-
리튬이온전지 충방전 과정을 나노스케일에서 영상화 성공
리튬이온전지는 스마트폰과 전기차 그리고 드론을 비롯한 각종 이동 수단에 필수적인 에너지 저장 매체로 사용되고 있다. 기후변화와 코로나 팬데믹이 키워드가 되는 시대가 도래하면서 급증하는 수요에 대응하기 위해 리튬이온전지의 에너지 용량, 충전 속도 등의 전기화학적 특성을 향상하려는 연구들이 이뤄지고 있지만, 기존의 전기화학 특성 평가 방법으로는 나노미터 수준의 미시세계에서 벌어지고 있는 현상들을 이해하기 어렵다. 따라서, 전기화학 특성에 대한 통합적인 이해를 위해 나노스케일 수준에서 리튬이온의 농도 및 전기전도도 분석 기술의 개발은 필수적이다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 독일의 아헨공과대학교 플로리안 하우센(Florian Hausen) 교수와 독일 뮌스터 대학교 카린 클라이너(Karin Kleiner) 교수와 협업하여 고용량 리튬이온배터리를 충‧방전할 때 리튬이온이 움직이는 모습과 그로 인해서 전자들이 움직이는 전도 경로 그리고 격자들의 움직임을 원자간력 현미경과 엑스레이 회절 및 흡수 패턴을 분석해 영상화하는 데 성공했다고 28일 밝혔다.
홍 교수 연구팀은 원자간력 현미경의 모드 중에서 전기화학적 변형 현미경(Electrochemical Strain Microscopy, 이하 ESM)과 전도성 원자간력 현미경(Conductive Atomic Force Microscopy, 이하 C-AFM)을 활용해, 친환경차 배터리에 적용되는 고용량 양극재인 NCM622 시료의 충방전상태(State of Charge, SOC)에 따른 리튬이온의 나노스케일 분포도를 영상화했으며, 이를 근단엑스선형광분광계(Near Edge X-ray Absorption Fluorescence Spectroscopy, NEXAFS)와 엑스선회절패턴(X-ray Diffraction Pattern, XRD pattern)과 비교 분석해 리튬이온이 양극재에 확산하여 들어갈 때 산소팔면체에 들어가면서 니켈과 산소의 결합이 이온 결합에서 공유결합으로 바뀌면서 전기전도도가 낮아지는 현상을 검증하고, 이를 ESM, C-AFM 영상과 비교하면서 상당한 상관관계가 있음을 밝혀냈다.
교신 저자인 홍승범 교수는 "배터리 소재 내에서 리튬이온의 확산을 영상화하고 이를 통해서 일어나는 현상들을 다중스케일에서 이해하는 것은 향후 신뢰성이 높고 수명이 긴 고속 충‧방전 배터리 소재를 디자인하는 데 있어 매우 중요하다ˮ라며 "향후 신소재 영상화 기술과 머신러닝 기술을 융합하는 것이 20년 걸리던 배터리 소재 개발기간을 5년 이내로 단축할 수 있을 것이다ˮ 라고 말했다.
신소재공학과 알비나 제티바예바(Albina Jetybayeva) 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 `ACS 어플라이드 에너지 머티리얼스 (ACS Applied Energy Materials)'에 게재됐다. (논문명: Unraveling the State of Charge-Dependent Electronic and Ionic Structure−Property Relationships in NCM622 Cells by Multiscale Characterization)
이번 연구는 KAIST 글로벌 특이점 사업과 한국연구재단의 거대과학연구개발사업의 지원을 받아 수행됐다.
2022.04.29
조회수 9436
-
신소재 영상화 및 머신러닝을 활용한 미래 개척
우리 대학 신소재공학과 홍승범 교수 연구팀이 KAIST 10대 플래그쉽 분야이자, 글로벌 특이점 과제인 `KAIST 신소재 혁명: M3I3 이니셔티브' 과제의 배경, 역사, 진행 상황 그리고 미래 방향을 제시했다고 31일 밝혔다.
홍 교수 연구팀은 다중스케일 다중모드 영상화 기술과 머신러닝(기계학습) 기법을 융합해서 고차원의 구조-물성 및 공정-구조 상관관계를 도출했다. 그리고 이를 인공지능과 3차원 다중 스케일 프린팅 기술을 활용해서 신소재 디자인부터 시장 진입까지의 기간을 획기적으로 단축할 수 있는 비전과 실행 플랫폼을 제안했다. M3I3 플랫폼은 고용량 에너지 소재 디자인에서 시작해서, 고밀도 메모리 소재, 고성능 자동차/항공 소재에도 응용 가능할 것으로 기대된다.
우리 대학 신소재공학과 홍승범 교수가 제1 저자로, 리오치하오 박사가 제2 저자로 참여하고, 육종민 교수, 변혜령 교수, 양용수 교수, 조은애 교수, 최벽파 교수, 이혁모 교수가 공동 저자로 참여한 이번 연구는 국제 학술지 `에이씨에스 나노(ACS Nano)' 2월 12일 字 온라인 출판됐다. (논문명 : Reducing Time to Discovery: Materials and Molecular Modeling, Imaging, Informatics, and Integration)
역사의 큰 흐름을 결정한 신소재는 시행착오와 도제식의 비결 전수를 통해서 발견 및 개발돼왔다. 각종 무기와 그릇, 그리고 장신구들이 좋은 예다. 광학현미경이 발명되면서 검의 미세구조와 검의 강도 혹은 경도 간의 상관관계를 이해하기 시작했고, 투과전자현미경과 원자간력 현미경의 발명으로 원자 수준의 분해능으로 신소재를 영상화하기 시작했다.
고려청자를 현재 재현하지 못하는 것은 고려 시대의 장인들이 그 비결을 남기지 않았기 때문이라고 우리는 가르치고 있다. 그러나, 미래에는 고려청자의 다중 스케일 구조를 영상화해서 데이터화 하고, 구조를 구현할 수 있는 공정 과정을 머신러닝의 힘을 빌려 역설계한다면, 고려청자를 재현하는 일은 가능할 것으로 보인다.
우리 대학 M3I3 플랫폼은 이처럼 다중 스케일 및 다중 모드 영상화 기술, 데이터 마이닝과 머신러닝, 그리고 다중 스케일 제조 기술을 접목해 미래에 필요한 신소재를 역설계해서 빠르게 공정 레시피를 확보할 수 있게 만들어준다.
