-
변혜령 ˙ 백무현 교수팀, 이온 쌍 형성을 통한 안정한 유기 레독스 흐름 전지 개발
우리 대학 화학과 변혜령 교수와 백무현 교수가 이끄는 공동 연구팀이 레독스 흐름 전지 구동 중 비수계 전해질의 조합 및 이온쌍의 형성에 따라 유기 분자의 전자 전달 과정이 변하는 원리를 해명했다.
최근 에너지 저장 장치(ESS, Energy Storage System)에서의 화재 위험성을 줄이기 위해 리튬 기반의 전지 대신 안정성과 경제성을 겸비한 레독스 흐름 전지(redox flow battery)가 새로운 대안으로 제시되고 있다. 상용화된 레독스 흐름 전지는 바나듐을 활물질로 사용하고 있지만, 최근 바나듐 원가의 가격 상승으로 인해 대체 활물질의 개발이 절실히 요구되고 있다. 특히 레독스 특성을 가지는 유기 분자를 설계하고 활물질로 활용한 연구는 전지의 성능을 대폭 개선할 수 있어 각광을 받고 있다.
공동연구팀은 분자당 두 개의 전자를 저장할 수 있는 나프탈렌 다이이미드(NDI, Naphthalene diimide)를 활물질로 사용한 비수계 레독스 흐름 전지의 연구를 진행했다. 먼저, 암모늄 기능기를 NDI에 도입하고 음이온 전해질 조절을 통해 아세토니트릴 전해액에서 NDI의 용해도를 최대 0.9 M까지 증가시켰다. 또한, 전기화학반응에서 NDI와 함께 사용되는 전해질의 양이온에 따라 산화환원 전위 및 레독스 흐름 전지에서의 충/방전 과정의 변화 이유를 규명하였다. 작은 크기의 리튬 이온(Li+)이온과 낮은 전자주개 특성을 가지는 용매(아세토니트릴)로 구성된 비수계 전해질 환경에서, NDI는 두 단계의 환원 과정이 유사한 전위에서 진행됨을 보였다. 이와 비교하여 큰 반지름을 가지는 포타슘 이온(K+)을 포함한 아세토니트릴 전해액에서는 NDI의 두 단계 환원반응 사이의 전위차가 크게 벌어짐을 관찰했다.
밀도범함수 계산 분석을 통해 환원된 NDI 음이온과 높은 전하밀도를 가지는 Li+ 이온은 결합이 강해지며 특정구조를 가지는 이온쌍이 형성됨을 예상하였으며, 적외선 분광 분석을 통해 이를 실험적으로 증명할 수 있었다. 반면, 낮은 전하밀도의 K+은 NDI 음이온과 약한 상호작용으로 이온쌍이 형성되기 어려우며, 따라서 K+ 은 NDI의 환원 전위 및 안정성에 영향을 미치지 않음을 보고했다.
전해질 양이온의 효과는 레독스 흐름 전지의 전압 및 에너지 전달 효율성에 그대로 반영되었다. Li+을 기반으로 한 전해질 하에서는 NDI의 두 전자전달 반응에서 각각 하나의 충/방전 전압을 유지하는 반면, K+ 기반의 전해질에서는 각각 두개의 충/방전 전압 곡선이 관찰되었다. 무엇보다도 Li+을 사용한 레독스 흐름 전지의 장점은 이온쌍 형성으로 인한 구조 크기의 증가로 크로스오버(레독스 활성분자인 NDI가 기공을 가지는 분리막을 지나 상대 전극으로 이동하여 용량을 감소시키는 현상)를 감소시킬 수 있었다는 점이다. 그 결과 0.1 M의 NDI를 음극 전해액으로 이용한 비수계 레독스 흐름 전지를 구동 시 약 1000 사이클 이후에도 84%의 용량이 유지되는 것을 증명하였다. 이는 Li+ 전해질에서의 충/방전 과정이 안정적이며 연속 사용 시 사이클 당 0.017%의 용량 감소만이 진행된다는 결과다.
이 연구는 삼성미래기술육성사업 및 기초과학연구원 등으로부터 지원을 받아 수행되었으며, ‘미국화학회지(Journal of the American Chemical Society)’에 2024년 2월 12일자로 온라인으로 발표되었다. (논문명: Stabilization of Naphthalene Diimide Anions by Ion Pair Formation in Nonaqueous Organic Redox Flow Batteries)
2024.02.20
조회수 3540
-
알츠하이머 발병 과정을 관찰하다
퇴행성 질환을 유발하는 아밀로이드 섬유 단백질의 초기 불안정한 움직임과 같은 생명 현상을 분자 수준에서 실시간 관찰이 가능한 기술이 개발되었다. 이를 통해 알츠하이머나 파킨슨 병과 같은 퇴행성 질환의 발병 과정에 대한 실마리를 제공할 수 있을 것으로 기대된다.
우리 대학 신소재공학과 육종민 교수 연구팀이 한국기초과학지원연구원, 포항산업과학연구원, 성균관대학교 약학대학 연구팀과 함께 그래핀을 이용해 알츠하이머 질병을 유발한다고 알려진 아밀로이드 섬유 단백질의 실시간 거동을 관찰할 수 있는 새로운 단분자 관찰 기술(single-molecule technique)을 개발했다고 30일 밝혔다.
단분자 관찰 기술은 단일 분자 수준에서 발생하는 현상을 관찰할 수 있는 기법을 말한다. 생체 과정에서 수반되는 단백질 간의 상호작용, 접힘, 조립 과정 등을 이해하는 데 핵심적인 기술이다. 현재까지 단분자 관찰 기술로는 특정 분자를 식별하기 위한 형광 현미경을 이용해 관찰하거나, 단백질을 급속 냉동시켜 움직임을 고정해 분자 구조를 해석하는 초저온 전자현미경 기법이 활용 돼왔다.
하지만, 자연 그대로의 단백질을 특별한 전처리 없이 분자 단위에서 실시간으로 관찰할 수 있는 기술은 여전히 부재한 상황이었다.
최근 이에 대한 대안으로 물질을 얼리지 않고 상온 상태에서 관찰하는 액상 전자현미경 기술이 최근 주목을 받고 있다. 이 기술은 얇은 투과막을 이용해 액체를 감싸 전자현미경 내에서 물질의 변화를 관찰할 수 있는 기술이지만, 두꺼운 투과 막에 의한 분해능 저하와 전자빔에 의한 단백질 변성은 해결해야 하는 숙제였다.
