-
단결정 내 역동적인 분자 구조 변화 포착
눈에 보이지 않는 작은 분자 세계의 비밀이 밝혀졌다. 우리 대학 화학과 이효철 교수(기초과학연구원(IBS) 첨단 반응동역학 연구단장) 연구팀이 화학적 단결정 분자 내 구조 변화와 원자의 움직임을 실시간으로 관찰하는 데 성공했다.
물질을 이루는 기본 단위인 원자들은 화학결합을 통해 분자를 구성한다. 하지만 원자는 수 펨토초(1/1,000조 초)에 옹스트롬(1/1억 cm) 수준으로 미세하게 움직여 시간과 공간에 따른 변화를 관측하기 어려웠다. 분자에 엑스선을 쏴 회절 신호를 분석하는 엑스선 결정학(X-ray Crystallography)의 등장으로 원자의 배열과 움직임을 관찰하는 도구가 상당한 발전을 이뤘지만, 주로 단백질과 같은 고분자 물질에 대한 연구에 집중됐다. 비(非)단백질의 작은 분자 결정은 엑스선을 흡수하는 단면적이 넓고 생성되는 신호가 약해 분석이 어렵기 때문이다.
연구진은 선행 연구에서 단백질 내 화학반응의 전이상태와 그 반응경로를 3차원 구조로 실시간 규명한 바 있다. 이번 연구에서는 최초로 분자 단위 시스템에서 비단백질 분자의 구조 변화를 밝히는 데 성공하면서 분자 동역학 분야에 새로운 이정표를 세운 것으로 평가된다.
연구진은 수 펨토초의 순간에 변화하는 분자의 움직임을 포착하기 위해 포항가속기연구소의 엑스선 자유전자 레이저를 이용한 시간분해 연속 펨토초 결정학(time-resolved serial femtosecond crystallography, TR-SFX) 기법을 사용했다. 이 기법은 엑스선 자유전자 레이저에서 생성되는 펨토초 엑스선 펄스를 반응 중인 분자에 쏴 얻은 엑스선 회절 신호를 분석해 특정 순간 분자의 구조를 알아내는 방식이다.
공동 제1 저자인 이윤범 연구원은 “방대한 양의 엑스선 회절신호를 시간 순서대로 나열하면 원자의 움직임을 실시간으로 시각화할 수 있다”라며, “마치 분자의 초고속 변화를 영상으로 촬영하는 것과 같다”라고 설명했다.
실험을 위한 시료는 철 포르피린(Fe-porphyrin) 유도체와 지르코늄(Zr) 클러스터가 반복적으로 연결된 금속–유기 골격체에 일산화탄소(CO)가 흡착된 형태의 결정을 선택했다. 금속-유기 골격체는 금속 이온과 유기 분자가 연결돼 형성된 다공성 물질로, 다양한 구조적 기능, 가스 흡착 및 저장, 촉매활성 등의 특성으로 여러 산업 분야 응용에 주목 받는 물질이다.
연구진은 이 시료에 강력한 자외선 레이저를 쏴 광해리 반응을 유도하고, 이후 펨토초 엑스선 펄스의 회절 신호를 분석했다. 그 결과, 광해리 반응으로 인해 철 포르피린에 흡착된 일산화탄소가 떨어져 나오며 세 가지의 주요한 구조로 변화하는 것을 밝혔다. 첫째는 5.55 피코초(1/1조 초) 주기로 진동하며, 2.68 피코초로 제동하는 철과 지르코늄 원자들의 집단 결맞음 진동 구조로의 변화다. 둘째는 철 포르피린의 철 이온이 포르피린 평면상에서 벗어나며 지르코늄 원자가 진동하는 구조다. 두 변화는 모두 200 펨토초 이내에 이뤄졌다. 마지막으로 온도 증가에 따라 철과 지르코늄 원자들의 무작위 진동 구조도 확인했다. 찰나의 순간, 분자의 역동적 구조 변화를 포착한 것이다.
공동 제1 저자인 강재동 학생연구원은 “이번 연구는 분자 구조를 정확히 통제해 맞춤형 특성을 가진 새로운 물질을 설계하는 연구에 기초정보를 제공할 수 있을 것”이라며, “촉매, 에너지 저장 및 이산화탄소 포집, 약물 전달 등 다양한 연구 분야에 폭넓게 활용될 것으로 기대한다”라고 전했다.
연구를 이끈 이효철 교수는 “포항가속기연구소의 적극적 지원으로 화학적 단결정 분자의 구조 변화를 최초로 포착할 수 있었다”라며, “분자 단위 화학 시스템 연구를 위한 강력한 도구로서 시간분해 연속 펨토초 결정학의 잠재력을 확인했다”라고 말했다.
이번 연구 결과는 3월 25일 19시(한국시간) 국제학술지 ‘네이처 케미스트리(Nature Chemistry)’ 온라인 판에 게재됐다.
2024.03.26
조회수 5166
-
화합물 생성AI 기술로 신약 개발 앞당긴다
신약 개발이나 재료과학과 같은 분야에서는 원하는 화학 특성 조건을 갖춘 물질을 발굴하는 것이 중요한 도전으로 부상하고 있다. 우리 대학 연구팀은 화학반응 예측이나 독성 예측, 그리고 화합물 구조 설계 등 다양한 문제를 동시에 풀면서 기존의 인공지능 기술을 뛰어넘는 성능을 보이는 기술을 개발했다.
김재철AI대학원 예종철 교수 연구팀이 분자 데이터에 다중 모달리티 학습(multi-modal learning) 기술을 도입해, 분자 구조와 그 생화학적 특성을 동시에 생성하고 예측이 가능해 다양한 화학적 과제에 광범위하게 활용가능한 인공지능 기술을 개발했다고 25일 밝혔다.
심층신경망 기술을 통한 인공지능의 발달 이래 이러한 분자와 그 특성값 사이의 관계를 파악하려는 시도는 꾸준히 이루어져 왔다. 최근 비 지도 학습(unsupervised training)을 통한 사전학습 기법이 떠오르면서 분자 구조 자체로부터 화합물의 성질을 예측하는 인공지능 연구들이 제시되었으나 새로운 화합물의 생성하면서도 기존 화합물의 특성 예측이 동시에 가능한 기술은 개발되지 못했다.