이번 논문에서는 M3I3 플랫폼의 유효성을 확인하기 위해 배터리 소재에 적용하는 연구를 진행했다. 고용량 배터리 소재의 개발 기간을 단축할 수 있다는 것을 검증하기 위해서 20년간의 논문 자료를 50여 명의 학생이 읽고 데이터를 추출해 양극재의 에너지 밀도와 소재 조성 간의 상관관계를 도출했다. 그리고 논문에 나와 있는 공정, 측정 및 구조 변수들을 머신러닝 기법을 활용해 모델을 수립한 후, 무작위 조건에서 합성해 모델의 정확도를 측정함으로써 데이터 마이닝과 머신러닝의 우수성을 입증했다.
또한 투과전자현미경(TEM), 주사투과전자현미경(STEM), 원자간력현미경(AFM), 광학현미경 등의 다양한 현미경과 엑스레이(X-ray), 라만(Raman), UV/Visible/IR 등 다양한 분광 장비들을 통해 얻은 영상과 스펙트럼 데이터를 기반으로 다중 스케일 구조↔물성 상관관계를 도출하고, 여러 가지 공정변수 데이터를 수집해, 공정↔구조 상관관계를 수립하는 것이 M3I3 플랫폼의 중요한 핵심이다. 특히, 실험데이터와 시뮬레이션 데이터를 융합하고, 머신러닝으로 생성한 가상의 데이터를 과학적인 기준에 맞춰 유의미한 빅데이터로 만들면, 머신러닝을 활용해 물성→구조→공정으로 연결되는 역설계 알고리즘을 개발하는 것이 가능해지며, 이를 통해 미래에 필요한 물성을 갖는 신소재 공정 레시피를 신속하게 확보할 수 있게 된다.
제1 저자인 홍승범 교수는 "과학은 날카로운 관찰과 정량적 측정에서 시작한 학문이며, 기술의 발전으로 현재는 눈에 보이는 소재의 모양과 구조뿐만 아니라 눈에 보이지 않는 소재의 구조를 볼 수 있는 시대가 왔고, 물성마저 공간과 시간의 함수로 영상화할 수 있는 시대가 도래했다ˮ라며 "신소재 영상화 기술과 머신러닝 기술을 융합하고 3D 프린팅 기술을 다중 스케일 자동 합성 기술로 승화시키게 되면 20년 걸리던 신소재 개발 기간을 5년 이내로 단축할 수 있을 것이다ˮ 라고 말했다.
한편, 이번 연구는 글로벌 특이점 사업의 지원을 받아 수행됐다.
2021.04.01
조회수 89581
-
딥페이크 탐지 모바일 앱 서비스 개시
우리 대학 전산학부 이흥규 교수 연구팀이 인공신경망 기반 딥페이크(deepfake) 탐지와 사진 위변조 탐지 소프트웨어인 `카이캐치(KaiCatch)'를 모바일 앱 형태로 개발해 서비스를 시작한다고 30일 밝혔다. 이는 디지털콘텐츠 위변조 탐지가 필요한 공공기관, 산업계, 언론 및 방송사, 각종 포털 종사자들 및 일반인들도 손쉽게 활용할 수 있을 것으로 기대된다.
이번 모바일 앱 서비스는 본격적으로 일반인들도 손쉽게 디지털콘텐츠 위변조 탐지 기술을 활용할 수 있도록 실용화 단계로 들어섰다는 점에서 의미가 크다. KAIST에서 딥페이크 영상을 포함해 각종 위변조 사진들을 잡아낸다는 의미를 지닌 `카이캐치(KaiCatch)' 소프트웨어를 모바일 앱 형태로 개발해 서비스를 시작하는데 이러한 유형의 서비스로는 국내 최초다. 구글스토어에서 `카이캐치'를 검색해 앱을 다운로드하면 간단하게 딥페이크 및 이미지 위변조 분석을 할 수 있다.
주로 사람의 얼굴을 대상으로 하는 딥페이크 기술은 얼굴 교체, 얼굴 재현, 얼굴 속성 변환으로 크게 3가지 유형으로 나눌 수 있다. 그중 얼굴 교체와 얼굴 재현은 악의적으로 사용할 때 가짜 뉴스로 사회적 큰 혼란을 일으킬 수 있고 음란물 제작 등에도 악용돼 개인의 인권을 크게 침해할 수 있다. 또한, 얼굴 속성 변환은 영상 증거를 조작하는데 악용될 수 있다.
연구팀이 개발한 기술은 딥페이크 생성 유형에 상관없이 딥페이크 여부를 탐지하기 위해 영상의 미세 변형 신호 흔적과 미세 이상 신호 흔적 탐지 기술을 적용한 신호처리 및 인공지능 기술로 개발됐다. 이러한 핵심 기술들을 사용해, 얼굴 영역의 미세 변형과 코, 입, 얼굴 윤곽 등 얼굴 내 기하학적 왜곡 발생 가능 영역의 이상 신호 흔적을 분석해 딥페이크를 탐지한다.
딥페이크 탐지 기술의 경우, avi 나 mp4 형식의 딥페이크 의심 동영상이 주어지면 개별 프레임으로 자른 뒤 분석하고자 하는 프레임을 이미지로 변환 후 딥페이크 탐지를 수행한다. 동영상 내의 얼굴이 지나치게 작거나(해상도 128×128 이하) 동영상 내 사람 얼굴이 상당 부분 잘린 경우가 아니면 정상적인 탐지가 가능하다. 따라서 동영상의 한 프레임을 잘라 이미지로 만들어 카이캐치 앱에 업로드하면 손쉽게 딥페이크 여부를 확인할 수 있다. 분석 결과는 0에서 100 (%) 값으로 표시되며 숫자가 높을수록 딥페이크일 확률이 높은 것으로 판단한다.
사진 위변조 탐지 기술의 경우도 마찬가지로 카이캐치 앱에 해당 이미지를 업로드하면 위변조 분석 결과를 받아 볼 수 있다. 카이캐치는 BMP, TIF, TIFF, PNG 등 무압축, 무손실 압축을 포함해 50여 개의 표준 양자화 테이블과 1,000여 개가 넘는 비표준화된 양자화 테이블에 기반한 JPEG 이미지들도 모두 처리할 수 있다. 사진 위변조가 의심되는 이미지를 업로드하면 해당 이미지를 분석한 결과를 시각화한 두 장의 분석 이미지를 도출하며, 분석 이미지 내에 위변조가 의심되는 특징들이 포함된 주요 영역들이 다른 주변 영역들과 색상이 크게 다르거나, 또는 주요 영역들에만 다양한 색상들이 혼재해 나타나면 해당 영역이 위변조된 것으로 일반인들도 간단하게 판단할 수 있다.
