-
이건재 교수, 유연고집적회로의 연속적패키징 기술 개발
〈 이 건 재 교수 〉
우리 대학 신소재공학과 이건재 교수와 한국기계연구원 김재현 박사 공동 연구팀이 롤 기반 공정을 통해 플렉서블 기기의 핵심기술인 유연 고집적회로를 연속적으로 패키징(소자와 전자기기를 연결하는 전기적 포장) 및 전사(轉寫)할 수 있는 기술을 개발했다.
또한 개발된 롤 기반 전사 및 패키징 기술을 유연 낸드플래시 메모리(전원이 끊겨도 저장된 데이터를 잃어버리지 않는 비휘발성 메모리의 일종)에 적용하는데 성공했다.
이번 연구 결과는 재료과학 분야 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 7월 20일자 온라인 판에 게재됐다.
롤 공정(유연기판을 회전하는 롤에 감으며 동시에 공정을 진행하는 방식) 기반의 유연전자 생산기술은 높은 생산효율을 바탕으로 웨어러블 및 플렉서블 기기 상용화에 중요한 역할을 할 것으로 기대되고 있다.
그러나 지금까지는 고집적회로를 롤 공정으로 구현하는 방법 및 주변회로와 상호 연결하는 패키징 기술이 해결되지 않아 실용화에 한계가 있었다.
문제 해결을 위해 연구팀은 기존 반도체 공정을 이용해 실리콘 기판에 낸드 플래시 메모리를 형성한 후 수백 나노미터(10분의 1m) 두께로 얇게 만들었다.
그 후 개발한 롤 기반 전사 및 패키징 기술을 통해 소자를 유연기판에 옮기는 동시에 이방성 전도 필름을 이용해 상호 연결하는 기술을 구현했다.
연구팀의 최종적인 실리콘 기반 유연 낸드플래시 메모리는 반복적인 휘어짐에도 모든 기능이 정상적으로 동작했고 외부와의 상호연결도 매우 안정적으로 유지됐다.
개발된 롤 기반 유연 고집적회로 기술은 유연 어플리케이션 프로세서(AP), 고집적 메모리, 고속 통신소자 등의 양산에 응용 가능할 것으로 기대된다.
이 교수는 “높은 생산성을 지닌 롤 기반 전사 기술을 이용해 단결정 실리콘 박막 고집적회로를 유연한 인쇄회로 기판 위에 패키징하는 생산기술을 확보했다”며 “향후 유연 디스플레이 및 배터리 기술과 함께 휘어지는 컴퓨터 구현의 핵심 생산 기술이 될 것으로 기대된다”고 말했다.
김재현 박사는 “한국기계연구원이 보유한 롤 기반 전사 기술을 이용해 단결정 실리콘 고집적소자를 유연한 폴리머 인쇄회로 기판 상에 손상 없이 전사함과 동시에 소자와 인쇄회로기판이 전기적으로 연결되도록 하는 롤 기반의 생산 공정 기술을 개발하였다”며 “이 기술은 향후 고성능 전자 소자를 유연 기판 위에 형성해 사물인터넷 및 웨어러블용 고성능 전자기기를 제조하는 핵심 생산 기술이 될 것으로 전망한다.”라고 말했다.
이건재 교수는 2013년도에 0.18 씨모스(CMOS) 공정기반으로 컴퓨터의 두뇌에 해당하는 휘어지는 유연 고집적회로를 최초로 구현했다. 특히 반도체분야 최고 권위학회인 국제반도체소자학회(IEDM)에서 초청받아 발표하는 등 세계적인 주목을 받았다.
한국기계연구원 김재현 박사 연구팀은 2009년부터 롤 스탬프를 이용해 박막소자를 옮기는 기술을 연구하고 있다. 관련 롤 전사 장비 기술을 디스플레이 및 반도체 용도의 롤 장비 회사에 기술이전하기도 했다.
이번 연구는 2013년부터 진행된 한국기계연구원의 나노소재 응용 고성능 유연소자기술 기반구축사업의 일환으로 수행됐다. 이건재 교수는 교원창업을 통해 유연한 고집적회로 관련 기술 상용화를 계획 중이다.
□ 그림 설명
그림1. 연속 롤-패키징 공정의 개요 모식도
그림2. 제작된 유연 실리콘 낸드 플래시메모리
2016.09.01
조회수 15821
-
도장 찍듯이 자유롭게 그래핀 옮기는 기술 개발
우리 학교 전기및전자공학과 최성율 교수 연구팀이 단원자층 그래핀을 금속촉매기판에서 직접 떼어내는 동시에 원하는 기판에 도장을 찍듯 자유롭게 옮길 수 있는 기술을 개발하는데 성공했다.