연구팀은 화학 특성값의 집합 자체를, 분자를 표현하는 데이터 형식으로 간주해 분자 구조의 표현식과 함께 둘 사이의 상관관계를 아울러 학습하는 AI학습 모델을 제안했다. 유용한 분자 표현식 학습을 위해 컴퓨터 비전 분야에서 주로 연구된 다중 모달리티 학습 기법을 도입해, 두 다른 형식의 데이터를 통합하는 방식으로, 바라는 화합물의 성질을 만족하는 새로운 화합물의 구조를 생성하거나 주어진 화합물의 성질을 예측하는 생성 및 성질 특성이 동시에 가능한 모델을 개발했다.
연구팀이 제안한 모델은 50가지 이상의 동시에 주어지는 특성값 입력을 따르는 분자 구조를 예측하는 등 분자의 구조와 특성 모두의 이해를 요구하는 과제를 해결하는 능력을 보였으며, 이러한 두 데이터 정보 공유를 통해 화학반응 예측 및 독성 예측과 같은 다양한 문제에도 기존의 인공지능 기술을 뛰어넘는 성능을 보이는 것으로 확인됐다.
이 연구는 독성 예측, 후보물질 탐색과 같이 많은 산업계에서 중요하게 다뤄지는 과제를 포함해, 더 광범위하고 풍부한 분자 양식과 고분자, 단백질과 같은 다양한 생화학적 영역에 적용될 수 있을 것으로 기대된다.
예종철 교수는 “새로운 화합물의 생성과 화합물의 특성 예측 기술을 통합하는 화학분야의 새로운 생성 AI기술의 개척을 통해 생성 AI 기술의 저변을 넓힌 것에 자부심을 갖는다”고 말했다.
예종철 교수 연구팀의 장진호 석박통합과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’지난 3월 14일 자 온라인판에 게재됐다. (논문명 : Bidirectional Generation of Structure and Properties Through a Single Molecular Foundation Model)
한편 이번 연구는 한국연구재단의 AI데이터바이오선도기술개발사업으로 지원됐다.
2024.03.25
조회수 7879
-
단백질 ‘생산 설계도’ 보호하는 RNA 조절 기전 찾았다
생명체는 DNA, RNA, 단백질과 같은 바이오분자들의 조절 작용으로 다양한 생물학적 기능을 수행한다. 바이오분자들의 조절로 유전 정보가 전달되고, 잘못 전달된 정보는 유전자 변형이나 감염성 질병의 원인이 된다. 따라서 분자생물학적 조절 연구는 유전자 치료제와 첨단 백신 개발에 중요하다. 특히, 2023년 코로나 mRNA 백신 기술을 개발한 과학자들이 노벨 생리의학상을 수상하면서 RNA 조절 연구에 기반한 첨단신약, 바이오공학 기술이 크게 주목받고 있다.
우리 대학 바이오및뇌공학과 이영석 교수 연구팀이 기초과학연구원(IBS) RNA 연구단 김빛내리 단장(서울대 생명과학부 석좌교수), 미국 국립암연구소 유진 발코프(Eugene Valkov) 박사팀과 공동연구를 통해 자체 개발한 단일핵산 분석법을 적용해 전령 RNA(messenger RNA, 이하 mRNA) 분해의 새로운 조절 기전을 찾았다고 밝혔다.
mRNA는 긴 단일 가닥 RNA 분자로, DNA에 보관된 유전 정보를 단백질에 전달하는 매개체로서 마치 단백질의 ‘생산 설계도’와 같다. 예를 들어, 코로나 mRNA 백신은 약 4,000개의 RNA 분자로 이루어져 있으며, 코로나 스파이크 단백질의 유전 정보와 다양한 RNA 변형을 활용해 스파이크 단백질 생산을 조절하도록 설계되어 있다. 결국 RNA 기능과 조절에 따라 유전자 치료제 및 mRNA 백신의 효능이 결정된다.
연구진은 다양한 RNA 조절 인자 중 특히 mRNA 꼬리에 주목해 왔다. mRNA는 말단에 50-150개의 아데닌 염기로 구성된 긴 꼬리를 갖는데, mRNA를 보호하고 단백질 합성을 촉진하는 역할을 한다. 그동안 이 꼬리는 아데닌으로만 구성된 것으로 알려졌지만, 연구진은 지난 연구에서 비(非) 아데닌 염기가 추가된 ‘혼합 꼬리(Mixed tail)’가 존재한다는 사실을 보고하였고, 이 혼합 꼬리가 mRNA의 분해를 막는 역할을 하여 유전자 활성을 높이는 데 기여함을 밝힌 바 있다.
그러나 RNA 변형의 결과인 mRNA 꼬리는 그 변형의 특이적인 행태로 인해 생화학 실험과 정량적 분석에 어려움이 있었다. 또한, 50-150개 RNA 분자의 연속적인 변형에 대한 단일염기 분석이 필요하여 mRNA 혼합 꼬리 조절 기전 연구에 제한이 있었다.
이를 해결하기 위해 연구진은 미국 국립암연구소 유진 발코프 박사 연구팀과 함께 mRNA 꼬리 조절 연구를 위한 단일핵산 분석법을 개발했다. 이어 이 분석법을 활용하여 세계 최초로 mRNA 꼬리가 분해되는 속도를 단일핵산 단위로 측정하는데 성공, mRNA 꼬리의 새로운 분해 기전을 규명했다.
연구진은 mRNA 분해를 유도하는 탈아데닐 복합체(CCR4-NOT)를 이용한 탈아데닐화 시스템을 개발하고 단일 염기 단위의 분해 반응을 수학적으로 모델링하여 혼합 꼬리 분해 효과를 정량화했다. 그 결과, 탈아데닐 복합체의 진행이 지연되는 위치를 확인할 수 있었으며, 복합체의 구성 요소들이 비 아데닌 염기에 의해 특정 위치에서 막혀 분해 속도가 조절되는 것을 밝혔다. 즉, 비 아데닌 염기가 일종의 ‘과속 방지턱’ 역할을 한다는 것을 입증한 것이다.
김빛내리 단장은 “mRNA 혼합 꼬리 조절에 대한 이해를 확장해 mRNA 안정성 조절과 유전자 발현 메커니즘에 대한 새로운 통찰을 제공했다”라며, “혼합 꼬리에 기반한 다양한 유전자 치료법 연구와 RNA 첨단 신약 개발에 기여할 것”이라고 말했다.
우리 대학 바이오및뇌공학과 이영석 교수는 “이번 연구는 분자생물학, 생화학 및 수학 분야가 만나 이룬 융합 연구의 결실”이라며, “미래 바이오공학 및 첨단바이오 분야 발전을 위한 공동연구의 중요성을 시사한다”라고 연구의 의의를 밝혔다.