이번에 개발한 모바일용 위변조 탐지 앱 개발은 국내 최초이자 선진국에서도 찾기 어려운 위변조 탐지 앱 서비스 기술이다. 이흥규 교수는 "카이캐치는 인공지능과 미세 이상 신호 흔적 분석 기법이라는 첨단 기술을 사용해 다양한 유형의 변형에 대응한 범용성을 가지도록 개발됐다”며 "우리가 예측하지 못하거나 모르는 변형 기법을 사용해도 90% 내외의 높은 신뢰도로 탐지한다”고 말했다.
이 교수는 이어 "이번에는 안드로이드 기반의 모바일 환경에서만 동작하는 앱 서비스 기술로 개발됐지만 가까운 기간내 애플 iOS 기반의 앱 출시와 함께, 영어, 중국어, 일어 앱 들도 출시하려고 한다ˮ며 "기존 탐지 기법과는 매우 상이한 기법들을 사용한 위변조 탐지 기술도 실용화해 카이캐치에 추가 탑재 운용함으로써, 탐지가 안 되는 각종 예외 경우들을 대폭 줄이도록 노력하겠다ˮ 고 덧붙였다.
한편 이번 연구는 KAIST 창업기업인 ㈜디지탈이노텍(http://www.kaicatch.com/) 과 산학협력 연구로 수행됐다.
2021.03.31
조회수 88541
-
인공지능으로 3차원 고해상도 나노입자 영상화 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀이 삼성전자 종합기술원과 공동연구를 통해 나노입자의 3차원 형상과 조성 분포의 복원 성능을 획기적으로 향상한 인공지능 기술을 개발했다고 16일 밝혔다. 공동연구팀은 에너지 분산형 X선 분광법(EDX)을 주사 투과전자현미경(STEM)과 결합한 시스템을 활용했다.
이번 연구를 통해 나노입자를 형성하고 있는 물질의 형상과 조성 분포를 정확하게 재구성함으로써, 실제 상용 디스플레이를 구성하는 양자점(퀀텀닷)과 같은 반도체 입자의 정확한 분석에 도움을 줄 것으로 기대된다.
예종철 교수 연구팀의 한요섭 박사, 차은주 박사과정, 정형진 석사과정과 삼성종합기술원의 이은하 전문연구원팀의 장재덕, 이준호 전문연구원이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)' 2월 8일 字 온라인판에 게재됐다. (논문명 : Deep learning STEM-EDX tomography of nanocrystals)
에너지 분산형 X선 분광법(이하 EDX)은 나노입자의 성분 분석에 주로 이용되며, X선과 반응한 물체의 성분에 따라 고유한 방출 스펙트럼을 보인다는 점에서 화학적인 분석이 가능하다. 퀀텀닷 및 배터리 등 다양한 나노 소재의 열화 메커니즘과 결함을 해석하기 위해 형상 및 조성 분포 분석이 가능한 이 분광법의 필요성과 중요도가 급증하고 있다.
그러나 EDX 측정 신호의 해상도를 향상하기 위해, 나노 소재를 오랜 시간 전자빔에 노출하면 소재의 영구적인 피해가 발생한다. 이로 인해 나노입자의 3차원 영상화를 위한 투사(projection) 데이터 획득 시간이 제한되며, 한 각도에서의 스캔 시간을 단축하거나 측정하는 각도를 줄이는 방식이 사용된다. 기존의 방식으로 획득된 투사 데이터를 이용해 3차원 영상을 복원할 시, 미량 존재하는 원자 신호의 측정이 불가능하거나 복원 영상의 정밀도와 해상도가 매우 낮다.
그러나 공동 연구팀이 자체 개발한 인공지능 기반의 커널 회귀(kernel regression)와 투사 데이터 향상(projection enhancement)은 정밀도와 해상도를 획기적으로 발전시켰다. 연구팀은 측정된 데이터의 분포를 네트워크가 스스로 학습하는 인공지능 기반의 커널 회귀를 통해 스캔 시간이 단축된 투사 데이터의 신호 대 잡음비(SNR)를 높인 데이터를 제공하는 네트워크를 개발했다. 그리고 개선된 고화질의 EDX 투사 데이터를 기반으로 기존의 방법으로는 불가능했던 적은 수의 투사 데이터로부터 더욱 정확한 3차원 복원 영상을 제공하는 데 성공했다.
연구팀이 개발한 알고리즘은 기존의 EDX 측정 신호 기반 3차원 재구성 기법과 비교해 나노입자를 형성하고 있는 원자의 형상과 경계를 뚜렷하게 구별했으며, 복원된 다양한 코어-쉘(core-shell) 구조의 퀀텀닷 3차원 영상이 샘플의 광학적 특성과 높은 상관관계를 나타내는 것이 확인됐다.
예종철 교수는 "연구에서 개발한 인공지능 기술을 통해 상용 디스플레이의 핵심 기반이 되는 퀀텀닷 및 반도체 소자의 양자 효율과 화학적 안정성을 더욱 정밀하게 분석할 수 있다ˮ고 말했다.
2021.02.16
조회수 81961
-
인공지능으로 자폐 증상과 심각도 예측한다
뇌영상 빅데이터를 활용한 딥러닝(Deep Learning)으로 자폐 스펙트럼 장애(ASD)의 증상과 심각도를 예측할 수 있다는 것이 확인됐다. 이번 연구에 따라 ASD 환자들 진단과 예후에 따른 맞춤형 치료가 가능할 것으로 기대되고 있다.
우리 대학 바이오및뇌공학과 이상완 교수(신경과학-인공지능 융합연구센터장)와 세브란스병원 소아정신과 천근아 교수(연세자폐증연구소장) 연구팀은 ASD의 뇌영상 빅데이터를 활용해 자폐의 증상과 예후를 예측할 수 있다고 28일 밝혔다.
