을 이용해 C형간염바이러스가 제1형 주조직복합체 단백질 발현을 억제함으로써 T세포 면역반응을 회피한다는 사실을 세계 최초로 규명했다.
이러한 연구를 통해 연구팀은 세포내 PKR 단백질을 조절하면 T세포 면역반응을 증강시킬 수 있다는 가설을 세우고 이를 실험을 통해 증명했다.
신의철 교수는 “C형간염바이러스를 치료하는 신약들은 많이 개발된 반면 백신은 아직 개발되지 않은 상태”라며 “C형간염바이러스의 면역회피 기전을 밝혀내 백신 개발에 탄력을 받을 것”이라고 이번 연구의 의의를 말했다.
그림1. 세포배양을 이용한 C형간염바이러스 감염 시스템을 유세포분석 기법으로 관찰, C형간염바이러스에 감염된 간세포에서는 인터페론에 의한 제1형 주조직복합체 단백질 증가가 억제됨을 밝혔다.
그림2. C형간염바이러스에 감염된 간세포에서는 인터페론에 의한 제1형 주조직복합체 단백질의 증가가 억제된다.
그림3. C형간염바이러스가 PKR-eIF2a 전달체계를 활성화시켜 제1형 주조직복합체 단백질 발현을 억제함으로써 바이러스에 대한 T세포의 활성이 약화된다.
2014.05.19
조회수 15771
-
리튬공기 이차전지 핵심기술 개발
- KAIST-경기대 공동연구팀, 나노섬유·그래핀 복합촉매 개발 -- 리튬이온 이차전지보다 5배 용량 향상, 최대 800km 주행가능 -
서울-부산을 전기차로 왕복할 수 있는 시대가 열릴까? 차세대 초고용량 전지로 주목받고 있는 리튬공기 이차전지의 핵심기술이 개발됐다.
우리 학교 신소재공학과 김일두·전석우 교수와 경기대학교 신소재공학과 박용준 교수 공동연구팀은 나노섬유·그래핀 복합촉매를 개발하고 리튬공기 이차전지에 적용해 리튬이온 이차전지 보다 용량이 5배 높은 ‘리튬공기 이차전지’를 만드는 데 성공했다.
연구 결과는 나노 분야 권위 있는 학술지 ‘나노레터스(Nano Letters)’ 8월 8일자 온라인판에 게재됐다.
‘리튬이온 이차전지’의 음극과 양극에는 각각 흑연, 리튬전이금속산화물로 구성돼 있다. 이 전지는 핸드폰, 노트북 등에 널리 사용되고 있는데 전기차에 적용할 경우 한 번 충전에 약 160km 정도만 주행할 수 있어 아직은 전기차용으로는 용량이 충분하지 않다는 것이 일반적인 평가다.
연구팀이 이번에 개발한 ‘리튬공기 이차전지’는 음극은 리튬, 양극은 산소를 사용한다. 무게가 가벼우면서도 실제 얻을 수 있는 에너지밀도가 리튬이온 이차전지보다 훨씬 높아 차세대 이차전지 중 가장 큰 각광을 받고 있다.
그러나 방전 시 리튬과 산소가 서로 만나 리튬산화물(Li2O2)이 형성되고 충전 시 다시 분해되는데 이 과정이 원활하게 일어나지 않는 문제점으로 인해 높은 저항이 발생하며, 수명이 짧아 상용화에 어려움이 있었다. 따라서 리튬산화물의 형성 및 분해반응을 보다 수월하게 해주는 고효율 촉매 개발이 필수적이었다.
연구팀은 전기방사 방법으로 대량생산이 가능한 코발트산화물 나노섬유와 그래핀을 섞어 나노 복합촉매를 개발했다.
촉매활성이 매우 높은 ‘코발트산화물 나노섬유’에 큰 비표면적과 높은 전기전도도를 가지고 있는 ‘비산화그래핀’을 결착시킴으로써 리튬공기 이차전지의 성능을 극대화 시킬 수 있었다고 연구팀은 전했다.
개발된 나노 복합촉매를 리튬공기 이차전지의 양극에 적용하면 리튬이온 이차전지 용량의 5배에 달하는 1000mAh/g 이상의 고용량에서도 80회 이상의 충·방전이 가능한 우수한 수명특성을 보였다.
연구팀이 이번에 확보한 충·방전 특성은 현재까지 보고된 성능 중 가장 높은 수준이며, 금속 산화물과 그래핀을 소재로 활용했기 때문에 저렴하게 만들 수 있다. 상용화에 성공해 전기차에 적용하면 한 번 충전에 800Km이상 주행할 수 있어 서울-부산을 왕복 가능해질 것으로 기대된다.
김일두 교수는 “안정성 등 상용화까지는 해결할 과제들이 많이 있지만 본격적인 전기차 시대를 위해 여러 기관들과 협력해 연구할 것”이라며 “우리나라에서 리튬공기 이차전지 분야의 핵심 소재 중에 하나인 나노촉매 합성 기술 개발을 주도해 차세대 리튬공기 이차전지 분야의 활성화에 기여하고 싶다”고 말했다.
한편, 이번 연구에는 KAIST 신소재공학과 류원희 박사, 송성호 박사과정 학생, 경기대학교 윤택한 석사과정 학생이 참여했다.
그림1. 나노복합촉매로 구성된 리튬공기 이차전지 개념도
그림2. 코발트산화물 나노섬유/그래핀 나노 복합촉매 이미지
그림3. 리튬공기 이차전지용 코발트산화물 나노섬유/그래핀 나노 복합촉매 제조과정 이미지
2013.09.05
조회수 18351