이번 연구결과는 국제 학술지 ‘네이처 구조 분자생물학(Nature Structural & Molecular Biology, IF=16.8)’에 지난 2월 19일 게재됐다.
2024.02.28
조회수 5380
-
인공지능을 위한 신소재 혁신방향 제시
최근 ‘스타링크’와 같은 초연결 인터넷망과 빠른 통신이 가능한 6G 기술, 초고속 연산장치들이 개발됨에 따라, 이들과 쉽게 융합될 수 있는 초소형 고성능 장치들이 요구되고 있다. 이를 위해 감도가 좋은 센서 소재, 외부 자극을 감지할 수 있는 스마트 소재, 해킹이 불가능한 보안 소재 등 혁신적인 신소재 기술의 중요성이 날로 커지고 있다.
우리 대학 신소재공학과 김상욱 교수 연구팀이 생명화학공학과 리 섕 교수, 전기및전자공학부 권경하 교수, DGIST 로봇 및 기계전자공학과 김봉훈 교수와 함께 4차 산업혁명의 핵심 분야인 사물인터넷(IoT)을 크게 혁신할 수 있는 핵심 신소재를 소개하는 초청 논문을 발표했다고 22일 밝혔다.
김상욱 교수 연구팀은 그간 초미세 반도체회로 구현을 위한 블록공중합체 자기조립 제어(Directed Self-Assembly; DSA) 연구 분야를 세계 최초로 개척했고, 이를 실제 반도체 리소그라피 공정과 융합하는 데 성공해 국제 반도체 로드맵에 등록시켰다.
최근까지도 이 나노소재 기술을 반도체뿐만이 아니라 보안소자, 센서, 유저 인터페이스 등에 다양하게 적용하는 연구 방향을 제시해 국제적으로 선도해왔고, 이번에 그 중요성과 과학기술적 기여도를 인정받아 세계적인 학술지 `네이처 리뷰 일렉트리칼 엔지니어링(Nature Review Electrical Engineering)' 에 퍼스펙티브(perspective) 논문을 초청받아 표지논문으로 발표했다.
김상욱 교수는 “포스트 인공지능 시대의 사물인터넷 시스템은 신소재 기반의 저비용, 저전력, 소형화, 및 지속가능성이 강화된 소자기술의 혁신이 중요한데 자기조립 나노패턴 소재가 매우 중요한 역할을 할 것으로 기대된다”고 밝혔다.
`네이처 리뷰 일렉트리칼 엔지니어링' 은 세계적으로 권위를 인정받는 네이처 저널에서 올해부터 새로 발간한 인공지능 기술등 전기전자 분야 리뷰 전문 학술지로서 관련분야의 세계적인 석학들을 엄격한 기준에 따라 선정하여 논문을 초청한다. 특히 특정 연구 분야를 객관적인 시각으로 소개하는 일반 리뷰(review)와는 달리 저자의 선구적이고 독창적인 시각을 제시하는 퍼스펙티브(perspective) 논문은 극히 소수의 학계 권위자에게만 의뢰하는 것으로 알려져 있으며, 이번 논문은 그 우수성을 인정받아 해당 호의 표지 논문으로 선정되었다. 한편 이번 논문연구는 한국연구재단의 리더연구자 지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다.
*논문명: Intelligent block copolymer self-assembly towards IoT hardware components
2024.02.22
조회수 6288
-
변혜령 ˙ 백무현 교수팀, 이온 쌍 형성을 통한 안정한 유기 레독스 흐름 전지 개발
우리 대학 화학과 변혜령 교수와 백무현 교수가 이끄는 공동 연구팀이 레독스 흐름 전지 구동 중 비수계 전해질의 조합 및 이온쌍의 형성에 따라 유기 분자의 전자 전달 과정이 변하는 원리를 해명했다.
최근 에너지 저장 장치(ESS, Energy Storage System)에서의 화재 위험성을 줄이기 위해 리튬 기반의 전지 대신 안정성과 경제성을 겸비한 레독스 흐름 전지(redox flow battery)가 새로운 대안으로 제시되고 있다. 상용화된 레독스 흐름 전지는 바나듐을 활물질로 사용하고 있지만, 최근 바나듐 원가의 가격 상승으로 인해 대체 활물질의 개발이 절실히 요구되고 있다. 특히 레독스 특성을 가지는 유기 분자를 설계하고 활물질로 활용한 연구는 전지의 성능을 대폭 개선할 수 있어 각광을 받고 있다.
공동연구팀은 분자당 두 개의 전자를 저장할 수 있는 나프탈렌 다이이미드(NDI, Naphthalene diimide)를 활물질로 사용한 비수계 레독스 흐름 전지의 연구를 진행했다. 먼저, 암모늄 기능기를 NDI에 도입하고 음이온 전해질 조절을 통해 아세토니트릴 전해액에서 NDI의 용해도를 최대 0.9 M까지 증가시켰다. 또한, 전기화학반응에서 NDI와 함께 사용되는 전해질의 양이온에 따라 산화환원 전위 및 레독스 흐름 전지에서의 충/방전 과정의 변화 이유를 규명하였다. 작은 크기의 리튬 이온(Li+)이온과 낮은 전자주개 특성을 가지는 용매(아세토니트릴)로 구성된 비수계 전해질 환경에서, NDI는 두 단계의 환원 과정이 유사한 전위에서 진행됨을 보였다. 이와 비교하여 큰 반지름을 가지는 포타슘 이온(K+)을 포함한 아세토니트릴 전해액에서는 NDI의 두 단계 환원반응 사이의 전위차가 크게 벌어짐을 관찰했다.
밀도범함수 계산 분석을 통해 환원된 NDI 음이온과 높은 전하밀도를 가지는 Li+ 이온은 결합이 강해지며 특정구조를 가지는 이온쌍이 형성됨을 예상하였으며, 적외선 분광 분석을 통해 이를 실험적으로 증명할 수 있었다. 반면, 낮은 전하밀도의 K+은 NDI 음이온과 약한 상호작용으로 이온쌍이 형성되기 어려우며, 따라서 K+ 은 NDI의 환원 전위 및 안정성에 영향을 미치지 않음을 보고했다.