이번 연구결과는 ASD 아동들의 뇌영상 빅데이터를 이용한 국내 최초의 AI연구성과로, 국제전기전자기술자협회(IEEE)에서 발행하는 저널인 IEEE 엑세스(Access) 온라인판에 게재됐다.
ASD는 뇌 발달 장애의 하나로 사회적 의사소통의 결함과 제한된 관심사 및 반복적인 행동이 대표적인 특징이다. 2020년도 미국 CDC(미국질병통제예방센터)의 통계자료에 따르면 ASD의 유병률은 54명당 1명으로 매년 증가하는 추세이다. 국내 유병률도 약 2% 내외이다.
ASD는 아동 행동 관찰 및 상담과 정신질환 진단분류매뉴얼(DSM-5)에 근거해 진단한다. 하지만 환자 개인차가 심해 자폐에 대한 정확한 진단이 어렵고 예후를 예측하기도 힘들다.
이상완·천근아 교수 연구팀은 세브란스병원에 구축된 3~11세 ASD 환자 84건의 MRI 빅데이터와 국제컨소시엄으로 구축된 1000여 건의 자폐증 환자 MRI 빅데이터를 활용해 MRI 영상으로 자폐의 진단과 예후를 예측할 수 있는 딥러닝 모델을 개발했다.
연구팀은 공간 변경 네트워크(Spartial Transformer Network, STN)와 3D 컨볼루션 신경망(convolutional neural network, CNN)을 활용한 모델을 구축하고, MRI 빅데이터를 학습시켰다.
이렇게 구축된 모델에 클래스 활성화 매핑(class activation mapping) 기법을 적용해 형태학적인 특징을 추출하고 이를 뇌영상에 투영시키는 방식으로 분석했다. 더 나아가 인자들간의 관계 분석을 위해 강화학습 모델의 일종인 회귀형 주의집중 모델(recurrent attention model)을 학습시켰다.
분석결과 뇌의 기저핵을 포함한 피질 하 구조가 자폐 심각도와 관련이 있음을 확인했다.
이상완 교수는 “진료 현장에서 자폐를 진단하고 연구하는데 구조적 연관 후보를 제공할 수 있게 됐다”며 “이번 연구결과로 자폐 진단에서뿐만 아니라 앞으로 의사나 관련 전문가들이 인공지능을 활용해 복잡한 질병을 이해하고 더 많이 활용할 수 있게 될 것”이라고 설명했다.
천근아 교수도 “자폐스펙트럼장애를 진단함에 있어 뇌 영상 자료는 아직까지 의사들 사이에서 활용가치가 높지 않다는 인식이 보편적인데 이번 연구를 통해 자폐의 하위 증상과 심각도 사이에 뇌영상에서 차이가 있다는 것을 확인했다”며 “이번 연구는 다양한 임상표현형과 심각도를 지닌 자폐증 환자들에게 개별 맞춤 진단과 예후를 예측하는데 의미를 가진다”고 말했다. [보도자료 출처: 세브란스병원 홍보팀]
2020.08.28
조회수 23350
-
정확성이 획기적으로 향상된 코로나19 영상 진단 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀이 흉부 단순 방사선 촬영 영상으로 신종 코로나바이러스 감염증(이하 코로나19) 진단의 정확성을 획기적으로 개선한 인공지능(AI) 기술을 개발했다.
예 교수 연구팀이 개발한 인공지능 기술을 사용해 코로나19 감염 여부를 진단한 결과, 영상 판독 전문가의 69%보다 17%가 향상된 86%이상의 우수한 정확성을 보였다고 KAIST 관계자는 설명했다.
이 기술을 세계적으로 대유행하는 코로나19 선별 진료(Triage)체계에 도입하면 상시 신속한 진단이 가능할 뿐만 아니라 한정된 의료 자원의 효율적인 사용에 큰 도움을 줄 것으로 기대된다.
오유진 박사과정과 박상준 박사과정이 공동 1저자로 참여한 이 연구 결과는 국제 학술지 `아이트리플이 트랜잭션 온 메디컬 이미징(IEEE transactions on medical imaging)'의 `영상기반 코로나19 진단 인공지능기술' 특집호 5월 8일 字 온라인판에 게재됐다. (논문명 : Deep Learning COVID-19 Features on CXR using Limited Training Data Sets)
현재 전 세계적으로 확진자 500만 명을 넘긴 코로나19 진단검사에는 통상 역전사 중합 효소 연쇄 반응(RT-PCR, Reverse Transcription Polymerase Chain Reaction)을 이용한 장비가 사용된다. RT-PCR 검사의 정확성은 90% 이상으로 알려져 있으나, 검사 결과가 나오기까지는 많은 시간이 걸리며 모든 환자에게 시행하기에 비용이 많이 든다는 단점이 있다.
컴퓨터 단층촬영(CT, Computed Tomography)을 이용한 검사도 비교적 높은 정확성을 보이지만 일반적인 X선 단순촬영 검사에 비해 많은 시간이 소요되고 바이러스에 의한 장비의 오염 가능성 때문에 선별 진료에 사용되기 어렵다.
흉부 단순 방사선 촬영(CXR, Chest X-ray)은 여러 폐 질환에서 표준 선별 검사로 활용되고 있지만 코로나19에는 RT-PCR와 CT 검사에 비해 정확성이 현저하게 떨어진다. 그러나, 최근 팬데믹으로 세계 각국에서 확진자 수가 급증함에 따라 비용이 적게 들어가고 검사방법이 용이한 CXR 검사를 정확성을 높여 활용하자는 요구가 증가하고 있다.
그동안 심층 학습(Deep Learning) 기법을 적용해 CXR 영상을 통해 코로나19를 진단하는 여러 연구사례가 보고되고 있지만 진단 정확성을 높이기 위해서는 많은 양의 데이터 확보가 필수적이며 현재와 같은 비상 상황에서는 일관되게 정제된 대량의 데이터를 수집하기가 극히 어렵다.
예 교수 연구팀은 자체 개발한 전처리(Preprocessing)와 국소 패치 기반 방식(Local Patch-based Approach)을 통해 이런 문제점을 해결했다. 적은 데이터 세트에서 발생할 수 있는 영상 간 이질성(Heterogeneity)을 일관된 전처리 과정으로 정규화한 뒤, 국소 패치 기반 방식으로 하나의 영상에서 다양한 패치 영상들을 얻어냄으로써 이미지의 다양성을 확보했다.