이 기술을 활용하면 기존의 직접박리 기반 전사공정으로 달성하기 어려웠던 그래핀 박막 적층, 구조물 표면이나 유연한 기판으로 전사, 4인치 웨이퍼 크기의 대면적 전사 등이 가능해진다. 향후 웨어러블 스마트기기 등 다양한 분야에 사용되는 그래핀 전자소자 상용화에 활용될 전망이다.
그래핀을 원하는 기판으로 옮기기 위해 현재 가장 널리 사용하는 방법인 습식전사법은 전사과정 중에 그래핀이 물리적으로 손상되고 표면이 오염 될 수 있어 전사된 그래핀의 전기적 특성이 심각하게 훼손될 수 있다는 단점이 있다.
최 교수 연구팀은 금속촉매기판 위에 성장된 그래핀을 수용성 고분자 용액으로 처리한 후 동일한 수용성 고분자 지지층을 그 위에 형성시켰다. 이 과정을 통해 지지층과 그래핀 사이에 강한 결합력이 형성되고 그 후 지지층을 탄성체 스탬프로 떼어내면 지지층과 함께 그래핀이 금속촉매기판으로부터 분리된다.
이렇게 분리된 그래핀은 탄성체 스탬프에 고립상태로 존재하기 때문에 원하는 기판 어디에든 도장 찍어내듯 자유롭게 옮길 수 있다. 또 금속촉매기판을 재활용 할 수 있고 유해한 화학물질을 전혀 사용하지 않기 때문에 친환경적인 전사법 이라는 장점도 가지고 있다.
최 교수는 이번 연구에 대해 “개발된 그래핀 전사방법은 그 공정이 범용적이고 대면적 전사도 가능하므로 그래핀 전자소자 상용화에 기여할 수 있을 것”이라며 “이 방법이 가지고 있는 높은 전사 자유도로 인해 향후 그래핀과 2차원 소재 접합 나노소자 구현에도 다양하게 활용될 것으로 기대된다”고 연구의의를 밝혔다.
이번 연구는 KAIST 전기및전자공학과 최성율 교수와 양상윤 연구교수가 주도하고 같은 과 조병진 교수, 한국전자통신연구원 최춘기 박사가 참여했으며, 미래창조과학부가 추진하는 글로벌 프론티어 사업인 ‘나노기반 소프트일렉트로닉스 연구단’의 지원으로 수행됐다.
연구 결과는 나노 및 마이크로 과학 분야의 국제 학술지 스몰(small) 1월 14일자 표지논문으로 게재됐다. 끝.
그림1. 본 연구결과를 설명하는 Small紙의 2015년 1월 14일자 표지 사진
그림2. 본 연구에서 개발된 ‘높은 자유도를 갖는 그래핀 직접박리/전사법’
그림3. 개발된 전사법으로 전사된 그래핀: (좌) 단원자층 그래핀을 3번 반복 전사하여 얻은 3층 그래핀 (3-layerd graphene), (우) 그래핀 트랜지스터 제작을 위해 금속 전극 구조물 표면에 전사한 그래핀
그림4. 대면적 전사된 그래핀: (좌) 4인치 실리콘 웨이퍼에 전사된 그래핀, (우) 플라스틱 (polyethersulfone, PES) 유연기판에 전사된 그래핀 (크기 7cm x 7cm)
2015.01.19
조회수 15214
-
고효율 나노발전기 상용화길 열어
아주 작은 움직임으로도 전기를 생산하는 나노발전기가 개발됐다. 몸에 붙이고 다니면 충전되는 웨어러블 전자기기 전력원 등 다양한 활용이 기대된다.
우리 학교 신소재공학과 이건재 교수팀은 레이저 박리 전사기술과 유연한 압전박막 소재를 활용해 기존보다 약 40배 높은 효율을 갖는 나노발전기 개발에 성공했다.
연구결과는 세계적 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 4월 23일자 표지논문으로 게재됐다.
나노발전기는 유연한 나노소재에 미세한 압력이나 구부러짐이 가해질 때 전기 에너지가 생성되는 기술이다. 전선과 배터리 없이도 에너지공급이 가능하기 때문에 휘어지는 전자제품은 물론 심장 박동기와 같이 몸속에 집어넣는 기기나 로봇의 에너지원으로도 활용 가능하다. 그러나 지금까지는 에너지 효율이 낮고 제작공정이 복잡해 상용화가 어려웠다.
이 교수 연구팀은 고온에서 결정화된 고효율 압전박막물질을 현재 상용화된 레이저 박리기술을 이용해 딱딱한 기판에서 플라스틱 기판으로 전사, 효율을 크게 향상시키면서도 대면적으로 양산 가능성을 높였다.
이번에 개발된 유연한 기판(2cm × 2cm)에 만들어진 나노발전기는 미세한 구부림에 의해 생성된 에너지(250V, 8㎂)로 105개의 LED를 작동시키는데 성공했다.