전해질 양이온의 효과는 레독스 흐름 전지의 전압 및 에너지 전달 효율성에 그대로 반영되었다. Li+을 기반으로 한 전해질 하에서는 NDI의 두 전자전달 반응에서 각각 하나의 충/방전 전압을 유지하는 반면, K+ 기반의 전해질에서는 각각 두개의 충/방전 전압 곡선이 관찰되었다. 무엇보다도 Li+을 사용한 레독스 흐름 전지의 장점은 이온쌍 형성으로 인한 구조 크기의 증가로 크로스오버(레독스 활성분자인 NDI가 기공을 가지는 분리막을 지나 상대 전극으로 이동하여 용량을 감소시키는 현상)를 감소시킬 수 있었다는 점이다. 그 결과 0.1 M의 NDI를 음극 전해액으로 이용한 비수계 레독스 흐름 전지를 구동 시 약 1000 사이클 이후에도 84%의 용량이 유지되는 것을 증명하였다. 이는 Li+ 전해질에서의 충/방전 과정이 안정적이며 연속 사용 시 사이클 당 0.017%의 용량 감소만이 진행된다는 결과다.
이 연구는 삼성미래기술육성사업 및 기초과학연구원 등으로부터 지원을 받아 수행되었으며, ‘미국화학회지(Journal of the American Chemical Society)’에 2024년 2월 12일자로 온라인으로 발표되었다. (논문명: Stabilization of Naphthalene Diimide Anions by Ion Pair Formation in Nonaqueous Organic Redox Flow Batteries)
2024.02.20
조회수 5414
-
알츠하이머 발병 과정을 관찰하다
퇴행성 질환을 유발하는 아밀로이드 섬유 단백질의 초기 불안정한 움직임과 같은 생명 현상을 분자 수준에서 실시간 관찰이 가능한 기술이 개발되었다. 이를 통해 알츠하이머나 파킨슨 병과 같은 퇴행성 질환의 발병 과정에 대한 실마리를 제공할 수 있을 것으로 기대된다.
우리 대학 신소재공학과 육종민 교수 연구팀이 한국기초과학지원연구원, 포항산업과학연구원, 성균관대학교 약학대학 연구팀과 함께 그래핀을 이용해 알츠하이머 질병을 유발한다고 알려진 아밀로이드 섬유 단백질의 실시간 거동을 관찰할 수 있는 새로운 단분자 관찰 기술(single-molecule technique)을 개발했다고 30일 밝혔다.
단분자 관찰 기술은 단일 분자 수준에서 발생하는 현상을 관찰할 수 있는 기법을 말한다. 생체 과정에서 수반되는 단백질 간의 상호작용, 접힘, 조립 과정 등을 이해하는 데 핵심적인 기술이다. 현재까지 단분자 관찰 기술로는 특정 분자를 식별하기 위한 형광 현미경을 이용해 관찰하거나, 단백질을 급속 냉동시켜 움직임을 고정해 분자 구조를 해석하는 초저온 전자현미경 기법이 활용 돼왔다.
하지만, 자연 그대로의 단백질을 특별한 전처리 없이 분자 단위에서 실시간으로 관찰할 수 있는 기술은 여전히 부재한 상황이었다.
최근 이에 대한 대안으로 물질을 얼리지 않고 상온 상태에서 관찰하는 액상 전자현미경 기술이 최근 주목을 받고 있다. 이 기술은 얇은 투과막을 이용해 액체를 감싸 전자현미경 내에서 물질의 변화를 관찰할 수 있는 기술이지만, 두꺼운 투과 막에 의한 분해능 저하와 전자빔에 의한 단백질 변성은 해결해야 하는 숙제였다.
육종민 교수 연구팀은 차세대 소재로 주목받고 있는 그래핀을 이용해 막에 의한 분해능 저하와 전자빔에 의한 단백질 변성 문제를 해결하며, 단백질의 거동을 실시간 관찰할 수 있는 단분자 그래핀 액상 셀 전자현미경 기술을 개발했다. [그림 1]
이번 연구에서 투과 막으로 이용한 그래핀은 원자 단위의 두께를 가지고 있어 분자 수준 관찰을 가능하게 할 뿐만 아니라, 전자빔에 의한 단백질의 산화를 방지하는 산화 방지 역할을 해 기존 대비 40배 가량 변성을 억제해 단백질의 거동을 실시간으로 관찰할 수 있게 했다.
연구팀은 개발한 전자현미경 기술을 활용해, 알츠하이머 질병을 유발한다고 알려진 아밀로이드 베타 섬유의 초기 성장 과정에서 발현되는 분자 불안정성을 세계 최초로 관찰했다. [그림 2]
이 전자현미경 기술은 온전한 단백질의 다양한 거동들을 분자 수준에서 관찰을 가능하게 하므로, 코로나19와 같은 바이러스성 단백질의 감염 과정, 퇴행성 질환을 일으키는 아밀로이드성 단백질의 섬유화/응집 거동 등과 같이 단백질의 상호작용에 의한 생명 현상을 이해하는 데 활용될 수 있을 것으로 기대된다.
육 교수는 "현미경 기술의 발전은 생명과학 및 공학 기술 발전의 토대가 되는 것으로, 분자 단위의 현상을 관찰할 수 있다면 단백질들의 상호작용을 이해하고 조절할 수 있는 실마리를 제공할 수 있으며, 이를 통해 알츠하이머와 같은 퇴행성 질환의 신약 개발에 도움을 줄 수 있을 것으로 기대한다ˮ 라고 말했다.
우리 대학 신소재공학과 졸업생 박정재 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스(Advanced Materials)' 지난 11월 온라인으로 발표됐다. (논문명 : Single-Molecule Graphene Liquid Cell Electron Microscopy for Instability of Intermediate Amyloid Fibrils).
이번 연구는 한국연구재단의 중견연구자지원사업(MIST) (NRF-2022R1A2C2008929)과 나노 및 소재 기술개발사업(MIST)(NRF-2021M3H4A6A02050365)의 지원을 받아 수행됐다.
2024.01.30
조회수 6075
-
전자의 눈으로 본 분자의 놀라운 변신: 이온의 생성 순간과 탈바꿈의 비밀을 밝히다
우리 대학 화학과 이효철 교수(IBS 첨단반응동역학 연구단) 연구팀은 기체 상태 이온의 탄생과 변화 과정을 실시간으로 관찰하는 데 성공했다고 발표했다. 이 연구는 메가전자볼트 초고속 전자 회절 기법을 활용해 분자 이온이 형성되는 순간부터 이온 내 원자들의 위치 변화를 실시간으로 추적하는 데 최초로 성공한 것으로, 이온 화학 분야에서 중요한 돌파구를 마련했다.