또 국소 패치 기반 방식의 장점을 활용한 새로운 인공지능 기술인 `확률적 특징 지도 시각화(Probabilistic Saliency Map Visualization)' 방식을 활용해 CXR 영상에서 코로나19 진단에 중요한 부분을 고화질로 강조해주는 특징 지도를 만들었는데 이 지도가 진단 영상학적 특징과 일치하는 것을 확인했다.
예종철 교수는 "인공지능 알고리즘 기술을 환자의 선별 진료에 활용하면 코로나19 감염 여부를 상시 신속하게 진단할 수 있고 이를 통해 가능성이 낮은 환자를 배제함으로써 한정된 의료 자원을 보다 우선순위가 높은 대상에게 효율적으로 배분할 수 있게 해줄 것ˮ 이라고 말했다.
한편, 이 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2020.05.25
조회수 14664
-
원자간력 현미경(AFM)을 이용한 배터리 전극의 구성 성분 분포 영상화 기법 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 원자간력 현미경(AFM, Atomic Force Microscope)을 이용해 배터리 전극의 구성성분 분포를 파악하는 영상화 기법을 개발하는 데 성공했다.
관련 기술은 차세대 배터리로 주목받는 전고체전지 설계를 용이하게 할 수 있고 다른 전기화학 소재에도 제조 공정을 크게 혁신하는 토대가 될 것으로 기대된다.
김홍준 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 `ACS 어플라이드 에너지 머티리얼스(ACS Applied Energy Materials)'지 4월 27일 字에 게재됐다. (논문명: Visualization of Functional Components in a Lithium Silicon Titanium Phosphate-Natural Graphite Composite Anode)
리튬이온전지는 휴대용 장비와 전기자동차 등 여러 분야에서 강력한 전기 에너지저장장치(ESS)로 사용되고 있다. 그러나 액체나 젤 형태의 전해질을 사용하는 리튬이온전지는 충격이나 압력으로 인한 발화 가능성이 크고 충전소요 시간이 길어지는 취약점을 안고 있다. 따라서 지난 13일 국내 1, 2위 대기업인 삼성그룹과 현대차 그룹 수장들이 첫 단독 회동을 통해 협업을 논의한 사례에서 보듯 고체 전해질을 이용한 전고체전지가 가장 유망한 차세대 배터리로 주목을 받고 있다.
전고체전지는 양극과 음극 사이의 전해질을 액체가 아닌 고체로 대체한 전지다. 전고체전지는 특히 부피를 절반으로 줄이면서 대용량 구현이 가능해 완전 충전 시 최대 주행거리가 800Km에 달하기 때문에 글로벌완성차 업체와 배터리 업체를 중심으로 기술 상용화를 위한 연구개발(R&D) 움직임이 활발하다.
다만 전고체전지가 차세대 배터리로 확고히 자리를 잡기 위해서는 낮은 이온전도도와 전극-전해질 계면의 접합성 문제를 해결해야 한다. 이를 위해 리튬이온전도체가 분산된 복합 전극에 관한 연구가 활발히 진행되고 있다. 또 전지 구동 성능에 큰 영향을 미치는 복합 전극의 재료적 특성을 이해하기 위해서는 미시적 규모로 혼합된 활물질, 이온전도체, 바인더 그리고 도전재와 같은 구성성분들의 형상과 분포를 파악할 수 있는 기술이 필요하다.
홍승범 교수 연구팀이 개발한 영상화 기법은 이러한 문제점들을 거시·미시적 다중 스케일에서 전기화학 변위 현미경과 횡력 현미경 등 원자간력 현미경의 다양한 기능을 활용해 위치에 따른 검출 신호의 감도 차이로 구성성분들의 영역을 구별해 해결했다. 기존 전극과 복합 전극을 비교해서 결과를 제시했으며, 영역들의 구별뿐만 아니라 단일 영역 내에서 나노 스케일의 이온 반응성 세기 분포와 마찰력 세기 분포의 상관관계 파악을 통해 바인더 구성 비율이 이온 반응성에 미치는 영향을 파악했다.
또 기존 전자 현미경을 이용해 관찰할 경우, 진공 환경이 필수적으로 필요하고, 분석을 위한 시편 제작 시 매우 얇은 막 형태로 제작 및 백금 입자를 코팅해야 하는 등 특별한 사전처리 절차가 필요했다. 반면 홍 교수 연구팀이 이번 연구를 통해 제시한 관찰 방법은 일반적인 환경에서 수행할 수 있고, 특별한 사전처리 절차가 필요하지 않다. 이와 함께 다른 영상화 장비보다 관찰의 준비 과정이 편리하며, 공간 분해 능력과 검출 신호의 세기 분해 능력이 월등하고, 성분 관찰 시에는 3차원 표면 형상 정보가 제공된다는 장점이 있다.
홍승범 교수는 "원자간력 현미경을 이용해 개발된 분석 기법은 복합 소재 내의 각 구성성분이 물질의 최종적인 성질에 기여하는 역할을 정량적으로 이해하는 데 유리하다ˮ 면서 "이 기술은 차세대 전고체전지의 설계 방향을 다중 스케일에서 제시할 뿐만 아니라, 다른 전기화학 소재의 제조 공정에도 혁신의 기틀을 마련할 수 있을 것으로 기대된다ˮ 고 강조했다.
한편 이번 연구는 과학기술정보통신부·한국연구재단 거대과학연구개발사업, 웨어러블 플랫폼 소재 기술센터 지원 기초연구사업 및 KAIST 글로벌특이점연구 지원으로 수행됐다.
2020.05.19
조회수 13297
-
초저조도/초고조도 환경에서도 모션 블러 없는 고화질 및 고해상도 영상 생성이 가능한 알고리즘 개발
우리 대학 기계공학과 윤국진 교수 연구팀이 영국 임페리얼 칼리지 김태균 교수 연구팀과 GIST 최종현 교수 공동 연구팀과의 2건의 공동 연구를 통해 이벤트 카메라를 활용한 고화질 및 고해상도 영상 생성 알고리즘들을 개발했다.
연구팀은 이번에 개발한 알고리즘들을 통해 기존의 RGB 기반 카메라가 영상을 획득하지 못하는 초저조도/초고조도 환경에서도 이벤트 카메라(Event Camera)를 활용하여 고화질 및 고해상도 영상을 생성할 수 있고, 특히 이벤트 카메라의 장점을 살려 초고속의 움직임에도 모션 블러(motion blur, 빠른 움직임에 의한 영상 열화) 없는 고프레임율의 영상을 생성할 수 있다고 밝혔다.