육종민 교수 연구팀은 차세대 소재로 주목받고 있는 그래핀을 이용해 막에 의한 분해능 저하와 전자빔에 의한 단백질 변성 문제를 해결하며, 단백질의 거동을 실시간 관찰할 수 있는 단분자 그래핀 액상 셀 전자현미경 기술을 개발했다. [그림 1]
이번 연구에서 투과 막으로 이용한 그래핀은 원자 단위의 두께를 가지고 있어 분자 수준 관찰을 가능하게 할 뿐만 아니라, 전자빔에 의한 단백질의 산화를 방지하는 산화 방지 역할을 해 기존 대비 40배 가량 변성을 억제해 단백질의 거동을 실시간으로 관찰할 수 있게 했다.
연구팀은 개발한 전자현미경 기술을 활용해, 알츠하이머 질병을 유발한다고 알려진 아밀로이드 베타 섬유의 초기 성장 과정에서 발현되는 분자 불안정성을 세계 최초로 관찰했다. [그림 2]
이 전자현미경 기술은 온전한 단백질의 다양한 거동들을 분자 수준에서 관찰을 가능하게 하므로, 코로나19와 같은 바이러스성 단백질의 감염 과정, 퇴행성 질환을 일으키는 아밀로이드성 단백질의 섬유화/응집 거동 등과 같이 단백질의 상호작용에 의한 생명 현상을 이해하는 데 활용될 수 있을 것으로 기대된다.
육 교수는 "현미경 기술의 발전은 생명과학 및 공학 기술 발전의 토대가 되는 것으로, 분자 단위의 현상을 관찰할 수 있다면 단백질들의 상호작용을 이해하고 조절할 수 있는 실마리를 제공할 수 있으며, 이를 통해 알츠하이머와 같은 퇴행성 질환의 신약 개발에 도움을 줄 수 있을 것으로 기대한다ˮ 라고 말했다.
우리 대학 신소재공학과 졸업생 박정재 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스(Advanced Materials)' 지난 11월 온라인으로 발표됐다. (논문명 : Single-Molecule Graphene Liquid Cell Electron Microscopy for Instability of Intermediate Amyloid Fibrils).
이번 연구는 한국연구재단의 중견연구자지원사업(MIST) (NRF-2022R1A2C2008929)과 나노 및 소재 기술개발사업(MIST)(NRF-2021M3H4A6A02050365)의 지원을 받아 수행됐다.
2024.01.30
조회수 4052
-
전자의 눈으로 본 분자의 놀라운 변신: 이온의 생성 순간과 탈바꿈의 비밀을 밝히다
우리 대학 화학과 이효철 교수(IBS 첨단반응동역학 연구단) 연구팀은 기체 상태 이온의 탄생과 변화 과정을 실시간으로 관찰하는 데 성공했다고 발표했다. 이 연구는 메가전자볼트 초고속 전자 회절 기법을 활용해 분자 이온이 형성되는 순간부터 이온 내 원자들의 위치 변화를 실시간으로 추적하는 데 최초로 성공한 것으로, 이온 화학 분야에서 중요한 돌파구를 마련했다.
이온은 실생활에서부터 우주 공간까지 도처에서 중요한 역할을 수행하고 있다. 소금이 나트륨 이온과 염화 이온으로 분해되어 물에 녹으면, 짠맛을 내고, 몸으로 흡수된 나트륨 이온과 염화 이온은 신경전달과 근육의 움직임을 조절하며, 태양에서는 기체상의 이온의 집합인 플라스마를 통해 핵융합 반응이 일어나 지구에 빛과 에너지를 전달한다. 일상에서 가장 흔하게 접하는 이온의 예는 리튬 이온 배터리인데, 스마트폰, 노트북, 전기 자동차 등에서 널리 사용되는 이 배터리는 리튬 이온이 양극과 음극 사이를 이동하면서 전기를 저장하고 방출하는 원리로 작동한다. 이처럼, 이온은 우리 생활 곳곳에서 중요한 역할을 하고 있으며, 이온의 변화 과정과 구조적 특성, 나아가 동역학을 이해하는 것은 과학과 기술 발전에 있어 매우 중요하다. 그러나 이러한 이온이 형성되는 순간과 이온의 분자 구조 및 형태 변환은 실험적 어려움으로 인해 충분히 탐구되지 못했다. 특히, 기체 상태에서 이온의 구조적 동역학을 포착하는 것은 더욱 도전적인 과제였다.
연구진은 이전에 분자결합이 끊어지는 순간(Science, 2005)과 화학결합을 통해 분자가 탄생하는 순간(Nature, 2015), 그리고 화학 반응의 시작부터 끝까지 전 과정의 분자 구조를 원자 수준에서 관측한 바 있으며(Nature, 2020), 이번에 세계 최초로 기체상 이온의 생성 순간과 구조변화를 실시간으로 관찰하는 데 성공했다. 연구팀은 1,3-다이브로모프로판(DBP)에서 유래한 양이온의 생성 및 구조적 변환을 면밀히 관찰했다. 실험 데이터 분석을 통해 이 분자의 양이온이 생성된 후 구조변화가 일어나지 않는 "구조적 암흑 상태”에 머무르는 현상을 발견하였다. 이 상태는 약 3.6 피코초(1 피코초는 1조 분의 1초) 동안 지속되었으며, 이후 양이온은 네 개의 원자로 이루어진 고리 구조를 가지며, 느슨하게 결합된 브롬 원자를 포함하는 특이한 중간체로 변환되었다. 최종적으로, 느슨하게 붙어 있던 이 브롬 원자는 분리되어 떨어져 나가고, 남은 부분은 세 개의 원자로 이루어진 고리 구조를 가진 브로모늄 이온을 형성했다. 이온은 높은 반응성을 보이기 때문에 오랜 시간 존재하기 힘들고, 선택적인 생성이 힘들기 때문에 이온이 보이는 구조변화를 실시간으로 관측하는 것은 그 중요성만큼이나 힘든 일이었다. 이번 연구는 기존의 한계를 극복하고, 양이온의 생성부터 구조적 변환 과정 모두를 밝혀냄으로써 이온 화학종의 연구에 있어 중요한 돌파구를 마련한 중요한 사례로 평가된다.
연구진은 기존보다 더 빠르고 작은 움직임을 볼 수 있도록 향상된 메가전자볼트 초고속 전자 회절 실험 기법과 새롭게 고안한 신호 처리 기술 및 구조변화 모델링 분석기법을 통해 기체상 분자의 이온화 과정과 그에 따른 구조변화를 실시간으로 포착했다. 한 가지 종류의 이온을 실험에서 관측 가능할 정도의 양으로 만드는 것이 중요한데, 연구팀은 이를 위해, 공명 증강 다광자 이온화 기법을 적용하여 중성 분자에서 전자를 하나 제거하여 양이온을 생성하였다. 이 이온화 과정은 분자를 섬세하게 이온화시키는 데 중요한 역할을 하며, 이를 통해 화합물이 무작위로 분해되는 것을 방지하고, 원하는 특정 이온을 대량으로 생성하게 한다. 연구진은 이 기술을 도입함으로써 분자 이온의 구조적 변화를 정밀하게 관찰하는 것이 가능해질 것이라 기대하였는데, 이번 연구에서 그 효과를 입증하였다. 이러한 실험 결과, 생성된 기체 이온은 바로 구조변화를 나타내는 것이 아니라, 특정한 형태를 유지하다가 급격한 변화를 보이며, 나아가 화학적으로 가장 안전한 고리 형태의 분자가 형성됨을 규명했다.