이온은 실생활에서부터 우주 공간까지 도처에서 중요한 역할을 수행하고 있다. 소금이 나트륨 이온과 염화 이온으로 분해되어 물에 녹으면, 짠맛을 내고, 몸으로 흡수된 나트륨 이온과 염화 이온은 신경전달과 근육의 움직임을 조절하며, 태양에서는 기체상의 이온의 집합인 플라스마를 통해 핵융합 반응이 일어나 지구에 빛과 에너지를 전달한다. 일상에서 가장 흔하게 접하는 이온의 예는 리튬 이온 배터리인데, 스마트폰, 노트북, 전기 자동차 등에서 널리 사용되는 이 배터리는 리튬 이온이 양극과 음극 사이를 이동하면서 전기를 저장하고 방출하는 원리로 작동한다. 이처럼, 이온은 우리 생활 곳곳에서 중요한 역할을 하고 있으며, 이온의 변화 과정과 구조적 특성, 나아가 동역학을 이해하는 것은 과학과 기술 발전에 있어 매우 중요하다. 그러나 이러한 이온이 형성되는 순간과 이온의 분자 구조 및 형태 변환은 실험적 어려움으로 인해 충분히 탐구되지 못했다. 특히, 기체 상태에서 이온의 구조적 동역학을 포착하는 것은 더욱 도전적인 과제였다.
연구진은 이전에 분자결합이 끊어지는 순간(Science, 2005)과 화학결합을 통해 분자가 탄생하는 순간(Nature, 2015), 그리고 화학 반응의 시작부터 끝까지 전 과정의 분자 구조를 원자 수준에서 관측한 바 있으며(Nature, 2020), 이번에 세계 최초로 기체상 이온의 생성 순간과 구조변화를 실시간으로 관찰하는 데 성공했다. 연구팀은 1,3-다이브로모프로판(DBP)에서 유래한 양이온의 생성 및 구조적 변환을 면밀히 관찰했다. 실험 데이터 분석을 통해 이 분자의 양이온이 생성된 후 구조변화가 일어나지 않는 "구조적 암흑 상태”에 머무르는 현상을 발견하였다. 이 상태는 약 3.6 피코초(1 피코초는 1조 분의 1초) 동안 지속되었으며, 이후 양이온은 네 개의 원자로 이루어진 고리 구조를 가지며, 느슨하게 결합된 브롬 원자를 포함하는 특이한 중간체로 변환되었다. 최종적으로, 느슨하게 붙어 있던 이 브롬 원자는 분리되어 떨어져 나가고, 남은 부분은 세 개의 원자로 이루어진 고리 구조를 가진 브로모늄 이온을 형성했다. 이온은 높은 반응성을 보이기 때문에 오랜 시간 존재하기 힘들고, 선택적인 생성이 힘들기 때문에 이온이 보이는 구조변화를 실시간으로 관측하는 것은 그 중요성만큼이나 힘든 일이었다. 이번 연구는 기존의 한계를 극복하고, 양이온의 생성부터 구조적 변환 과정 모두를 밝혀냄으로써 이온 화학종의 연구에 있어 중요한 돌파구를 마련한 중요한 사례로 평가된다.
연구진은 기존보다 더 빠르고 작은 움직임을 볼 수 있도록 향상된 메가전자볼트 초고속 전자 회절 실험 기법과 새롭게 고안한 신호 처리 기술 및 구조변화 모델링 분석기법을 통해 기체상 분자의 이온화 과정과 그에 따른 구조변화를 실시간으로 포착했다. 한 가지 종류의 이온을 실험에서 관측 가능할 정도의 양으로 만드는 것이 중요한데, 연구팀은 이를 위해, 공명 증강 다광자 이온화 기법을 적용하여 중성 분자에서 전자를 하나 제거하여 양이온을 생성하였다. 이 이온화 과정은 분자를 섬세하게 이온화시키는 데 중요한 역할을 하며, 이를 통해 화합물이 무작위로 분해되는 것을 방지하고, 원하는 특정 이온을 대량으로 생성하게 한다. 연구진은 이 기술을 도입함으로써 분자 이온의 구조적 변화를 정밀하게 관찰하는 것이 가능해질 것이라 기대하였는데, 이번 연구에서 그 효과를 입증하였다. 이러한 실험 결과, 생성된 기체 이온은 바로 구조변화를 나타내는 것이 아니라, 특정한 형태를 유지하다가 급격한 변화를 보이며, 나아가 화학적으로 가장 안전한 고리 형태의 분자가 형성됨을 규명했다.
이 연구는 분자 이온의 구조적 동역학을 실시간으로 관찰한 최초의 사례이다. 연구팀은 메가전자볼트 초고속 전자 회절을 활용하여, 기체 상태에서 이온의 미세한 구조변화를 세밀하게 포착할 수 있었다. 이 실험 기법은 고해상도 공간 및 시간 분해능을 제공함으로써, 이온이 생성되는 순간부터 구조적 변화가 일어나는 전 과정을 정밀하게 추적할 수 있게 하였다. 또한, 이 연구에서는 공명 증강 다광자 이온화 기법을 통해, 분자의 이온화 과정을 더욱 정밀하게 제어할 수 있었다. 이를 통해 연구팀은 원하는 특정 이온을 대량으로 생성하고, 그 구조적 변화를 실시간으로 관찰하는 데 성공했다. 이러한 접근 방식은 기존에는 불가능했던 이온의 세밀한 구조적 특성과 동역학을 이해하는 데 중요한 역할을 했다. 이 연구는 기체 상태의 이온에 대한 깊은 이해를 가능하게 함으로써, 화학 반응의 메커니즘, 물질의 특성 변화, 그리고 우주 화학과 같은 다양한 분야에 대한 새로운 통찰을 제공한다. 이는 이온 화학 분야뿐만 아니라, 관련 과학기술 전반에 걸쳐 큰 영향을 미칠 것으로 기대된다.