이 교수는 “이번에 개발된 고효율의 나노발전기술은 자연에서 발생하는 바람, 진동, 소리와 같은 미세한 에너지는 물론 심장박동, 혈액흐름, 근육수축·이완 등 사람 몸에서 발생되는 생체역학적 힘을 이용해 전기를 생산할 수 있는 무한 에너지원으로 사용될 수 있다”고 응용가능성에 대해 설명했다.
이와 함께 “발전효율이 세계최고기록보다 40여배 높고 대량 양산이 가능한 레이저 박리기술을 활용해 그동안 상용화를 가로막았던 저효율과 복잡한 제조공정의 문제점을 해결했다는데 큰 의의가 있다”고 말했다.
이 교수팀은 향후 압전박막물질을 삼차원으로 적층해 생성전력을 더욱 높이고 이를 동물에 이식하는 생체실험을 수행할 계획이다.
이번 연구결과는 미래창조과학부 도약연구사업과 ‘코오롱-카이스트 라이프스타일 이노베이션센터(KOLON-KAIST LifeStyle Innovation Center)’의 지원으로 수행됐다.
그림1. 레이저 박리 기술로 제작된 대면적 형태의 나노발전기 이미지(논문표지)
그림2. 플라스틱에 제작된 나노발전기에서 생성된 전력을 이용해 105개의 LED를 작동하는 모습
2014.05.15
조회수 17633
-
이상엽 교수팀, 美 미생물 분자생물학 리뷰지 논문 게재
대장균 단백체 연구, 국내 연구진이 총정리
과학기술부 시스템생물학 연구개발 사업 결실
생명화학공학과 이상엽 LG화학 석좌교수(李相燁, 42세)와 그의 제자인 한미정(韓美正, 31세)박사(현재 미국 위스타 연구소 및 펜실베니아대학 소속 연구원)의 대장균 단백체 논문이 『대장균 단백체 : 과거, 현재, 미래전망(The Escherichia coli Proteome: Past, Present, and Future Prospects)』이라는 제목으로 한국에서는 처음으로 미국 미생물 분자생물학리뷰(MMBR, Microbiology and Molecular Biology Reviews)誌 6월호에 게재됐다고 밝혔다.
MMBR은 미국미생물학회(American Society for Microbiology)에서 발행하는 70년 전통의 리뷰학술지로서 미생물학 및 미생물 유전학, 분자생물학 등에 관한 바이블과 같은 잡지다. 연간 4회 발행되며 한해 평균 30편 정도의 논문만이 게재된다. 미생물분야 학술지 중에서 영향지수(impact factor)가 17이상으로 가장 높다. 분야 최고의 전문가들의 리뷰논문들이 실리며, 게재되는 논문들의 영향력도 매우 큰 것으로 알려졌다.
이번 논문에서는 지난 1975년도부터 시작된 단백체 기술 발전사, 대장균 단백체에 이용되고 있는 방대한 기술, 현재 대장균 단백체의 연구현황 및 향후 연구방향 등을 총정리했다. 총 335개의 핵심 참고문헌 내용을 포함한 78페이지 분량의 논문으로서 앞으로 대장균 단백체연구의 핵심 참고자료로 활용될 것으로 기대되고 있다. 단백체 기술은 시대 순으로 세부분으로 나눠 자세히 언급했다: (1)이차원 전기영동 젤을 이용한 방법(gel based approaches), (2)비전기영동 젤을 이용한 방법(non-gel based approaches) 및 (3)컴퓨터를 이용한 방법(predictive proteomics). 이러한 방법들을 통해 현재까지 밝혀진 1,627 단백질(~38% of 대장균 게놈의 4,237 유전자)에 대한 단백질 정보가 제공되었으며, 대장균 단백체 실험을 위한 최적의 전략 및 방법을 아주 상세히 언급했다. 또한 대장균 단백체의 연구 현황에서는 학문적, 산업적 측면으로 나눠서 그 중요성을 부각시켰다. 학문적으로는 대장균 단백체의 외부 환경요소의 자극(온도, pH, 산소, 영양부족 등)에 따른 세포내의 반응 및 그 유전자의 조절 메카니즘에 대한 정보가 제공되었으며, 산업적으로는 대장균 단백체 정보를 바탕으로 하여 대사공학 및 맞춤형 유전자 조작을 통한 유용 단백질의 생산성 증대 및 개선에 응용한 성공사례를 자세히 언급했다. 마지막으로 단백체 기술의 한계점을 제시함과 동시에 향후 연구방향도 제시했다.
특히, 심사과정에서 이 논문을 접한 외국 전문가들은 이 논문을 표준(standard)으로 하여 인터넷상에서 대장균 단백체 정보를 총 정리한 웹사이트 운영을 요청해 왔으며, 현재 李 교수팀은 관련 웹사이트를 준비 중에 있다.