이 연구는 분자 이온의 구조적 동역학을 실시간으로 관찰한 최초의 사례이다. 연구팀은 메가전자볼트 초고속 전자 회절을 활용하여, 기체 상태에서 이온의 미세한 구조변화를 세밀하게 포착할 수 있었다. 이 실험 기법은 고해상도 공간 및 시간 분해능을 제공함으로써, 이온이 생성되는 순간부터 구조적 변화가 일어나는 전 과정을 정밀하게 추적할 수 있게 하였다. 또한, 이 연구에서는 공명 증강 다광자 이온화 기법을 통해, 분자의 이온화 과정을 더욱 정밀하게 제어할 수 있었다. 이를 통해 연구팀은 원하는 특정 이온을 대량으로 생성하고, 그 구조적 변화를 실시간으로 관찰하는 데 성공했다. 이러한 접근 방식은 기존에는 불가능했던 이온의 세밀한 구조적 특성과 동역학을 이해하는 데 중요한 역할을 했다. 이 연구는 기체 상태의 이온에 대한 깊은 이해를 가능하게 함으로써, 화학 반응의 메커니즘, 물질의 특성 변화, 그리고 우주 화학과 같은 다양한 분야에 대한 새로운 통찰을 제공한다. 이는 이온 화학 분야뿐만 아니라, 관련 과학기술 전반에 걸쳐 큰 영향을 미칠 것으로 기대된다.
제1 저자인 허준 박사는 "이번 발견은 이온 화학의 근본적인 이해를 한 단계 끌어올리며, 미래의 다양한 화학 반응 설계와 우주 화학 연구에 중요한 영향을 미칠 것"이라고 밝혔다. 제1 저자인 김도영 학생은 “기초과학 분야의 발전에 있어 초석의 역할을 할 수 있는 좋은 연구를 하게 되어 기쁘고, 좋은 과학자가 될 수 있도록 앞으로도 열심히 연구하겠다"라고 포부를 밝혔다. 이효철 교수는 “과학기술이 눈부시게 발전했지만, 아직도 우리가 모르는 것 물질세계의 경이로운 비밀이 많다. 이번 연구는 흔하지만 아직은 몰랐던 이온의 신비로운 현상을 하나 더 밝혀낸 것에 불과하다"라고 언급했다. 그리고 “기초과학에 아낌없는 투자가 있었기에 작지만 의미 있는 이정표적 연구 성과를 낼 수 있었다. 앞으로도 R&D 예산이 효과적으로 지원되기를 기대한다"라고 덧붙였다. 이 연구는 이온의 구조적 특성과 반응 메커니즘에 대한 새로운 지식을 제공하며, 향후 관련 분야의 연구에 큰 기여를 할 것으로 기대된다.
이번 연구 결과는 네이처(Nature)지에 게재되었으며, 1월 11일 01시에 온라인으로 공개되었다. 연구 논문의 제목은 "Capturing the generation and structural transformations of molecular ions"이다.
2024.01.11
조회수 3945
-
쭉쭉 늘어나는 최고 성능의 태양전지 개발
웨어러블 전자소자의 시장 규모가 급격히 커지며 에너지 공급원으로서 잡아당겨 늘려도 작동할 수 있는 스트레쳐블 태양전지가 각광 받고 있다. 이러한 태양전지를 구현하기 위해서는 빛을 전기로 전환하는 광활성층의 높은 전기적 성능과 기계적 신축성 확보가 필수적인데, 이 두 가지 특성은 서로 상충관계를 가지고 있어서 스트레쳐블 태양전지의 구현은 매우 어려운 문제였다.
우리 대학 생명화학공학과 김범준 교수 연구팀이 높은 전기적 성능과 신축성을 동시에 갖는 새로운 형태의 전도성 고분자 물질을 개발해 세계 최고 성능의 스트레처블 유기태양전지를 구현했다고 26일 밝혔다.
유기 태양전지(organic solar cells)는 빛을 받아 전기를 생산하는 광 활성층이 유기물로 구성되는 전자소자로, 기존 무기 재료 기반 태양전지에 비해 가볍고 유연하다는 장점이 있어 몸에 착용할 수 있는 웨어러블 전자소자에 사용 가능하다. 특히, 태양전지는 이러한 전자소자의 전력을 공급하는 필수적인 소자이지만, 기존 고효율 태양전지는 신축성을 가지기 어려워서 웨어러블 소자로 거의 구현된 바가 없다.
김범준 교수 연구팀은 높은 전기적 성질을 가지는 전도성 고분자에 고무처럼 늘어나는 고신축성 고분자를 화학 결합을 통해 연결하여, 높은 전기적 성능과 기계적 신축성을 동시에 가지는 새로운 형태의 전도성 고분자를 개발하였다. 개발된 고분자는 현재 세계 최고 수준의 광전변환효율 (19%)을 가지는 유기태양전지를 구현하면서도, 기존 소자들에 비해 10배 이상 높은 신축성을 달성하였다. 이를 통해 40% 이상 잡아당겨도 작동하는 세계 최고성능의 스트레처블 태양전지를 구현하였으며, 이를 통해 사람이 착용가능한 태양전지의 응용 가능성을 증명했다.
김범준 교수는 "이번 연구를 통해 세계 최고성능의 스트레쳐블 유기 태양전지를 개발했을 뿐만 아니라 새로운 개념의 고분자 소재 개발을 통해 자유형상 및 신축성을 요구로 하는 다양한 전자소자에 응용가능한 소재 원천 기술을 개발했다는 것에 큰 의의가 있다ˮ라고 밝혔다.
이진우, 이흥구 연구원이 공동 제1 저자로 참여하고, 기계공학과 김택수 교수, 생명화학공학과 리섕 교수팀이 공동으로 진행한 이번 연구는 국제 학술지 `줄(Joule)'에 12월 1일 출판됐다. (논문명: Rigid and Soft Block-Copolymerized Conjugated Polymers Enable High-Performance Intrinsically-Stretchable Organic Solar Cells).