제1 저자인 허준 박사는 "이번 발견은 이온 화학의 근본적인 이해를 한 단계 끌어올리며, 미래의 다양한 화학 반응 설계와 우주 화학 연구에 중요한 영향을 미칠 것"이라고 밝혔다. 제1 저자인 김도영 학생은 “기초과학 분야의 발전에 있어 초석의 역할을 할 수 있는 좋은 연구를 하게 되어 기쁘고, 좋은 과학자가 될 수 있도록 앞으로도 열심히 연구하겠다"라고 포부를 밝혔다. 이효철 교수는 “과학기술이 눈부시게 발전했지만, 아직도 우리가 모르는 것 물질세계의 경이로운 비밀이 많다. 이번 연구는 흔하지만 아직은 몰랐던 이온의 신비로운 현상을 하나 더 밝혀낸 것에 불과하다"라고 언급했다. 그리고 “기초과학에 아낌없는 투자가 있었기에 작지만 의미 있는 이정표적 연구 성과를 낼 수 있었다. 앞으로도 R&D 예산이 효과적으로 지원되기를 기대한다"라고 덧붙였다. 이 연구는 이온의 구조적 특성과 반응 메커니즘에 대한 새로운 지식을 제공하며, 향후 관련 분야의 연구에 큰 기여를 할 것으로 기대된다.
이번 연구 결과는 네이처(Nature)지에 게재되었으며, 1월 11일 01시에 온라인으로 공개되었다. 연구 논문의 제목은 "Capturing the generation and structural transformations of molecular ions"이다.
2024.01.11
조회수 5931
-
쭉쭉 늘어나는 최고 성능의 태양전지 개발
웨어러블 전자소자의 시장 규모가 급격히 커지며 에너지 공급원으로서 잡아당겨 늘려도 작동할 수 있는 스트레쳐블 태양전지가 각광 받고 있다. 이러한 태양전지를 구현하기 위해서는 빛을 전기로 전환하는 광활성층의 높은 전기적 성능과 기계적 신축성 확보가 필수적인데, 이 두 가지 특성은 서로 상충관계를 가지고 있어서 스트레쳐블 태양전지의 구현은 매우 어려운 문제였다.
우리 대학 생명화학공학과 김범준 교수 연구팀이 높은 전기적 성능과 신축성을 동시에 갖는 새로운 형태의 전도성 고분자 물질을 개발해 세계 최고 성능의 스트레처블 유기태양전지를 구현했다고 26일 밝혔다.
유기 태양전지(organic solar cells)는 빛을 받아 전기를 생산하는 광 활성층이 유기물로 구성되는 전자소자로, 기존 무기 재료 기반 태양전지에 비해 가볍고 유연하다는 장점이 있어 몸에 착용할 수 있는 웨어러블 전자소자에 사용 가능하다. 특히, 태양전지는 이러한 전자소자의 전력을 공급하는 필수적인 소자이지만, 기존 고효율 태양전지는 신축성을 가지기 어려워서 웨어러블 소자로 거의 구현된 바가 없다.
김범준 교수 연구팀은 높은 전기적 성질을 가지는 전도성 고분자에 고무처럼 늘어나는 고신축성 고분자를 화학 결합을 통해 연결하여, 높은 전기적 성능과 기계적 신축성을 동시에 가지는 새로운 형태의 전도성 고분자를 개발하였다. 개발된 고분자는 현재 세계 최고 수준의 광전변환효율 (19%)을 가지는 유기태양전지를 구현하면서도, 기존 소자들에 비해 10배 이상 높은 신축성을 달성하였다. 이를 통해 40% 이상 잡아당겨도 작동하는 세계 최고성능의 스트레처블 태양전지를 구현하였으며, 이를 통해 사람이 착용가능한 태양전지의 응용 가능성을 증명했다.
김범준 교수는 "이번 연구를 통해 세계 최고성능의 스트레쳐블 유기 태양전지를 개발했을 뿐만 아니라 새로운 개념의 고분자 소재 개발을 통해 자유형상 및 신축성을 요구로 하는 다양한 전자소자에 응용가능한 소재 원천 기술을 개발했다는 것에 큰 의의가 있다ˮ라고 밝혔다.
이진우, 이흥구 연구원이 공동 제1 저자로 참여하고, 기계공학과 김택수 교수, 생명화학공학과 리섕 교수팀이 공동으로 진행한 이번 연구는 국제 학술지 `줄(Joule)'에 12월 1일 출판됐다. (논문명: Rigid and Soft Block-Copolymerized Conjugated Polymers Enable High-Performance Intrinsically-Stretchable Organic Solar Cells).
이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2023.12.26
조회수 5154
-
액정 고분자를 통해 ‘올인원 솔루션’ 기술 개발
액정 고분자는 녹아있는 상태에서 액정성을 나타낸 고분자로 높은 내열성과 강도를 가지고 있어서 기존에는 광학 필름이나 코팅 소재로 응용되었지만, 최근에는 가스 및 액체 흡착, 약물 전달, 센서 기술 등의 분야에서 광범위하게 효율적 활용이 가능하다는 연구가 보고되고 있다.
우리 대학 화학과 윤동기 교수 연구팀이 연성 소재(soft material)중 하나인 액정 고분자의 자기조립(self-assembly)을 활용해 다공성 액정 고분자 구조체를 제작하고, 다양한 기능성 나노 입자를 도입해 복합체를 형성할 수 있는 원천기술을 개발했다고 20일 밝혔다.
이번 연구에서 윤 교수팀은 다양한 모양에 조립을 유도할 수 있는 분자 형태로 이루어져 있어 표면 개질, 공간적 한정, 빛, 전기장에 의해 배향이 쉽게 조절되는 특성을 가진 액정의 배향 제어를 기반으로 액정 고분자 기반의 다공성 구조체를 제작했고, 이를 매트릭스로 하여 페로브스카이트(perovksite), 금속유기골격체 (metal-organic framework), 퀀텀닷(quantum dot) 등과 같은 다양한 기능성 나노 입자 도입을 통해 유-무기 복합체(organic-inorganic composite)를 제작하는 것에 집중했다.
연구팀은 매트릭스의 기공에서 나노 입자들을 직접 성장시키거나 이미 제작된 나노 입자들을 도입하는 서로 다른 전략을 개발했다. 이를 통해 도입하고자 하는 기능성 나노 입자의 선택성을 넓혀 범용적인 복합체 제작이 가능하다는 것을 보였다. (그림 1)
연구팀은 또한 두 가지 이상의 나노 입자들을 도입하는 전략을 제시해 다기능성 복합체 제작이 가능하다는 것을 보였다. 기존의 다공성 고분자 기반의 복합체 제작 연구의 경우 하나의 기능성 입자를 도입하고자 하는 것에 초점이 맞추어져 있고, 두 가지 이상의 기능성 도입을 위한 자세한 연구는 부족하다. 연구팀이 이번 연구에서 제안한 다기능성 복합체의 경우 서로 다른 나노 입자들의 기능성을 동시에 가질 수 있어, 기존 기능성 입자들의 활용 범위를 더욱 넓힐 수 있다는 것을 보였다.