이벤트 카메라는 카메라 각 화소에 입사하는 빛의 세기의 변화에 반응하여 광역동적범위(High Dynamic Range)에서 매우 짧은 지연 시간을 갖는 비동기적 이벤트 데이터를 영상 정보로 제공하기 때문에, 기존 RGB 카메라가 영상을 획득할 수 없었던 고조도/저조도 환경에서도 영상 데이터 획득이 가능하고 또한 초고속 움직임을 갖는 피사체에 대한 영상 데이터 획득이 가능하다는 장점이 있다.
하지만 기존의 영상과는 다른 형태의 영상 정보를 제공하기 때문에 기존의 영상 이해 기술을 접목시키기 어렵고 또한 센서의 제약으로 인해 영상의 해상도가 낮다는 단점이 있다. 연구팀은 이벤트 카메라의 장점을 유지하면서 이와 같은 문제를 해결하기 위해 이벤트 데이터로부터 고화질의 초고해상도의 영상을 생성해 내기 위한 최적화된 심층 신경망과 학습 알고리즘들을 제안하였다. 제안된 알고리즘들은 이벤트 카메라로부터 획득된 이벤트 데이터를 일정 시간 동안 누적하여 딥러닝 기반의 합성곱 신경망을 통해 영상을 생성하는 방식으로, 두 공동 연구에서 각각 교사 학습/비교사 학습 기반의 알고리즘을 제안하였는데, 제안된 두 알고리즘들 모두 이벤트 카메라의 장점을 유지할 수 있어 초당 최대 100만 프레임의 영상 생성이 가능하여 조명의 변화가 극심한 환경이나 고속 움직임에 대한 분석이 필요한 다양한 분야에 적용 가능할 것으로 기대된다.
윤국진 교수는 “본 기술은 이벤트 카메라를 활용한 영상 기반 상황 인식을 위한 기술로서, 기존 RGB 카메라로는 검출이 어려운 조명 변화가 극심한 상황에서 사용될 수 있고, 초고속 움직임에 대한 분석이 가능하기 때문에 자율주행 자동차, 드론, 로봇 등에 다양하게 활용될 것으로 기대한다.”고 말했다.
Mohammad Mostafavi 박사과정(GIST)이 1저자로 참여한 공동 연구와 Wang Lin 박사과정(KAIST)이 1저자로 참여한 공동 연구 논문들은 오는 6월에 개최 예정인 컴퓨터 비전/기계학습 분야의 국제 학술대회인 ‘IEEE Conference on Computer Vision and Pattern Recognition (CVPR)에 각각 구술/포스터 논문으로 발표될 예정이다. (논문명: (1) Learning to Super Resolve Intensity Images from Events, 이벤트를 활용한 초고해상도 이미지 생성 학습법, (2) EventSR: From Asynchronous Events to Image Reconstruction, Restoration, and Super-Resolution via End-to-End Adversarial Learning, 적대적 신경망 학습을 통한 비동기적 이벤트의 이미지로의 재구성, 복원 및 초해상도 연구)
한편, 이번 연구는 한국연구재단 중견연구자지원사업(NRF-2018R1A2B3008640)과 차세대정보・컴퓨팅기술개발사업(NRF-2017M3C4A7069369)의 지원을 받아 수행됐다.
2020.05.12
조회수 11458
-
실시간 영상 전송 보안 기술 개발
전산학부 김명철 교수 연구팀이 웹캠, 영상 드론, CCTV, 증강현실(AR), 가상현실(VR) 등에 사용하는 영상 전송 장비용 실시간 영상 암호화 및 전산 자원(CPU, 배터리 등) 소모 저감 기술을 개발했다.
연구팀의 실시간 영상 전송 보안기술은 비디오 코덱 종류에 상관없이 적용될 수 있는 범용성을 가질 뿐 아니라 영상전송기기의 CPU나 배터리를 최대 50%까지 절약하면서도 최고 수준의 보안성능을 제공하는 결과를 보였다.
고경민 박사 주도로 개발된 이번 연구결과는 보안 분야의 국제 학술지 IEEE TDSC(Transactions on Dependable and Secure Computing) 3월 13일 자 온라인판에 게재됐다. (논문명: Secure video transmission framework for battery-powered video devices) 또한, 국내 특허로 등록, 미국특허로 출원돼 2차 심사가 진행 중이다. (국내특허명: 통신 시스템의 암호화 패킷 전송 방법)
기존 실시간 영상 전송 보안기술은 촬영한 모든 영상을 암호화해 전송하거나 비디오 데이터 식별 없이 무작위로 암호화하기 때문에 전산 자원이 제한된 상황에서 적용하기에는 한계가 있다. 문제 해결을 위해 연구팀은 새로운 실시간 영상 암호화 및 배터리 소모 저감 기술을 개발했다. 이 기술은 영상전송 장비에서 동작하는 자원 모니터링 결과에 따라 카메라로 촬영한 영상을 구성하는 비디오 데이터를 데이터중요도 관점에서 선별적으로 암호화 전송을 수행한다.
암호화 전송 시에는 영상 송신 장비의 가용자원량에 따라 실시간으로 암호화 정도를 조정하며, 다중 전송경로 지원을 통해 보안성을 높인다. 수신된 영상 데이터는 실시간 영상 재생이 가능한 단위로 그 순서를 복원한 후 화면에 표시된다. 이 기술은 가용 전산 자원의 모니터링 결과에 따라 촬영된 영상을 구성하는 비디오 데이터 단위로 암호화가 가능해 전산 자원 가용량에 따른 선별적 적용이 가능하다.
연구팀은 카메라 장비를 상용 영상 드론에 탑재해 무선을 통한 영상전송 시 전산 자원 소모를 낮추면서 보안성을 높일 수 있음을 증명했다. 최근 코로나로 인해 널리 활용되는 비대면 강의 및 미팅의 보안성 강화에 기여할 수 있을 것으로 기대된다.
김명철 교수는 “영상전송 보안이 중요한 온라인 교육/회의, 스마트시티의 CCTV, 민군 드론 영상 송수신, 증강현실(AR), 가상현실(VR) 등에서 특허화된 개발기술이 원천기술로 활용될 수 있도록 산학협력을 활발히 추진하고 있다”라고 말했다.