이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2023.12.26
조회수 3631
-
액정 고분자를 통해 ‘올인원 솔루션’ 기술 개발
액정 고분자는 녹아있는 상태에서 액정성을 나타낸 고분자로 높은 내열성과 강도를 가지고 있어서 기존에는 광학 필름이나 코팅 소재로 응용되었지만, 최근에는 가스 및 액체 흡착, 약물 전달, 센서 기술 등의 분야에서 광범위하게 효율적 활용이 가능하다는 연구가 보고되고 있다.
우리 대학 화학과 윤동기 교수 연구팀이 연성 소재(soft material)중 하나인 액정 고분자의 자기조립(self-assembly)을 활용해 다공성 액정 고분자 구조체를 제작하고, 다양한 기능성 나노 입자를 도입해 복합체를 형성할 수 있는 원천기술을 개발했다고 20일 밝혔다.
이번 연구에서 윤 교수팀은 다양한 모양에 조립을 유도할 수 있는 분자 형태로 이루어져 있어 표면 개질, 공간적 한정, 빛, 전기장에 의해 배향이 쉽게 조절되는 특성을 가진 액정의 배향 제어를 기반으로 액정 고분자 기반의 다공성 구조체를 제작했고, 이를 매트릭스로 하여 페로브스카이트(perovksite), 금속유기골격체 (metal-organic framework), 퀀텀닷(quantum dot) 등과 같은 다양한 기능성 나노 입자 도입을 통해 유-무기 복합체(organic-inorganic composite)를 제작하는 것에 집중했다.
연구팀은 매트릭스의 기공에서 나노 입자들을 직접 성장시키거나 이미 제작된 나노 입자들을 도입하는 서로 다른 전략을 개발했다. 이를 통해 도입하고자 하는 기능성 나노 입자의 선택성을 넓혀 범용적인 복합체 제작이 가능하다는 것을 보였다. (그림 1)
연구팀은 또한 두 가지 이상의 나노 입자들을 도입하는 전략을 제시해 다기능성 복합체 제작이 가능하다는 것을 보였다. 기존의 다공성 고분자 기반의 복합체 제작 연구의 경우 하나의 기능성 입자를 도입하고자 하는 것에 초점이 맞추어져 있고, 두 가지 이상의 기능성 도입을 위한 자세한 연구는 부족하다. 연구팀이 이번 연구에서 제안한 다기능성 복합체의 경우 서로 다른 나노 입자들의 기능성을 동시에 가질 수 있어, 기존 기능성 입자들의 활용 범위를 더욱 넓힐 수 있다는 것을 보였다.
화학과 윤동기 교수는 “이 기술은 기존에 알려진 대표적인 무기 입자들을 액정 고분자를 통해 한 번에 제조, 포함할 수 있는 `올인원 솔루션'으로 오염물질 제거, 안정된 디스플레이 소자 개발, 차세대 통신용 인쇄 회로 기판 제조 등에 다기능성을 부여할 수 있다는 점에서 획기적인 기술이라고 할 수 있다”고 언급했다.
이번 연구는 국제 학술지 어드밴스드 머터리얼즈(Advanced Materials)에 “Universal Strategy for Inorganic Nanoparticle Incorporation into Mesoporous Liquid Crystal Polymer Particles”의 이름으로 지난 11월 22일 자에 게재됐다.
이근중†, 박건형†, 박계현, 박영서, 이창재, 윤동기* : 공동 제1 저자, * 교신저자.
한편 이번 연구는 과학기술정보통신부-한국연구재단의 지원을 받은 중견연구자 지원사업, 함께달리기사업의 지원을 받아 수행됐다.
2023.12.20
조회수 4064
-
K-약용식물에서 세 단계만에 분자연금술 뚝딱
K-약용식물 추출물에서 단 세 단계 만에 퇴행성 신경질환 등 난치성 신경질환 치료제로 개발가능한 물질인 ‘수프라니딘 B’를 합성하는 ‘분자 연금술’에 성공하여 화제다.
우리 대학 화학과 한순규 교수 연구팀이 국내 자생 ‘광대싸리’에 극미량 존재하는 고부가가치 천연물을 생체모방 전략을 통해 쉽게 얻을 수 있는 물질로부터 간단하게 합성하는 방법을 개발했다고 1일 밝혔다.
`세큐리네가 알칼로이드'는 국내 자생 약용식물인 ‘광대싸리’에서 발견되는 천연물 군으로, 항암 및 신경돌기 성장 촉진 등 다양한 약리 활성을 보여 수십 년간 합성화학계의 관심을 받아왔다.
이들 물질 군에는 기본 골격으로부터 산화되거나 사슬처럼 연결된 형태를 갖는 100여 종의 초복잡 천연물들이 존재하는데, 상대적으로 간단한 기본 골격체의 합성은 잘 정립되어 있었던 반면, 초복잡 화합물의 합성은 난제로 남아 있었다.
그 중 `수프라니딘(suffranidine) B'도 초복잡 세큐리네가 천연물 중의 하나로, 신경세포의 신경돌기 성장을 촉진해, 퇴행성 신경질환이나 신경 절단 등 현재는 난치성인 신경질환의 치료제로 기대되는 물질이다. 그러나 식물 1 킬로그램(kg)당 추출량이 0.4 밀리그램(mg)에 그칠 정도로 극히 적고 정제 또한 어려워 추가적인 연구에 제한점이 많았다.
한 교수 연구팀은 광대싸리에서 쉽게 대량으로 추출할 수 있는 기본골격을 갖는 세큐리네가 천연물인 알로세큐리닌(allosecurinine)과 시중에서 값싸게 구할 수 있는 누룩산(kojic acid) 유래 물질로부터 단 세 단계 만에 수프라니딘 B를 합성하는 방법을 개발했다.
이번 연구는 수프라니딘 B의 세계 최초 합성으로 쉽게 구할 수 있는 물질로부터 고부가가치 화합물을 간단하게 만들어 낸 일종의 `분자 연금술'이라 볼 수 있다. 수프라니딘 B와 같이 복잡한 천연물을 이렇게 짧은 과정으로 합성해 낸 사례는 몹시 드물다.
생체모방 합성(biomimetic synthesis)은 자연이 천연물을 합성하는 과정(생합성)을 모방해 복잡한 천연물을 합성하는 연구 방식이다. 합성 과정에서 생합성 경로에 존재할 것으로 여겨지는 중간체들의 화학적 반응성을 탐구할 수 있으므로, 해당 물질의 생합성 경로를 더욱 깊게 이해할 기회를 제공한다. 세큐리네가 알칼로이드는 1956년 최초로 발견되었으나 현재까지도 생합성 경로가 밝혀지지 않은 상태다.