화학과 윤동기 교수는 “이 기술은 기존에 알려진 대표적인 무기 입자들을 액정 고분자를 통해 한 번에 제조, 포함할 수 있는 `올인원 솔루션'으로 오염물질 제거, 안정된 디스플레이 소자 개발, 차세대 통신용 인쇄 회로 기판 제조 등에 다기능성을 부여할 수 있다는 점에서 획기적인 기술이라고 할 수 있다”고 언급했다.
이번 연구는 국제 학술지 어드밴스드 머터리얼즈(Advanced Materials)에 “Universal Strategy for Inorganic Nanoparticle Incorporation into Mesoporous Liquid Crystal Polymer Particles”의 이름으로 지난 11월 22일 자에 게재됐다.
이근중†, 박건형†, 박계현, 박영서, 이창재, 윤동기* : 공동 제1 저자, * 교신저자.
한편 이번 연구는 과학기술정보통신부-한국연구재단의 지원을 받은 중견연구자 지원사업, 함께달리기사업의 지원을 받아 수행됐다.
2023.12.20
조회수 6009
-
K-약용식물에서 세 단계만에 분자연금술 뚝딱
K-약용식물 추출물에서 단 세 단계 만에 퇴행성 신경질환 등 난치성 신경질환 치료제로 개발가능한 물질인 ‘수프라니딘 B’를 합성하는 ‘분자 연금술’에 성공하여 화제다.
우리 대학 화학과 한순규 교수 연구팀이 국내 자생 ‘광대싸리’에 극미량 존재하는 고부가가치 천연물을 생체모방 전략을 통해 쉽게 얻을 수 있는 물질로부터 간단하게 합성하는 방법을 개발했다고 1일 밝혔다.
`세큐리네가 알칼로이드'는 국내 자생 약용식물인 ‘광대싸리’에서 발견되는 천연물 군으로, 항암 및 신경돌기 성장 촉진 등 다양한 약리 활성을 보여 수십 년간 합성화학계의 관심을 받아왔다.
이들 물질 군에는 기본 골격으로부터 산화되거나 사슬처럼 연결된 형태를 갖는 100여 종의 초복잡 천연물들이 존재하는데, 상대적으로 간단한 기본 골격체의 합성은 잘 정립되어 있었던 반면, 초복잡 화합물의 합성은 난제로 남아 있었다.
그 중 `수프라니딘(suffranidine) B'도 초복잡 세큐리네가 천연물 중의 하나로, 신경세포의 신경돌기 성장을 촉진해, 퇴행성 신경질환이나 신경 절단 등 현재는 난치성인 신경질환의 치료제로 기대되는 물질이다. 그러나 식물 1 킬로그램(kg)당 추출량이 0.4 밀리그램(mg)에 그칠 정도로 극히 적고 정제 또한 어려워 추가적인 연구에 제한점이 많았다.
한 교수 연구팀은 광대싸리에서 쉽게 대량으로 추출할 수 있는 기본골격을 갖는 세큐리네가 천연물인 알로세큐리닌(allosecurinine)과 시중에서 값싸게 구할 수 있는 누룩산(kojic acid) 유래 물질로부터 단 세 단계 만에 수프라니딘 B를 합성하는 방법을 개발했다.
이번 연구는 수프라니딘 B의 세계 최초 합성으로 쉽게 구할 수 있는 물질로부터 고부가가치 화합물을 간단하게 만들어 낸 일종의 `분자 연금술'이라 볼 수 있다. 수프라니딘 B와 같이 복잡한 천연물을 이렇게 짧은 과정으로 합성해 낸 사례는 몹시 드물다.
생체모방 합성(biomimetic synthesis)은 자연이 천연물을 합성하는 과정(생합성)을 모방해 복잡한 천연물을 합성하는 연구 방식이다. 합성 과정에서 생합성 경로에 존재할 것으로 여겨지는 중간체들의 화학적 반응성을 탐구할 수 있으므로, 해당 물질의 생합성 경로를 더욱 깊게 이해할 기회를 제공한다. 세큐리네가 알칼로이드는 1956년 최초로 발견되었으나 현재까지도 생합성 경로가 밝혀지지 않은 상태다.
한 교수는 "이번 연구로 수프라니딘 B를 간단하게 생산할 수 있게 되었을 뿐 아니라 초복잡 세큐리네가 천연물의 생합성에 대한 이해 또한 높일 수 있었다ˮ며 "고부가가치 국내 자생 약용식물을 합성화학적으로 또는 합성생물학적으로 생산할 수 있는 학문적 토대를 마련했다ˮ고 밝혔다.
KAIST 화학과 강규민 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 화학 분야 저명 국제 학술지인 `미국화학회지(Journal of the American Chemical Society)' 지난 11월 2일 자에 게재됐다. (논문명 : Synthesis of Suffranidine B)
한편 이번 연구는 KAIST의 도약연구(UP) 및 한국연구재단의 기초연구사업(중견연구)등의 지원을 통해 이뤄졌다.
2023.12.01
조회수 5971
-
반도체 기술로 75배 향상된 초고효율 수소 생산 성공
반도체 공정기술을 활용하여 세계 최고 수준의 높은 수소 생산 효율을 장기간 유지하는 기술이 개발되어 화제다.
우리 대학 신소재공학과 정연식 교수·KIST(원장 윤석진) 김진영 박사·김동훈 박사 공동 연구팀이 수소 생산 촉매가 반응 중 잃어버리는 전자를 신개념 산화물 반도체로부터 보충받는 새로운 원리를 활용해 고효율 및 고내구성 수소 생산 기술을 개발했다고 25일 밝혔다.
고순도 그린 수소를 생산하기 위해 신재생에너지로 물을 전기분해하는 친환경적인 고분자 전해질막 수전해(PEMWE) 장치를 활용하게 된다. 이때 주로 사용되는 이리듐(Ir) 촉매의 경우 전자를 많이 가지고 있는 상태를 지속적으로 유지해야 고효율과 고내구성을 동시에 달성할 수 있게 된다. 하지만 일반적으로 쉽게 전자를 잃어버리고 산화되는 촉매 반응의 특성 때문에 효율과 수명이 현저히 저하되는 고질적인 문제가 있었다.