2020.04.16
조회수 9975
-
딥러닝 통해 MRI 다중 대조도 영상 복원 기법 개발
바이오및뇌공학과 박성홍 교수 연구팀이 자기공명영상장치(MRI)의 다중 대조도 영상을 복원하기 위한 새로운 딥러닝 네트워크를 개발했다. 이번 연구를 통해 병원에서 반복적으로 획득하는 다중 대조도 MRI 영상을 얻는 시간이 크게 줄어 편의성 증대, 촬영비용 절감 등의 효과를 볼 것으로 기대된다.
도원준 박사가 1 저자로, 서성훈 박사과정이 공동 1 저자로 참여한 이번 연구는 우수성을 인정받아 국제 학술지 ‘메디컬 피직스 (Medical Physics)’ 2020년 3월호 표지 논문으로 게재됐다.
일반적으로 임상적 환경에서 MRI 촬영은 정확한 진단을 위해 두 개 이상의 대조도로 진행돼 촬영시간이 길어진다. 이에 따라 MRI 촬영비용도 비싸지며 환자들의 불편함을 유발하고, 영상의 품질 역시 환자의 움직임 등으로 인해 낮아질 수 있다.
문제 해결을 보완하기 위해 박 교수 연구팀은 다중 대조도 획득의 특징을 활용한 새로운 딥러닝 기법을 개발해 기존 방식보다 데이터를 적게 수집하는 방식으로 MRI 영상획득 시간을 크게 단축했다. MRI 영상에서 데이터를 적게 수집하는 것은 영상의 주파수 영역에서 이뤄지며, 일반적으로 위상 인코딩의 개수를 줄이는 것으로 영상획득 시간을 감소시키는 것을 뜻한다. 영상획득 시간은 줄어든 인코딩 개수의 비율만큼 줄어들게 되며, 이번 연구에서는 촬영시간을 최대 8배까지 줄여 영상을 복원했다.
연구팀은 임상에서 정확한 진단을 위해 MRI 영상을 다중 대조도로 얻는다는 점을 활용해 복원의 효율을 높였으며, 실제로 데이터를 얻을 당시의 전략을 고려해 네트워크들을 따로 개발했다. 구체적으로 ▲다중 대조도 전체 프로토콜의 촬영시간을 모두 줄이는 네트워크(X-net)와 ▲하나의 프로토콜은 전체 인코딩 데이터를 획득하고 나머지 프로토콜들은 촬영시간을 크게 줄이는 네트워크(Y-net)를 따로 개발해 MRI 다중 대조도 영상을 촬영하는 목적에 맞춰 다르게 최적화했다.
박성홍 교수는 “병원에서 반복적으로 시행하는 다중 대조도 MRI 촬영의 특성을 잘 살려서 성능을 극대화한 딥러닝 네트워크의 개발에 의의가 있다”라며, “병원에서 환자의 MRI 촬영시간을 줄이는 데 도움을 줄 것으로 기대한다”라고 말했다.
서울대학교병원 최승홍 교수와 공동연구로 진행한 이번 연구는 한국연구재단과 한국보건산업진흥원의 지원을 받아 수행됐다.
2020.03.27
조회수 12841
-
재촬영 없이 MRI 강조영상 얻는 AI 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀 자기공명영상(magnetic resonance imaging: MRI)에서 재촬영 없이도 누락된 강조영상을 얻을 수 있는 인공지능 기술을 개발했다.
이 연구를 통해 각 질환별로 강조영상이 암의 진단에 미치는 영향을 객관적으로 밝힐 수 있으며, 실제 임상에서 고비용의 MRI를 효과적이고 체계적으로 활용할 수 있는 방안을 설계할 수 있을 것으로 기대된다.
이동욱 박사가 1 저자로 참여하고 건국대 의과대학 영상의학과 문원진 교수팀이 참여한 이번 연구 결과는 국제 학술지 ‘네이처 머신인테리젼스(Nature Machine Intelligence)’ 1월 18일 자 온라인판에 게재됐다. (논문명 : Assessing the importance of magnetic resonance contrasts using collaborative generative adversarial networks).
MRI는 엑스선 컴퓨터 단층촬영, 초음파와 더불어 임상 진단에서 중요한 역할을 하는 진단 장비이다. 특히 비침습적 방법으로 고해상도의 영상을 얻기 때문에 종양이나 병변을 관찰하며 진단하는데 매우 중요한 임상 정보를 제공한다. 이는 영상의 대조도 (contrast)를 다양하게 조절할 수 있는 MRI의 특징 덕분이다.
예를 들어 뇌종양을 진단하는 데 활용되는 T1·T2 강조영상, FLAIR 기법 영상, T1 조영증강 영상 등 여러 가지 대조 영상을 얻어 진단에 사용함으로써 종양을 찾을 수 있다.
하지만 실제 임상 환경에서는 강조영상을 모두 얻기 어려운 경우가 많다. 여러 장의 강조영상 촬영을 위해 촬영시간이 길어지기도 하고, 잡음이나 인공음영 발생으로 인해 진단에 사용하기 어려운 경우가 많기 때문이다.
또한, 뇌질환진단을 위한 MRI 검사는 의심 질환이 무엇인지에 따라 필수 강조영상이 달라지며, 이후 특정 질환으로 진단명이 좁혀지면서 부득이하게 누락된 강조영상을 확보하기 위한 재촬영이 필요한 경우가 많다. 이러한 상황에 의해 많은 시간과 비용이 소모된다.
최근 인공지능 분야에서 생성적 적대 신경망(Generative adversarial networks, GAN)이라는 딥러닝을 이용해 영상을 합성하는 기술이 많이 보고되고 있지만, 이 기술을 MRI 강조영상 합성에 사용하면 준비하고 미리 학습해야 하는 네트워크가 너무 많아지게 된다.
또한, 이러한 기법은 하나의 영상에서 다른 영상으로의 관계를 학습하기 때문에 몇 개의 강조영상의 존재하더라도 이 정보 간의 시너지를 활용하는 영상 학습기법이 없는 현실이다.
예 교수 연구팀은 자체 개발한 ‘협조·생성적 적대신경망(Collaborative Generative Adversarial Network : CollaGAN)’이라는 기술을 이용해 여러 MRI 강조영상의 공통 특징 공간을 학습함으로써 확장성의 문제를 해결했다.