한 교수는 "이번 연구로 수프라니딘 B를 간단하게 생산할 수 있게 되었을 뿐 아니라 초복잡 세큐리네가 천연물의 생합성에 대한 이해 또한 높일 수 있었다ˮ며 "고부가가치 국내 자생 약용식물을 합성화학적으로 또는 합성생물학적으로 생산할 수 있는 학문적 토대를 마련했다ˮ고 밝혔다.
KAIST 화학과 강규민 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 화학 분야 저명 국제 학술지인 `미국화학회지(Journal of the American Chemical Society)' 지난 11월 2일 자에 게재됐다. (논문명 : Synthesis of Suffranidine B)
한편 이번 연구는 KAIST의 도약연구(UP) 및 한국연구재단의 기초연구사업(중견연구)등의 지원을 통해 이뤄졌다.
2023.12.01
조회수 4074
-
반도체 기술로 75배 향상된 초고효율 수소 생산 성공
반도체 공정기술을 활용하여 세계 최고 수준의 높은 수소 생산 효율을 장기간 유지하는 기술이 개발되어 화제다.
우리 대학 신소재공학과 정연식 교수·KIST(원장 윤석진) 김진영 박사·김동훈 박사 공동 연구팀이 수소 생산 촉매가 반응 중 잃어버리는 전자를 신개념 산화물 반도체로부터 보충받는 새로운 원리를 활용해 고효율 및 고내구성 수소 생산 기술을 개발했다고 25일 밝혔다.
고순도 그린 수소를 생산하기 위해 신재생에너지로 물을 전기분해하는 친환경적인 고분자 전해질막 수전해(PEMWE) 장치를 활용하게 된다. 이때 주로 사용되는 이리듐(Ir) 촉매의 경우 전자를 많이 가지고 있는 상태를 지속적으로 유지해야 고효율과 고내구성을 동시에 달성할 수 있게 된다. 하지만 일반적으로 쉽게 전자를 잃어버리고 산화되는 촉매 반응의 특성 때문에 효율과 수명이 현저히 저하되는 고질적인 문제가 있었다.
KAIST-KIST 공동 연구팀은 초미세 패턴을 적층하여 3차원 네트워크 구조를 구현할 수 있는 반도체 기술을 활용하였다. 이때 사용한 물질은 안티모니(Sb)가 도핑된 주석 산화물이며, 이 산화물 표면에는 ‘전자 저장소’역할을 하는 산소 이온이 고농도로 분포하도록 반도체 증착 기술을 적용하였다. 이 독특한 산화물 반도체를 촉매 지지체로 사용하게 되면 표면에 위치한 산소 이온이 이리듐(Ir) 촉매로 충분한 양의 전자를 지속적으로 보충해 줌으로써 촉매의 높은 수소 생산 효율을 장기간 유지해 주게 된다.
연구팀은 이를 고분자 전해질막 수전해(PEMWE) 장치에 적용한 결과, 기존 이리듐(Ir) 상용 나노입자 촉매에 비해 최대 75배 개선된 세계 최고 수준의 성능 향상을 달성함과 동시에 높은 전류 밀도에서 장시간 구동하는 우수한 내구성 또한 확보했다.
우리 대학 정연식 교수는 “일반적으로 반도체 기술과 수소 생산은 크게 다른 분야로 여겨지지만, 기존 합성 기술로는 얻기 어려운 독특한 조성의 소재를 정밀 반도체 공정 기술로 구현함으로써 높은 효율을 달성할 수 있었고, 이는 기술 분야 간 융합의 중요성을 잘 보여주는 연구 사례”라고 덧붙였다. KIST 김진영 박사는“기존 귀금속 촉매량의 1/10 이하만 사용하고도 동등 이상의 성능을 달성해, 앞으로 추가 연구를 통해 그린 수소 생산의 경제성을 확보할 수 있을 것으로 기대된다”고 언급했다.
신소재공학과 이규락 학생, KIST 김준 박사, 홍두선 박사가 공동 제1 저자로 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션스(Nature Communications)' 9월 5일 字 온라인판에 게재됐다. (논문명: Efficient and sustainable water electrolysis achieved by excess electron reservoir enabling charge replenishment to catalysts)
이번 연구는 산업자원통상부 에너지혁신인재양성사업, 과학기술정보통신부 미래수소원천기술개발사업, 그리고 과학기술정보통신부 나노소재기술개발 사업 등의 지원을 받아 수행됐다.
2023.09.25
조회수 5455
-
쭉쭉 늘어나는 웨어러블 디바이스 핵심기술 개발
웨어러블 전자 소자, 소프트 로보틱스 등 차세대 전자 디바이스에는 오랜 시간 손상되지 않으며 구동하기 위해서는 단단하고 잘 늘어나면서도 스스로 치유되는 성질을 가지는 탄성 고분자 소재의 개발이 필요하다.
우리 대학 신소재공학과 강지형 교수 연구팀이 탄성 고분자 소재의 기계적 물성과 자가 치유 효율성을 동시에 높이는 새로운 고분자 설계법을 개발하였다고 28일 밝혔다.
자가 치유 고분자는 고분자 사슬의 움직임이 많고 에너지 분산에 효율적인 결합이 사용될 경우에 자가 치유 특성을 가지게 된다. 하지만 이러한 성질은 고분자 소재를 기계적으로 약하게 만들게 되어 강하며 스스로 치유되는 특성을 동시에 가지는 재료의 개발에는 어려움이 있었다.
강지형 교수 연구팀은 금속 이온과 유기 리간드를 포함한 고분자 사이의 결합에 음이온이 미치는 영향에 대해 다양한 분석법을 통해 심도 있게 분석하여 고분자 소재가 외부 힘에 얼마나 견디는지에 대한 응력 완화 메커니즘을 규명했다. 이를 바탕으로 각기 다른 기능을 가지는 두 음이온을 의도적으로 섞어 기존 소재 대비 강성이 세 배 이상 향상하는 동시에 자가 치유 효율성도 동반 향상하는 결과를 얻어냈다.
단백질에서 많이 볼 수 있는 배위 결합을 기반으로 한 자가 치유 고분자는 금속 양이온과 고분자내 유기 리간드가 가교 결합을 형성하고 전하 균형을 위해 음이온이 근처에 존재하는 형태를 가지고 있다. 하지만 기존의 연구들은 음이온이 배위 결합 형성에 미치는 영향을 심도 있게 분석하지 않았다.