韓 박사는 “본 논문은 대장균 단백체의 바이블로서 방대한 자료를 체계적으로 깊이있게 잘 정리했기 때문에 단백체 연구를 처음 시작하는 분들께 많은 도움이 될 것으로 본다”며, “우리나라의 단백체 연구는 세계적 수준이라는 점을 강조하고 싶다.”고 밝혔다.
李 교수는 “우리나라는 미생물 단백체 분야에서 경쟁력이 있을 뿐 아니라, 동식물 대상 단백체 연구도 한국프로테옴기구 등의 왕성한 활동등에서 볼 수 있듯이 국제적으로도 아주 우수한 수준이다. 앞으로 단백체연구를 기반으로 우리나라 생명공학 분야의 학술적 산업적 성과들이 쏟아져 나올 것으로 믿는다.” 라고 말했다.
■ 용어 설명
1) 단백체(proteome): 생명체의 전체 유전자, 즉 유전체(genome)에 의해 발현되는 모든 단백질들의 총합을 말한다. 어떤 단백질이, 얼마의 양으로, 어떤 환경에서 발현되는 가를 파악하는 것을 목적으로 한다. 생명체의 genome이 모든 세포에서 동일한 형태로 존재하며, 생명체가 수행하는 기능의 이론적인 면만을 제시할 수 있음에 반해, 단백체는 세포가 처해 있는 환경에 따라, 그리고 고등 생명체의 경우에는 각 조직 별로 유동적으로 존재하며, 세포의 실제적인 기능을 표현해 준다. 이러한 이유로 급속도로 밝혀지고 있는 미지의 유전자들의 기능을 밝혀 내고자 하는 functional genomics의 한 부분으로 새롭게 부각되고 있고, 세포 내에서 일어나는 실제적인 현상들을 전체 단백질 단계에서 통합적으로 파악하는 수단을 제공한다.
2) 전기영동(electrophoresis): 전기장의 영향을 받아 하전된 물질이 유동성 매체내에서 이동하는 것을 말한다. 특히 단백질 분리용으로 사용되고 있는 이차원 전기영동법(two-dimensional gel electrophoresis)은 먼저 전하량에 따라 단백질을 분리한 후 아크릴 아마이드 젤상에서 단백질 크기에 따라 분리하는 법이다.
3) 게놈: 생물체를 구성하고 기능을 발휘하게 하는 모든 유전정보를 보유한 유전자의 집합체로서, 부모로부터 자손에 전해지는 유전물질의 단위체를 뜻하기도 한다. 이때 게놈에서 유전정보는 DNA라는 분자구조로 존재하며 4가지 화학적 암호인 A·G·T·C 등의 염기서열로 표기되어 있다.
4) 대사공학: 유전자 재조합 기술과 관련 분자생물학 및 화학공학적 기술을 이용하여 새로운 대사회로를 도입하거나 기존의 대사회로를 증폭/제거/변형시켜 세포나 균주의 대사특성을 우리가 원하는 방향으로 바꾸는(directed modification) 일련의 기술을 말한다.
■ 이상엽 교수 프로필
이상엽 교수는 1986년 서울대학교 화학공학과를 졸업하고, 1991년 미국 노스웨스턴대학교 화학공학과에서 석박사를 마쳤다. KAIST에서 약 12년 동안 대사공학에 관한 연구를 집중적으로 수행하여 그간 국내외 학술지논문 208편, proceedings논문 144편, 국내외 학술대회에서 748편의 논문을 발표하였고, 기조연설이나 초청 강연을 200여회 한 바 있으며, Metabolic Engineering(Marcel Dekker 사 발간) 등 다수의 저서가 있다. 그간 202건의 특허를 국내외에 등록 혹은 출원하였는데, 미국 엘머 게이든상과 특허청의 세종대왕상을 받는 등 기술의 우수성이 입증된 바 있다. 생분해성고분자, 광학적으로 순수한 정밀화학물질, DNA chip, Protein chip 등의 기술 개발에서 탁월한 연구 업적을 쌓았고, 최근에는 소위 omics와 정량적 시스템 분석기술을 통합하여 생명체 및 세포를 연구하는 시스템 생명공학분야 연구와 게놈정보 이용 생물공정기술 개발에 매진하고 있다. 李 교수는 그간 제 1회 젊은 과학자상(대통령, 1998), 미국화학회에서 엘머 게이든(Elmer Gaden)상(2000), 싸이테이션 클래식 어워드(미국 ISI, 2000), 대한민국 특허기술 대상(2001), 닮고 싶고 되고 싶은 과학기술인(2003), KAIST 연구대상(2004), 한국공학한림원 젊은 공학인상(2005) 등을 수상하였고, 2002년에는 세계경제포럼으로부터 아시아 차세대 리더로 선정되어 활동 중이다.
2006.06.12
조회수 22713