이를 통해 어떤 대조 영상의 생성이 가능한지와 불가능한지에 대한 질문과, 그에 대한 체계적인 대답 기법을 제안했다.
즉, 여러 개의 강조영상 중에서 임의의 순서 및 개수로 영상이 없어져도 남아있는 영상을 통해 사라진 영상을 복원하는 기법을 학습한 후 합성된 영상의 임상적 정확도를 평가해, 강조 영상 간 중요도를 자동으로 평가할 수 있는 원천 기술을 개발했다.
예 교수 연구팀은 건국대 문원진 교수 연구팀과의 협력을 통해 T1강조·T2강조 영상과 같이 내인성 강조영상은 다른 영상으로부터 정확한 합성이 가능하며, 합성된 강조영상이 실제 영상과 매우 유사하게 임상 정보를 표현하고 있다는 것을 확인했다.
연구팀은 확보한 합성 영상이 뇌종양 분할기법을 통해 뇌종양 범위를 파악하는데 유용한 정보를 제공한다는 것을 확인했다. 또한, 현재 많이 사용되는 합성 MRI 기법(synthetic MRI)에서 생기는 인공음영 영상도 자동 제거가 가능함이 증명됐다. 이 기술을 이용하면 추가적인 재촬영을 하지 않고도 필요한 대조 영상을 생성해 시간과 비용을 비약적으로 줄일 수 있을 것으로 기대된다.
건국대 영상의학과 문원진 교수는 “연구에서 개발한 방법을 이용해 인공지능을 통한 합성 영상을 임상현장에서 이용하면 재촬영으로 인한 환자의 불편을 최소화하고 진단정확도를 높여 전체의료비용 절감 효과를 가져올 것이다”라고 말했다.
예종철 교수는 “인공지능이 진단과 영상처리에 사용되는 현재의 응용 범위를 넘어서, 진단의 중요도를 선택하고 진단 규약을 계획하는 데 중요한 역할을 할 수 있는 것을 보여준 독창적인 연구이다”라고 말했다.
이 연구는 한국연구재단의 중견연구자지원사업을 받아 수행됐다.
□ 그림 설명
그림1. CollaGAN의 작동 원리의 예
2020.01.30
조회수 12858
-
박효훈 교수, 초소형 3차원 영상 센서의 핵심기술 개발
〈 (왼쪽부터) 나노종합기술원 유종범 연구원, 김성환 박사과정, 박효훈 교수 〉
우리 대학 전기및전자공학부 박효훈 교수 연구팀이 나노종합기술원과의 공동 연구를 통해 3차원 영상 센서의 핵심 기술인 실리콘 기반 광위상배열(optical phased array, OPA) 칩을 개발했다.
김성환 박사과정과 나노종합기술원 유종범 박사가 주도한 이번 연구결과는 국제 학술지 ‘옵틱스 레터스(Optics Letters)’ 1월 15일자 온라인 판에 게재됐다.
3차원 영상 센서는 사진 등의 2차원 이미지에 입체감을 주는 거리정보를 추가해 3차원 이미지로 인식하는 센서이다. 사물의 정확한 거리정보가 필요한 자율주행 자동차, 드론, 로봇, 안면인식이 사용되는 스마트폰 등 다양한 전자기기에서 눈의 역할을 하는 핵심부품이다.
다수의 자동차, 드론 회사들이 레이저 빛을 이용한 3차원 영상 센서인 라이다(light detection and ranging, LiDAR) 개발에 주력하고 있다. 그러나 이 방식은 2차원 영상 센서로 3차원 스캐닝을 하는 기계적 방식을 사용하기 때문에 주먹 정도의 큰 크기를 가지며 고장 가능성도 크다.
광위상배열(Optical Phased Array, OPA)은 전기적으로 빛의 방향을 조절할 수 있어 라이다의 차세대 구조로 주목받고 있다. 실리콘 기반의 광위상배열은 크기가 작고 내구성이 높으며 기존의 반도체 칩을 제작하는 설비를 활용해 만들 수 있어 많은 연구가 활발히 진행되고 있다.
하지만 기존의 광위상배열은 빛 방향을 조절하는 방법에 문제가 있다. 수평 방향 조절은 전기-광학식 위상변조기를 이용해 넓은 범위의 스캐닝이 가능하지만, 수직 방향 조절은 레이저 빛의 파장을 바꿔줘야 하는 기술적 난제가 있다.
즉, 빛의 파장을 바꾸면 실리콘 광소자의 특성이 달라져 신뢰성 있는 방향조절이 어렵고 또한 파장을 조절할 수 있는 레이저를 실리콘 기반의 칩에 집적시키기가 어렵기 때문이다. 따라서 방사되는 빛을 수직 및 수평 방향으로 쉽게 조절할 수 있는 새로운 구조를 만드는 것이 중요하다.
연구팀은 파장 변조 광원을 사용해야 하는 기존의 광위상배열을 발전시켜 단일파장 광원으로 넓은 범위의 2차원 스캐닝이 가능한 초소형, 저전력 광위상배열 칩을 개발했다.
연구팀이 반도체 공정을 통해 광위상배열 구조로 제작한 이번 센서는 잠자리 눈 정도의 크기로 작게 제작할 수 있어 3차원 영상 센서를 소형화시킬 수 있다.
연구팀은 광위상배열이 3차원 영상 센서의 기능뿐 아니라 획득한 3차원 영상 데이터를 원하는 방향으로 무선전송하는 기능도 수행 가능해 고화질, 대용량의 영상정보를 전자기기 간 자유롭게 통신할 수 있다고 밝혔다.
김성환 박사과정은 “파장 변조를 이용한 2차원 스캐닝은 파장 변조가 가능한 광원의 집적이 매우 어려웠기 때문에 이번 연구를 통해 광위상배열의 상용화에 큰 도움이 될 것으로 기대한다”라고 말했다.
유종범 박사는 “3차원 영상 센서를 스마트폰에 장착해 얼굴인식 및 증강현실 서비스 등에 지원할 예정이다”라며 “공정 플랫폼을 발전시켜 3차원 반도체 영상 센서 핵심 기술의 국산화에 노력하겠다”라고 말했다.
□ 그림 설명
그림1. 제작된 초소형 광위상배열 칩
그림2. 3차원 영상센서 핵심기술인 광위상배열 칩
2019.01.22
조회수 11004