연구팀은 다른 성질을 나타내는 다섯 가지 음이온을 선별하여 배위에 참여하는 음이온, 배위에 참여하지 않는 음이온, 둘 이상의 배위 방식을 가지는 음이온, 총 세 카테고리로 분류했으며 이들이 거시적 고분자 물성에 미치는 영향을 분석했다. 배위에 참여하는 음이온은 고분자의 탄성율을 높이지만 소재가 끊어지지 않고 늘어나게 하는 연신율을 감소시키는 반면 배위에 참여하지 않는 음이온은 낮은 탄성율과 높은 연신율을 부여한다. 둘 이상의 배위 방식을 가지는 음이온은 응력 완화 메커니즘의 다양화를 이끌어 높은 탄성률과 상대적으로 높은 연신율을 부여한다.
이에 따라 연구팀은 다중 배위 방식을 가지는 음이온과 배위에 참여하지 않는 음이온을 혼합했을 때 두 음이온이 가지는 시너지로 인해 단독 음이온 시스템에 비해 더 높은 탄성률, 높은 연신율, 높은 자가 치유 효율성이 나타나는 것을 밝혔다.
이번 연구를 주도한 강지형 교수는 “이번 연구는 양날의 검과 같은 관계를 갖는 탄성 고분자 소재의 기계적 성질과 자가 치유 효율성을 동시에 높이는 새로운 전략을 개발했다는 것에서 큰 의의가 있으며, 잘 찢어지지 않는 자가 치유 연성 고분자의 설계 및 합성에 새로운 방향성을 제시, 차세대 소재 개발에 크게 기여할 것”이라고 말했다.
우리 대학 신소재공학과 박현창 박사가 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 8월 19일 게재됐다. (논문명: Toughening self-healing elastomer crosslinked by metal–ligand coordination through mixed counter anion dynamics)
한편 이번 연구는 한국연구재단의 나노소재기술개발사업 미래기술연구실 전략형, ERC 웨어러블 플랫폼 소재기술 센터의 지원을 받아 수행됐다.
2023.08.28
조회수 4703
-
약물 부작용 및 용해도 예측 그래프 신경망 기술 개발
최근 화학, 생명과학 등 다양한 기초과학 분야의 문제를 해결하기 위해 그래프 신경망 (Graph Neural Network) 기술이 널리 활용되고 있다. 그 중에서도 특히 두 물질의 상호작용에 의해 발생하는 물리적 성질을 예측하는 것은 다양한 화학, 소재 및 의학 분야에서 각광을 받고 있다. 예를 들어, 어떠한 약물 (Drug)이 용매 (Solvent)에 얼마나 잘 용해되는지 정확히 예측하고, 동시에 여러 가지 약물을 투여하는 다중약물요법 (Polypharmacy)의 부작용을 예측하는 것이 신약 개발 등에 매우 중요하다.
우리 대학 산업및시스템공학과 박찬영 교수 연구팀이 한국화학연구원(원장 이영국)과 공동연구를 통해 물질 내의 중요한 하부 구조(Substructure)를 탐지하여 두 물질의 상호작용에 의해 발생하는 물리적 성질 예측의 높은 정확도를 달성할 수 있는 새로운 그래프 신경망 기법을 개발했다고 18일 밝혔다.
기존 연구에서는 두 분자 쌍이 있을 때, 각 분자내에 존재하는 원자들 사이의 상호 작용만을 고려해 그래프 신경망 모델을 학습하였다. 예를 들어 특정 발색체의 물(H2O)에 대한 용해도를 예측하고자 할 때, 발색체 내의 각 원자들에 대해 물 분자의 원자들 (즉, H, O)이 갖는 영향력을 고려하는 것이다. 연구팀이 이에 반해, 연구팀이 착안한 점은 분자 구조의 화학적 특성을 결정하는 데 있어서 원자뿐만 아니라 작용기(Functional group)와 같은 분자내 하부 구조들이 중요한 역할을 한다는 점이었다. 예를 들어, 알코올이나 예를 들어, 알코올이나 포도당과 같이 하이드록실기 (Hydroxyl group)를 포함하는 분자들은 일반적으로 물에 대한 용해도가 높은 것으로 알려져 있다. 즉, 하이드록실기라는 작용기가 물에 대한 용해도를 결정하는데 중요한 역할을 한다는 것이다.
연구팀은 분자의 특성을 결정하는데 큰 영향을 끼치는 하부 구조를 추론하는 기술을 분자내의 중요한 정보를 최대한 압축하여 보존하는 ‘정보 병목 이론’과, 분자 내의 어떤 하부 구조가 분자의 고유한 특성을 결정 짓는데 큰 역할을 했는지 대한 인과 관계를 추론하는 ‘인과 추론 모형’을 활용하여 개발했다. 이를 통해 분자의 고유한 특성에 가장 큰 영향을 미치는 하부 구조를 찾아내었다. 또한 분자 간 관계를 추론하는 문제에서는 상대방 분자에 따라 대상 분자의 중요한 하부 구조가 달라질 수 있다는 점을 착안하여 물질 간 관계를 예측하는 모델을 제안했다.
이번 새로운 그래프 신경망 기법을 의학에 적용하여 정보 병목 현상을 기반으로 한 연구는 기존 연구에 비해 약물 용해도 예측에서 11%의 성능 향상, 다중약물요법 부작용 예측에서 4%의 정확도 향상을 이뤄냈다. 또한, 인과 추론 모형을 기반으로 한 연구는 약물 용해도 예측에서 17%의 성능 향상, 약물 부작용 예측에서 2%의 정확도 향상을 이뤄냈다.
박찬영 교수팀은 정보 병목 이론을 기반으로 중요한 하부 구조를 탐지해 분자 구조 관계의 높은 예측 정확도를 달성할 수 있는 그래프 신경망 모델을 개발해 기계학습 분야 최고권위 국제학술대회 ‘국제 기계 학습 학회 International Conference on Machine Learning (ICML 2023)’에서 올 7월 발표할 예정이다. (논문명: Conditional Graph Information Bottleneck for Molecular Relational Learning). 또한 인과 추론 모형을 기반으로 중요한 하부 구조를 탐지해 분포 변화에도 모델의 성능이 강건하게 유지되는 그래프 신경망 모델을 개발해 데이터마이닝 최고권위 국제학술 대회 ‘국제 데이터 마이닝 학회 ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2023)’에서 올 8월에 발표할 예정이다. (논문명: Shift-Robust Molecular Relational Learning with Causal Substructure). 두 연구 모두 KAIST 산업및시스템공학과 대학원에 재학 중인 이남경 박사과정 학생이 제1 저자, 화학연구원의 나경석 연구원이 공동 저자, 우리 대학 산업및시스템공학과의 박찬영 교수가 교신저자로 참여했다.