KAIST-KIST 공동 연구팀은 초미세 패턴을 적층하여 3차원 네트워크 구조를 구현할 수 있는 반도체 기술을 활용하였다. 이때 사용한 물질은 안티모니(Sb)가 도핑된 주석 산화물이며, 이 산화물 표면에는 ‘전자 저장소’역할을 하는 산소 이온이 고농도로 분포하도록 반도체 증착 기술을 적용하였다. 이 독특한 산화물 반도체를 촉매 지지체로 사용하게 되면 표면에 위치한 산소 이온이 이리듐(Ir) 촉매로 충분한 양의 전자를 지속적으로 보충해 줌으로써 촉매의 높은 수소 생산 효율을 장기간 유지해 주게 된다.
연구팀은 이를 고분자 전해질막 수전해(PEMWE) 장치에 적용한 결과, 기존 이리듐(Ir) 상용 나노입자 촉매에 비해 최대 75배 개선된 세계 최고 수준의 성능 향상을 달성함과 동시에 높은 전류 밀도에서 장시간 구동하는 우수한 내구성 또한 확보했다.
우리 대학 정연식 교수는 “일반적으로 반도체 기술과 수소 생산은 크게 다른 분야로 여겨지지만, 기존 합성 기술로는 얻기 어려운 독특한 조성의 소재를 정밀 반도체 공정 기술로 구현함으로써 높은 효율을 달성할 수 있었고, 이는 기술 분야 간 융합의 중요성을 잘 보여주는 연구 사례”라고 덧붙였다. KIST 김진영 박사는“기존 귀금속 촉매량의 1/10 이하만 사용하고도 동등 이상의 성능을 달성해, 앞으로 추가 연구를 통해 그린 수소 생산의 경제성을 확보할 수 있을 것으로 기대된다”고 언급했다.
신소재공학과 이규락 학생, KIST 김준 박사, 홍두선 박사가 공동 제1 저자로 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션스(Nature Communications)' 9월 5일 字 온라인판에 게재됐다. (논문명: Efficient and sustainable water electrolysis achieved by excess electron reservoir enabling charge replenishment to catalysts)
이번 연구는 산업자원통상부 에너지혁신인재양성사업, 과학기술정보통신부 미래수소원천기술개발사업, 그리고 과학기술정보통신부 나노소재기술개발 사업 등의 지원을 받아 수행됐다.
2023.09.25
조회수 8131
-
쭉쭉 늘어나는 웨어러블 디바이스 핵심기술 개발
웨어러블 전자 소자, 소프트 로보틱스 등 차세대 전자 디바이스에는 오랜 시간 손상되지 않으며 구동하기 위해서는 단단하고 잘 늘어나면서도 스스로 치유되는 성질을 가지는 탄성 고분자 소재의 개발이 필요하다.
우리 대학 신소재공학과 강지형 교수 연구팀이 탄성 고분자 소재의 기계적 물성과 자가 치유 효율성을 동시에 높이는 새로운 고분자 설계법을 개발하였다고 28일 밝혔다.
자가 치유 고분자는 고분자 사슬의 움직임이 많고 에너지 분산에 효율적인 결합이 사용될 경우에 자가 치유 특성을 가지게 된다. 하지만 이러한 성질은 고분자 소재를 기계적으로 약하게 만들게 되어 강하며 스스로 치유되는 특성을 동시에 가지는 재료의 개발에는 어려움이 있었다.
강지형 교수 연구팀은 금속 이온과 유기 리간드를 포함한 고분자 사이의 결합에 음이온이 미치는 영향에 대해 다양한 분석법을 통해 심도 있게 분석하여 고분자 소재가 외부 힘에 얼마나 견디는지에 대한 응력 완화 메커니즘을 규명했다. 이를 바탕으로 각기 다른 기능을 가지는 두 음이온을 의도적으로 섞어 기존 소재 대비 강성이 세 배 이상 향상하는 동시에 자가 치유 효율성도 동반 향상하는 결과를 얻어냈다.
단백질에서 많이 볼 수 있는 배위 결합을 기반으로 한 자가 치유 고분자는 금속 양이온과 고분자내 유기 리간드가 가교 결합을 형성하고 전하 균형을 위해 음이온이 근처에 존재하는 형태를 가지고 있다. 하지만 기존의 연구들은 음이온이 배위 결합 형성에 미치는 영향을 심도 있게 분석하지 않았다.
연구팀은 다른 성질을 나타내는 다섯 가지 음이온을 선별하여 배위에 참여하는 음이온, 배위에 참여하지 않는 음이온, 둘 이상의 배위 방식을 가지는 음이온, 총 세 카테고리로 분류했으며 이들이 거시적 고분자 물성에 미치는 영향을 분석했다. 배위에 참여하는 음이온은 고분자의 탄성율을 높이지만 소재가 끊어지지 않고 늘어나게 하는 연신율을 감소시키는 반면 배위에 참여하지 않는 음이온은 낮은 탄성율과 높은 연신율을 부여한다. 둘 이상의 배위 방식을 가지는 음이온은 응력 완화 메커니즘의 다양화를 이끌어 높은 탄성률과 상대적으로 높은 연신율을 부여한다.
이에 따라 연구팀은 다중 배위 방식을 가지는 음이온과 배위에 참여하지 않는 음이온을 혼합했을 때 두 음이온이 가지는 시너지로 인해 단독 음이온 시스템에 비해 더 높은 탄성률, 높은 연신율, 높은 자가 치유 효율성이 나타나는 것을 밝혔다.
이번 연구를 주도한 강지형 교수는 “이번 연구는 양날의 검과 같은 관계를 갖는 탄성 고분자 소재의 기계적 성질과 자가 치유 효율성을 동시에 높이는 새로운 전략을 개발했다는 것에서 큰 의의가 있으며, 잘 찢어지지 않는 자가 치유 연성 고분자의 설계 및 합성에 새로운 방향성을 제시, 차세대 소재 개발에 크게 기여할 것”이라고 말했다.
우리 대학 신소재공학과 박현창 박사가 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 8월 19일 게재됐다. (논문명: Toughening self-healing elastomer crosslinked by metal–ligand coordination through mixed counter anion dynamics)
한편 이번 연구는 한국연구재단의 나노소재기술개발사업 미래기술연구실 전략형, ERC 웨어러블 플랫폼 소재기술 센터의 지원을 받아 수행됐다.
2023.08.28
조회수 6608