두 연구의 제1 저자인 이남경 박사과정은 “제안한 기술은 분자의 성질을 결정하는 데 있어 큰 영향을 미치는 하부 구조가 존재한다는 화학적 지식에 기반해 그래프 신경망을 학습할 수 있는 새로운 방법”이라면서 “상대편 분자를 고려해 대상 분자의 중요한 구조를 찾는 방법론은 이미지-텍스트 멀티 모달 학습 방법에서도 적용될 수 있어, 심층 학습 전반적인 성능 개선에 기여할 수 있다”고 밝혔다.
연구팀을 지도한 박찬영 교수도 “제안한 기술은 화학과 생명과학을 포함한 다양한 분야에서 새로운 물질을 발견하는데 널리 사용될 것으로 기대하며, 특히 환경 친화적인 소재 개발, 질병 치료를 위한 신약 발굴 등에 있어서 본 기술의 가치가 더욱 부각될 것으로 보인다”라고 밝혔다.
한편 이번 연구는 정보통신기획평가원의 지원을 받은 사람중심 인공지능 핵심원천기술개발 사업과 한국화학연구원 기본사업 (KK2351-10)의 지원을 받아 수행됐다.
2023.07.18
조회수 5262
-
빛을 이용해 간단하게 유용한 화합물 만든다
환경 오염을 유발하는 부산물이나, 높은 에너지가 필요한 고온 공정 없이 빛을 이용해 친환경적으로 의약품의 주요 원료를 만들 수 있는 새로운 합성 공정이 개발됐다.
우리 대학 화학과 홍승우 교수(IBS 분자활성 촉매반응 연구단 부연구단장) 연구팀은 광(光)촉매를 이용해 질소 고리화합물을 합성하는 새로운 화학반응을 제시하고, 의약품의 주요 골격인 ‘락탐’과 ‘피리딘’을 하나의 분자에 도입하는 데 성공했다.
‘질소 고리화합물’은 약용 화합물의 주요 구성요소다. 고리(원) 형태로 결합한 탄소 원자 사이에 질소 원자가 끼어 있는 구조로, 여기에 작용기를 결합해 약품을 합성한다. 미국 식품의약국(FDA)이 승인한 약물의 60% 이상이 질소 고리화합물 구조를 포함하고 있다. 신약 후보 물질 발굴만큼이나 질소 고리화합물을 쉽게 합성할 수 있는 전략 개발이 중요한 이유다.
연구팀은 안정적인 유기 분자를 불안정한 삼중항 상태(triplet state)로 만들어 유용 물질을 합성하는 전략을 새롭게 제시했다. 우선 연구팀은 피리딘에 아미드 그룹을 부착한 피리디늄 염이 삼중항 에너지를 가질 수 있음을 계산화학적으로 예측했다. 삼중항은 분자에서 스핀이 한 방향으로 존재하는 상태로, 매우 불안정하여 자연에서는 잘 발견되지 않는다. 삼중항 상태를 상온에서 구현한다면, 기존에 없었던 새로운 화학반응에 적용할 수 있다.
이후 실제 실험을 통해 피리디늄 염을 삼중항 상태로 만들었다. 피리디늄 염이 빛 에너지를 받아 삼중항 상태가 될 수 있도록 광촉매를 활용했다.
제1저자인 이우석 연구원은 “계산화학적 예측과 실험적 확인을 통해 ‘삼중항 에너지 전달’이라는 새로운 화학반응을 보고했다”며 “환경 오염을 유발하는 시약을 첨가해야 던 기존 합성법과 달리 가시광선을 활용하기 때문에 친환경적이다”라고 설명했다.
더 나아가 연구진은 하나의 분자에 피리딘과 락탐을 동시에 선택적으로 생성할 수 있음을 처음으로 보여줬다. 기존에는 피리딘과 락탐을 동시에 도입하기 위해서는 별도의 재료와 여러 단계의 화학반응을 거쳐야 했지만, 이제는 한 번의 반응으로 두 작용기가 선택적으로 결합된 화합물을 합성할 수 있다. 주요한 생리활성을 지닌 골격을 한 분자에 결합시킬 수 있어 더 경제적인 합성이 가능할 뿐만 아니라 약효도 증가시킬 수 있다. 또한, 연구진은 삼중항 에너지 전달 메커니즘을 피리딘뿐만 아니라 여러 고리 구조 합성 반응에 적용할 수 있다는 것도 확인했다.
연구를 이끈 홍승우 부연구단장은 “삼중항 에너지 전달을 이용하면 의약품 합성에 필요한 단계를 줄일 수 있다”며 “과정이 간단할 뿐만 아니라 친환경적인 방법으로 향후 신약 및 각종 화학제품 개발 등 산업계 전반에 큰 도움을 줄 것으로 기대된다”고 말했다.
2023.07.11
조회수 4467
-
염증없이 체내·외 측정 가능한 전자 신소재 개발
생체전자 의료기기는 체내에서 발생하는 신호를 읽어 생물학적 활동을 감지하거나, 조직을 자극해 질병 등을 치료하는 데 사용된다. 하지만 의료기기에 사용되는 전극 물질은 딱딱한 물성을 가지고 있어 체내에 염증반응을 일으키고 조직에 다량의 손상으로 이어질 수 있다. 따라서 조직과 같이 부드러운 성질을 가지면서도 전도성을 띠는 하이드로겔과 같은 연성 물질에 생체적합성이 높은 전도성 고분자를 체내 전극으로 사용하는 연구들이 활발하게 진행되고 있다.
우리 대학 신소재공학과 강지형 교수와 바이오및뇌공학과 박성준 교수 공동연구팀이 기존에 없었던 고전도성, 유사 조직 접착성 하이드로겔이란 신소재를 개발해 고성능 생체전자 기기를 구현했다고 4일 밝혔다.
대부분 전기 전도도가 높을수록 전도성 도메인들의 결정성이 높아지는 원리에 의해, 전도성이 높은 하이드로겔은 딱딱해지고, 부드러운 하이드로겔은 전도성이 낮을 수밖에 없다는 한계를 가진다. 이에 따라 전도성 고분자를 사용하는 하이드로겔 중, 전기 전도도가 높으면서도(10 S/cm 이상) 부드러운 물성(100 kPa 이하)을 가진 하이드로겔은 지금까지 보고된 바 없었다.
강지형 교수 연구팀은 기존에 없었던 고전도성, 유사 조직 물성 하이드로겔을 개발했다. 이 하이드로겔은 보고된 전도성 고분자 하이드로겔 중 가장 높은 전기 전도도(247 S/cm)를 띄며, 조직과 비슷한 물성(탄성율 = 60 kPa, 파괴변형률 = 410%)을 갖는다. 또한, 본 재료는 지속적인 움직임과 팽창, 수축이 있는 심장, 위와 같은 조직에서 안정적으로 기기가 작동하기 위해 필수조건인 조직에 쉽게 접착되는 장점을 가지고 있다.
공동연구팀은 원하는 생체 조직에 맞게 조정하고 그 형태에 맞추는 주형의 그물 구조에 따라 높은 질서도를 가지는 고분자 주형 네트워크를 도입했다.
따라서 주형에 맞추어 형성된 그물 네트워크는 기존 네트워크 대비 100배 이상 높은 전기 전도도를 보이며, 동시에 주형 고분자의 부드러운 특성 때문에 조직과 비슷한 물성을 지니게 된다. 변형에도 저항이 바뀌지 않아 생체전극으로서 최적의 성능을 갖는다.
또한 연구팀은 개발한 하이드로겔을 전극을 기반으로 한 높은 전기 전도도를 가진 다양한 고성능 생체전자 기기를 제작, 그 기능성을 검증했다. 높은 전기 전도도를 가진 특성으로 좌골신경 자극을 대상으로 하는 디바이스의 경우, 매우 낮은 전압(40 mV)에서 다리 근육의 움직임을 성공적으로 유도할 수 있었다. 또한 심전도 측정(ECG)을 위한 디바이스의 경우에도 매우 높은 신호 대 잡음 비(61 dB)로 신호를 측정하는 데 성공함으로써, 초고품질 생체 신호 측정을 위한 연성 기기 개발 가능성을 입증하였다.
이번 연구를 주도한 강지형 교수는 "이번 연구는 고전도성을 갖고 생체조직과 유사한 기계적 물성을 갖는 하이드로겔 개발을 위한 합성 방향을 새롭게 제시했다는 점에서 의미가 있다고 하면서, "이번에 개발된 전도성 하이드로겔은 급속도로 성장하고 있는 전자약 시장에 게임 체인저가 될 것으로 기대된다고 말했다.
우리 대학 신소재공학과 정주은 박사과정과 바이오및뇌공학과 성창훈 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 4월 18일 게재됐다. (논문명: Highly conductive tissue-like hydrogel interface through template-directed assembly)
한편 이번 연구는 한국연구재단의 나노소재기술개발 미래기술연구실 사업을 받아 수행됐다.
2023.05.04
조회수 6321
-
리튬 금속 이차전지 수명 세계 최고 수준으로 구현
리튬이차전지의 이상적인 음극 소재로 주목받는 리튬 금속은 현재 상용 배터리인 그라파이트(graphite, 372 mAh/g)보다 10배 높은 용량을 가지고 있지만, 충·방전 과정 중 리튬 덴드라이트(dendrite)라 불리는 바늘 구조의 침전물이 쉽게 형성되는 근본적인 문제로 인해 상용화되지 못하고 있다.
우리 대학 신소재공학과 김일두 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 리튬이온전지의 전해액 속에서 팽윤(고분자 화합물이 용매를 흡수해 부피가 늘어남)되는 초박형 공중합체 고분자 보호막을 적용해 리튬 금속 전지의 수명을 획기적으로 늘리는 데 성공했다고 28일 밝혔다.
리튬 금속의 낮은 쿨룽 효율, 짧은 전지 수명, 폭발 위험 등을 막기 위해 인공으로 고체-전해질 계면 (artificial solid-electrolyte interphase, 이하 SEI) 층을 보호막처럼 만들어 리튬 이온의 원활한 전달과 덴드라이트의 성장을 억제하기 위한 다양한 연구들이 진행되었다. 그러나, 기존의 인공 SEI 층들은 두께가 두꺼워 전지 내부의 높은 저항을 발생시키거나, 수백 사이클 이상의 구동 시 리튬 금속으로부터 떨어져 리튬 금속 음극의 장시간 안정성 유지에 어려움이 있었다. 무엇보다도, SEI 층의 형성 과정에서 반응성이 매우 큰 리튬의 손상이 발생하는 경우가 많아 원하는 형태의 SEI 층을 형성하는 데에 제약이 컸다.
공동 연구팀은 리튬 금속의 높은 반응성을 제어하고 덴트라이트 성장 및 전해액 고갈 문제를 해결하기 위해 `개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, iCVD)'이라는 공정을 이용했다. 이 공정 기술은 리튬금속 표면에 손상없이 보호막으로 적용되도록 용매를 사용하지 않는 온화한 조건에서 공정을 진행하며 기능성 고분자 박막을 얇게 균일하게 적용할 수 있다는 장점이 있다.
공동 연구팀은 iCVD 공정으로 제조된 고분자 박막을 활용해 리튬 전극의 계면을 안정화하였다. 전해액과 만나 3배 팽윤되어 부드러운 SEI 구조체를 형성하는 고분자 보호막이 적용된 리튬 음극은 세계 최고 수준의 리튬 이온 운반율(0.95)과 이온 전도도(6.54 mS cm-1) 특성을 보였다. 특히 100 nm의 얇은 두께에서도 리튬 덴드라이트 성장을 효과적으로 막는 효과가 있음을 연구팀은 증명했다. 연구팀은 피디멤스가 코팅된 리튬 음극과 상용화된 양극(LiNi0.6Co0.2Mn0.2O2)을 배터리 셀(battery cell)로 제조해, 무려 600 사이클 이상 안정적으로 구동되는 세계 최고 수준의 성능을 구현했다.
생명화학공학과 임성갑 교수는 "전해액에서 팽윤되는 초박형 고분자 보호막을 iCVD 공정을 적용해 리튬 금속 대비 6배 이상 수명 특성이 개선된 리튬 금속 전지 개발에 성공했다ˮ고 밝혔으며, 신소재공학과 김일두 교수는 "고용량 리튬 이차전지뿐만 아니라 리튬-황 전지, 리튬-공기 전지와 같은 차세대 이차전지에도 필수적으로 사용되는 리튬 음극의 상용화를 앞당기는데 기여할 수 있을 것으로 기대된다ˮ 고 말했다.
이번 연구 결과는 우리 대학 졸업생 배재형 박사(現 경희대학교 화학공학과 교수), 우리 대학 최건우 박사과정, 우리 대학 송현섭 박사과정이 공동 제1 저자로 참여했으며, 국제 학술지 `어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)' 온라인 호에 3월 8일자 출판되었으며, 표지논문 (Front Cover)으로도 선정됐다. (논문명 : Reinforcing native solid-electrolyte interphase layers via electrolyte-swellable soft-scaffold for lithium metal anode).
이번 연구는 KAIST-LG에너지솔루션 프론티어 리서치 랩 (Frontier Research Lab, FRL)과 과학기술정보통신부 선도연구센터 지원사업 (웨어러블 플랫폼 기술센터)의 지원을 받아 수행됐다.
2023.03.28
조회수 6117